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Abstract Corresponding to known results on Orlicz–Sobolev inequalities which are stronger than the
Poincaré inequality, this paper studies the weaker Orlicz–Poincaré inequality. More precisely, for any
Young function Φ whose growth is slower than quadric, the Orlicz–Poincaré inequality

‖f‖2
Φ � CE(f, f), µ(f) :=

∫
f dµ = 0

is studied by using the well-developed weak Poincaré inequalities, where E is a conservative Dirichlet
form on L2(µ) for some probability measure µ. In particular, criteria and concrete sharp examples of this
inequality are presented for Φ(r) = rp (p ∈ [1, 2)) and Φ(r) = r2 log−δ(e + r2) (δ > 0). Concentration of
measures and analogous results for non-conservative Dirichlet forms are also obtained. As an application,
the convergence rate of porous media equations is described.
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1. Introduction

Let (E, F , µ) be a probability space and let (E , D(E)) be a conservative Dirichlet form
on L2(µ). The well-known Poincaré inequality is

µ(f2) � CE(f, f), µ(f) = 0, f ∈ D(E), (1.1)

where µ(f) :=
∫

E
f dµ and C > 0 is a constant that provides a lower bound of the

spectral gap.
In recent years, a stronger version of (1.1), using Orlicz norms in place of the L1-norm

of f2, was studied intensively (see [14] and references therein). More precisely, for a
Young function Φ, i.e. Φ ∈ C(R) is convex, even and positive such that Φ(s) = 0 if and
only if s = 0, Φ(s)/s → 0 as s → 0, and Φ(s)/|s| → ∞ as |s| → ∞, we consider the
inequality

‖f2‖Φ � CE(f, f), µ(f) = 0, f ∈ D(E), (1.2)

where ‖ · ‖Φ is the Orlicz norm induced by Φ as follows:

‖f‖Φ := inf{λ > 0 : µ(Φ(f/λ)) � 1}, inf ∅ := ∞.
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Since Φ(r)/r → ∞ as r → ∞, this inequality is stronger than the Poincaré inequality. In
particular, if Φ(x) := |x|p for p > 1, then (1.2) is the well-known Sobolev inequality, while
for Φ(x) := |x| log(1 + |x|) it corresponds to Gross’s log-Sobolev inequality introduced
in [10] (see [2]). Owing to these facts, (1.2) was called the (Φ-)Orlicz–Sobolev inequality
in [14].

In general, (1.2) can be described by the following F -Sobolev inequality (see [16,17])

µ(f2F (f2)) � C1E(f, f) + C2, µ(f2) = 1, f ∈ D(E), (1.3)

for a proper function F with F (r) ↑ ∞ as r ↑ ∞. For instance, for any θ ∈ (0, 1],
(1.2) with Φ(x) = |x| logθ(1 + |x|) holds if and only if (1.3) with F (r) = r logθ(1 +
r) and (1.1) hold (see [2] for θ = 1 and [18, 21] for θ ∈ (0, 1)). Moreover, in [20]
(1.3) is related to a class of inequalities which interpolate between the Poincaré inequality
and the log-Sobolev inequality (see also [4,11]). Therefore, in some cases (1.2) can be
described by known results on (1.3) (or equivalent versions); see [21] and references
therein. In particular, various criteria for (1.2) to hold have been addressed in [5,6] for
one-dimensional situations.

Since the Orlicz–Sobolev inequality (1.2) has been comprehensively studied in [14], we
do not investigate this further here. As a supplement to the study of (1.2), we consider
here the following Orlicz–Poincaré inequality:

‖f‖2
Φ � CE(f, f), µ(f) = 0, f ∈ D(E), (1.4)

which has not yet been studied for Φ growing slower than quadric. Since for Φ growing
faster than quadric this inequality may be reduced to (1.2) by replacing Φ(s) by Φ(

√
s)

(see [14]), we consider only the case where Φ(|x|)/|x|2 → 0 as |x| → ∞. In particular,
for Φ(r) = rp with p ∈ [1, 2), this becomes

µ(|f |p)2/p � CE(f, f), µ(f) = 0, f ∈ D(E). (1.5)

To distinguish (1.4) from the stronger inequality (1.2), we call it the (Φ-)Orlicz–Poincaré
inequality.

Since we are restricted to (1.4), which is weaker than the Poincaré inequality (1.1), it
should be reasonable to adopt the following weak Poincaré inequality introduced in [15]:

µ(f2) � α(r)E(f, f) + r‖f‖2
∞, r > 0, µ(f) = 0, (1.6)

where α : (0, ∞) → (0, ∞) is a decreasing function which describes the convergence rate
of the associated Markov semigroup Pt (see [15] for details). Since (1.6) is easy to check
in applications and is powerful in the study of long-time behaviours of Pt, for the study
of (1.4) it is useful to make a connection to (1.6).

In fact, to derive (1.4) from (1.6), we do not need the fact that Φ is a Young function
but rather we use the following assumption:

(Φ) Φ(·) is continuous, even and strictly increasing in | · |, Φ(0) = 0, s2/Φ(s) ↑ ∞ as
|s| ↑ ∞, and lim infs→∞ Φ(s)/s > 0.
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Remark 1.1. The condition s2/Φ(s) ↑ ∞ as |s| ↑ ∞ is to make (1.4) weaker than
(1.1) for the purpose explained above. Owing to the restriction that µ(f) = 0, which
requires a priori that f ∈ L1(µ), we are only able to treat (1.4) for Φ with growth not
slower than linear (see the proof of Theorem 1.3). This is ensured by the condition that
lim inf |x|→∞Φ(x)/|x| > 0. We note that the other restriction, f ∈ D(E) in (1.4), can be
replaced by f ∈ D(Ee), the extended domain of the Dirichlet form (see [8]), which is not
necessarily included by L1(µ).

Remark 1.2. To study the Orlicz–Poincaré inequality for Φ with growth slower than
linear, we must drop the restriction µ(f) = 0. In this case the Dirichlet form is non-
conservative, i.e. either 1 /∈ D(E) or E(1, 1) > 0. We return to this situation in § 4.

Theorem 1.3. Assume that (Φ) holds.

(1) If there exists K > 0 such that
∞∑

n=1

α−1(KΦ(2n+2)−14n)Φ(2n+2) < ∞, (1.7)

then (1.6) implies (1.4) for some constant C > 0.

(2) If (1.4) holds, then (1.6) holds for α(r) = CrΦ−1(r−1)2.

To illustrate Theorem 1.3, we consider below two specific cases, where (1.6) holds
with either α(r) = cr−θ or α(r) = c logθ(1 + r−1) for some c, θ > 0. According to [15,
Corollary 2.4], these two situations correspond to the algebraic and the sub-exponential
convergence of Pt, respectively.

Corollary 1.4.

(1) Let δ > 0. Then (1.6) holds for α(r) = c logδ(1 + r−1) for some c > 0 if and only
if (1.4) holds for Φ(r) = r2 log−δ(e + r2) and some C > 0. Both inequalities are
equivalent to the sub-exponential convergence

‖Pt − µ‖∞→2 � c1 exp[−c2t
1/(1+δ)], t > 0,

for some c1, c2 > 0, where ‖ · ‖∞→2 is the operator norm from L∞(µ) to L2(µ).

(2) Let θ ∈ [0, 1]. Then (1.6) with α(r) = cr−θ, which is equivalent to ‖Pt − µ‖∞→2 �
c′t−1/θ for some c′ > 0 and all t > 0, implies (1.5) for any p ∈ [1, 2/(1 + θ)) with
some C depending on p. On the other hand, (1.5) with p = 2/(1 + θ) implies (1.6)
with α(r) = cr−θ for some c > 0.

The above results will be proved in the next section. To check their sharpness, necessary
conditions of (1.4) through concentrations of µ are addressed in § 3. Section 4 contains
analogous results for non-conservative Dirichlet forms. Finally, the convergence rate of
porous media equations is described in § 5 by using (1.5).

To illustrate our results, we present two specific examples. In particular, the first
example indicates that, in general, (1.6) with α(r) = cr−θ does not imply (1.4) with
Φ(r) = r2/(θ+1). Thus, the statement in Theorem 1.3 (2) is somewhat optimal.
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Example 1.5. Let E = R and µ(dx) = Z−1(1 + |x|)−(1+θ) dx, where σ > 0 and Z

is the normalization. Let E(f, g) = µ(f ′g′) with D(E) = W 2,1(µ). Then (1.6) holds for
α(r) = cr−2/σ for some c > 0. Thus, by Corollary 1.4 (2), (1.5) holds for p ∈ [1, 2σ/(σ +
2)). However, according to Proposition 3.5 and Remark 3.2, with ρ = | · |, for any C > 0,
(1.5) does not hold for p = 2σ/(σ + 2).

Example 1.6. Let E = R
d and µ(dx) = Z−1e−|x|σ dx, where σ > 0 and Z is the

normalization. Let E(f, g) = µ(〈∇f,∇g〉) with D(E) = W 2,1(µ). It is well known that
(1.1) holds provided that σ � 1. If σ ∈ (0, 1), then (1.4) holds with

Φ(x) = |x|2 log−4(1−σ)/σ(e + |x|2)

and some C > 0, i.e.

µ(f2 log−4(1−σ)/σ(e + f2/‖f‖2
Φ)) � Cµ(|∇f |2), µ(f) = 0, f ∈ D(E).

According to Proposition 3.4, this inequality is sharp in the sense that (1.4) does not
hold for Φ(x) = |x|2 log−δ(e + |x|2) if δ < 4(1 − σ)/σ.

Next, we consider the corresponding examples in the context of birth–death processes.
Let E = Z+ and let µ = (µi > 0)i�0 be a probability measure on E. Let ai, bi � 0 satisfy
µibi = µi+1ai+1, i � 0. Then the Dirichlet form for the birth–death process with birth
rate bi and death rate ai is

E(f, g) =
∞∑

i=0

(fi+1 − fi)(gi+1 − gi)biµi

for f, g ∈ D(E) := {f ∈ L2(µ) : E(f, f) < ∞}.

Example 1.7. Let ai = bi > 0 for i � 1 and a0 = 0, b0 = 1. We have µi = a−1
i µ0,

i � 1.

(1) Let ai = iδ, i � 1, for some δ ∈ (1, 2). By [15, Example 5.5 (1)], (1.6) holds for
α(r) = cr−(2−δ)/(δ−1) for some c > 0. Thus, by Corollary 1.4 (2), if δ ∈ ( 3

2 , 2), then
for any p ∈ [1, 2(δ−1)), (1.5) holds for some C = C(p) > 0. But, as in Example 1.5,
for any C > 0, (1.4) does not hold for p = 2(δ−1). To see this from Proposition 3.5,
we define

ρ0 = 0, ρ1 =
√

2, ρi+1 =
√

2 +
i∑

k=1

a
−1/2
k+1 , i � 1. (1.8)

By Remark 3.3,

LE(ρ)2 = 1
2 sup

i�0
{bi(ρi+1 − ρi)2 + ai(ρi − ρi−1)2} = 1

provided that ai is increasing in i. Obviously, in the present case ρi = O(i(2−δ)/2)
as i → ∞. Therefore, µ(ρε) < ∞ for small ε > 0. By Proposition 3.5, if (1.4) holds
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for p = 2(δ − 1), then µ(ρ2p/(2−p)) < ∞. But

µ(ρ2p/(2−p)) =
∞∑

i=0

µiρ
2(δ−1)/(2−δ)
i � c1

∞∑
i=1

i−1 = ∞

for some c1 > 0, so (1.4) does not hold for p = 2(δ − 1).

(2) Let ai = i2 log−δ(1+ i), i � 1, for some δ > 0. By [15, Example 5.5 (3)], (1.6) holds
for α(r) = clogδ(1 + r−1) for some c > 0. Thus, according to Corollary 1.4 (1),
(1.4) holds for Φ(r) = r2 log−δ(e + r2). This Φ is sharp since, for any p < δ, (1.4)
does not hold for Φ(r) = r2 log−p(e + r2). Indeed, for ρ defined in (1.8) we have
ρi � c1 log(δ+2)/2(1 + i) for some c1 > 0 and all i � 1. By Proposition 3.4, (1.4)
with the above Φ for p < δ implies that, for some λ > 0,

∞ >

∞∑
i=1

µi exp[λ log(δ+2)/(p+2)(1 + i)]

=
∞∑

i=1

i−2 logδ(1 + i) exp[λ log(δ+2)/(p+2)(1 + i)],

which is, however, infinite since (δ + 2)/(p + 2) > 1.

2. Proofs of Theorem 1.3 and Corollary 1.4

To derive (1.4) from (1.6), we shall adopt a cut-off argument to control the term ‖f‖∞. To
this end, we need the following lemma (see [9, Lemma 2.2] or the proof of [12, Proposition
I.4.11]).

Lemma 2.1. Let (E, F , µ) be a (not necessarily finite) measure space and let (E , D(E))
be a Dirichlet form on L2(µ). For any f ∈ D(E) and a sequence {fn}n�1 ⊂ L2(µ) such
that

n∑
n=1

|fn(x) − fn(y)| � |f(x) − f(y)|,
∞∑

n=1

|fn| � |f |, x, y ∈ E,

we have fn ∈ D(E) for all n � 1 and
∑∞

n=1 E(fn, fn) � E(f, f).

Proof of Theorem 1.3 (1). (i) For any f ∈ D(E), define

fn = sgn(f){(|f | − 2n)+ ∧ 2n}, f̄n = (f ∧ 2n) ∨ (−2n), n � 1.

It is easy to see that, for every N � 1,

f̄N +
∞∑

n=N

fn = f. (2.1)

We only verify this at points where f � 0 (otherwise, we simply use −f in place of f). If
f � 2N , then the equation is trivial. If f ∈ (2m, 2m+1] for some m � N , then the desired
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equation becomes

2N +
m−1∑
n=N

2n + f − 2m = f,

which is also trivial. Next, for any x, y ∈ E with f(x) � f(y), we have fn(x) � fn(y)
and f̄n(x) � f̄n(y), n � 1. Then (2.1) implies that

|f̄N (x) − f̄N (y)| +
∞∑

n=N

|fn(x) − fn(y)| = f̄N (x) − f̄N (y) +
∞∑

n=N

(fn(x) − fn(y))

= |f(x) − f(y)|.

Therefore, by Lemma 2.1 we obtain

E(f̄N , f̄N ) +
∞∑

n=N

E(fn, fn) � E(f, f). (2.2)

(ii) We claim that there exists c1 > 0 and a sequence {CN > 0}N�1 such that

µ(Φ(f̄N )) � 1
4 + CNE(f̄N , f̄N ) + c1

∞∑
n=N−1

4−nΦ(2n+2)µ(f2
n) (2.3)

holds for all N � 1 and f ∈ D(E) with µ(f) = 0, ‖f‖Φ = 1. Firstly, by (Φ) there exists
c2 > 0 such that

Φ(f) � 1
4 + c2f

2.

Then (1.6) implies that

µ(Φ(f̄N )) � 1
4 + c2α(r)E(f̄N , f̄N ) + c2r4N + c2µ(f̄N )2, r > 0. (2.4)

Next, let c3 > 0 be such that Φ(s) � c3s for s � 2. Since µ(f) = 0 and µ(Φ(f)) = 1, we
obtain

µ(f̄N )2 = µ(sgn(f)(|f | − 2N )+)2 � c3µ(Φ(f)1{|f |>2N }).

Therefore, to prove (2.3), it remains to note that

Φ(f)1{|f |>2N } �
∞∑

n=N−1

4−nΦ(2n+2)µ(f2
n).

This follows from the fact that

Φ(f) � Φ(2m+1) � 41−mΦ(2m+1)f2
m−1 if |f | ∈ (2m, 2m+1]. (2.5)

(iii) We now consider fn. For any n � 1, (1.6) implies that

µ(f2
n) � α(r)E(fn, fn) + r4n + µ(fn)2

� α(r)E(fn, fn) + r4n + µ(f2
n)µ(|f | > 2n)

� α(r)E(fn, fn) + r4n + µ(f2
n)Φ(2n)−1, r > 0.
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Let N0 � 1 be such that Φ(2N0) � 2. We obtain

µ(f2
n) � 2α(r)E(fn, fn) + 2r4n, r > 0, n � N0. (2.6)

Next, by (2.5) we have

Φ(f) � Φ(f̄N ) +
∞∑

n=N−1

4−nΦ(2n+2)µ(f2
n).

Combining this with (2.3) and (2.6) and noting that µ(Φ(f)) = 1, for every N � N0 + 1
we obtain that

1 � 1
4 + CNE(f̄N , f̄N ) + 2(1 + c1)

∞∑
n=N−1

{α(rn)4−nΦ(2n+2)E(fn, fn) + rnΦ(2n+2)},

where rn > 0 for n � N − 1. Taking rn = α−1(K4nΦ(2n+2)−1), we arrive at

1 � 1
4 + CNE(f̄N , f̄N ) + 2(1 + c1)K

∞∑
n=N−1

E(fn, fn)

+ 2(1 + c1)
∞∑

n=N−1

Φ(2n+2)α−1(K4nΦ(2n+2)−1).

Combining this with (2.2) and noting that (1.7) implies that

lim
N→∞

∞∑
n=N−1

Φ(2n+2)α−1(K4nΦ(2n+2)−1) = 0,

we may find a sufficiently large N such that

1 � 1
2 + (CN + 2 + 2c1)E(f, f), µ(f) = 0, ‖f‖Φ = 1, f ∈ D(E).

This implies (1.4) for C = 2CN + 4 + 4c1. �

Proof of Theorem 1.3 (2). Let f ∈ D(E) be such that µ(f) = 0 and µ(Φ(f)) = 1.
Let t := µ(f2) > 0. Since r2Φ(r)−1 is increasing in r > 0, if ‖f‖2

∞ � t/r, then

t = µ(f2) � µ(Φ(f))
∥∥∥∥ f2

Φ(f)

∥∥∥∥
∞

� t

rΦ(
√

t/r)
.

This implies that

µ(f2) � rΦ−1(1/r)2‖f‖2
Φ + r‖f‖2

∞, µ(f) = 0, f ∈ D(E).

The proof is completed by combining this with (1.4). �
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Remark 2.2. In general, for any sequence δn ↑ ∞ as n ↑ ∞, by repeating the proof
of Theorem 1.3 with

fn := sgn(f){(|f | − δn)+ ∧ (δn+1 − δn)}, n � 1,

one may obtain a corresponding sufficient condition generalizing (1.7) for (1.4) to hold.
Here we take δn := 2n, since it makes representations much simpler and, more impor-
tantly, the resulting estimates of Φ are sharp, as illustrated by the examples in § 1.

Proof of Corollary 1.4. We prove only (1), since the proof of (2) is similar and
simpler. Moreover, since the claimed equivalence between the convergence of Pt and
(1.6) is included in [15, Corollary 2.4], we need only to prove the equivalence of (1.4)
and (1.6) for the specific α(r) := c logδ(1 + r−1) and Φ(r) := r2 log−δ(e + r2). For any
K > 0,

α−1(KΦ(2n+2)−14n)Φ(2n+2) = α−1(K4−1 logδ(e + 4n+2))4n+2 log−δ(e + 4n+2)

� 4n+2

exp[(K/4c)1/δ log(e + 4n+2)] − 1
.

Therefore, for any K > 4c, (1.7) holds and, hence, (1.6) implies (1.4).
On the other hand, if (1.4) holds, then Theorem 1.3 (2) implies (1.6) for

α(r) = CrΦ−1(r−1)2 � c logδ(1 + r−1)

for some c > 0 and all r ∈ (0, 1]. The proof is thus complete, since (1.6) is trivial for
r � 1 and any α(r) � 0. �

3. Concentration of measure µ

In this section we aim to derive concentration estimates of µ from the inequality (1.4)
(or (1.5)). To this end, as in [1], we first introduce the class of distance-like reference
functions.

Definition 3.1. Let (E, F , µ) be a probability space and let (E , D(E)) be a conserva-
tive symmetric Dirichlet form on L2(µ). Let

D(LE) := {f ∈ F : fn := (f ∧ n) ∨ (−n) ∈ D(E), n � 1}.

For f ∈ D(LE), the following quantity is called the E-Lipschitz constant of f :

LE(f) := lim
n→∞

sup{E(fng, fn) − 1
2E(f2

n, g) : g ∈ D(E), µ(|g|) � 1}1/2.

Remark 3.2. Let E be a complete Riemannian manifold with µ a probability measure
equivalent to the volume measure dx. Let

E(f, g) := µ(〈∇f,∇g〉), f, g ∈ W 2,1(µ).

Then LE(f) = ‖∇f‖∞ = Lip(f) for any Lipschitz continuous function f (see [21, Propo-
sition 1.2.2]).
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Remark 3.3. Let q ∈ L1(µ × µ) be non-negative such that q(x, y) = q(y, x) for
x, y ∈ E. Define

E(f, g) := 1
2

∫
E×E

(f(x) − f(y))(g(x) − g(y))q(x, y)µ(dx)µ(dy),

D(E) := {f ∈ L2(µ) : E(f, f) < ∞}.

Then (E , D(E)) is a symmetric Dirichlet form and D(LE) coincides with the class of
measurable functions on E. Moreover, for f ∈ D(LE) one has (see [21, Proposition 1.2.3])

LE(f)2 = 1
2 ess

µ
sup

x

∫
|f(x) − f(y)|2q(x, y)µ(dy).

To study the concentration of µ in terms of ρ with LE(ρ) � 1, we make use of the
following assumption instead of (Φ):

(Φ′) Φ is convex, continuous and strictly increasing, Φ(0) = 0, lims→∞ Φ(s) = ∞ and
lims→∞ Φ(s)−1s2 = ∞.

Proposition 3.4. Assume that (Φ′) holds and let

Ψ(r) =
∫ 1

r

Φ−1(2s−1)2 ds, r ∈ (0, 1).

Then, for any ρ � 0 with LE(ρ) � 1, (1.4) implies that

µ(ρ � t) � Ψ−1(ct), t � N,

for some c, N > 0. Consequently, if Φ(s) = s2 log−δ(e + s2) for some δ > 0, then

µ(ρ � t) � exp[−λt2/(2+δ)]

for some λ > 0 and all sufficiently large t.

Proof. (i) For any t, r > 0, let ρt,r = (ρ − t)+ ∧ r. We have (see [1] or [21, Lemma
1.2.4])

E(ρt,r, ρt,r) � 2µ(t � ρ � t + r), t, r > 0.

Thus, it follows from (1.4) that

‖ρt,r − µ(ρt,r)‖2
Φ � 2Cµ(t � ρ � t + r).

On the other hand, if fg = 0, then

µ

(
Φ

(
f + g

λ

))
= µ

(
Φ

(
f

λ

))
+ µ

(
Φ

(
g

λ

))
, λ > 0.
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We obtain ‖f + g‖Φ � ‖f‖Φ ∨ ‖g‖Φ. Moreover, the convexity of Φ implies the triangle
inequality for ‖ · ‖Φ. Hence,

‖ρt,r − µ(ρt,r)‖Φ = ‖µ(ρt,r)1{ρ�t} + (ρt,r − µ(ρt,r))1{ρ>t}‖Φ

� 1
2 (‖µ(ρt,r)1{ρ�t}‖Φ + ‖(ρt,r − µ(ρt,r))1{ρ>t}‖Φ)

� 1
2{µ(ρt,r)µ(ρ � t) + ‖ρt,r‖Φ − µ(ρt,r)Φ(1)µ(ρ > t)} � 1

2‖ρt,r‖Φ

provided that µ(ρ > t) � 1/(1 + Φ(1)). We thus obtain

‖ρt,r‖2
Φ � C1µ(t � ρ � t + r), if r > 0, µ(ρ � t) � 1

1 + Φ(1)
. (3.1)

Next, since Φ(t)−1t−2 → 0 as t → ∞ according to (Φ′), we have limt→∞ Φ−1(2t)2t−1 =
∞. Therefore, there exists ε0 ∈ (0, 1/(1 + Φ(1))] such that

Φ−1(2s−1)2 � 2s−1, s ∈ (0, ε0]. (3.2)

(ii) Now let t0 > 0 such that µ(ρ � t0) � ε0, and ti := t0 + i, i � 0. Without loss of
generality, we assume that µ(ρ = ti) = 0 for all i � 0, since the set {t > 0 : µ(ρ = t) > 0}
is either finite or countable, and {ti} can be uniformly approximated by sequences in
{t > 0 : µ(ρ = t) = 0}.

Let ai := µ(ρ � ti), i � 0. By (3.1) and setting µ(ρ = ti) = 0, we obtain

Φ−1(a−1
i+1)

−2 = ‖1[ti+1,∞)(ρ)‖2
Φ � ‖ρti,1‖2

Φ � C1(ai − ai+1), i � 0.

This implies that
C−1

1 � Φ−1(a−1
i+1)

2(ai − ai+1), i � 0.

If ai+1 � 1
2ai, then

1
C1

� Φ−1(2a−1
i )2(ai − ai+1) �

∫ ai

ai+1

Φ−1(2s−1)2 ds. (3.3)

If ai+1 < 1
2ai, then ∫ ai

ai+1

2
s

ds � 2(ai − ai+1)
ai

� 1. (3.4)

Combining (3.3) and (3.4) with (3.2), we obtain

c := 1 ∧ 1
C1

�
∫ ai

ai+1

{
Φ−1(2s−1)2 ∨ 2

s

}
ds =

∫ ai

ai+1

Φ−1(2s−1)2 ds, i � 0. (3.5)

Now, for any t � t0 + 1, let k := min{n ∈ N : n � t − t0}. By (3.5) we have

c(t − t0 − 1) �
k−1∑
i=0

∫ ai

ai+1

Φ−1(2s−1)2 ds �
∫ a0

µ(ρ�t)
Φ−1(2s−1)2 ds.

This implies that
Ψ(µ(ρ � t)) � c1t

for some constant c1 > 0 and sufficiently large t. Hence, the first assertion holds.
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(iii) If Φ(s) = s2 log−δ(e + s2), then there exist c2, c3 > 0 such that

Ψ(r) =
∫ 1

r

Φ−1(2s−1)2 ds

� c2

∫ 1

r

1
s

logδ/2(e + s−2) ds

� c2

∫ 1

r

d
ds

{
− 1

(δ + 2)(e + 1)
log(δ+2)/2(e + s−2)

}
ds

� c3 log(δ+2)/2(e + r−2)

for sufficiently small r > 0. Therefore, there exists c4 > 0 such that, for sufficiently large
t > 0,

Ψ−1(t) � {exp[(t/c3)2/(2+δ)] − e}−1/2 � exp[−c4t
2/(δ+2)].

Then the second assertion follows from the first. �

It is easy to see from Proposition 3.4 that if (1.5) holds for some p ∈ [1, 2), then
µ(ρ � t) � ct−p/(p−2) for some c > 0 and all t > 0. The next result is considerably better
than this, and is sharp, as illustrated by the examples in § 1.

Proposition 3.5. Let ρ � 0 such that LE(ρ) � 1. If µ(ρε) < ∞ for some ε > 0 and
(1.5) holds for some p ∈ [1, 2), then µ(ρ2p/(2−p)) < ∞.

Proof. Without loss of generality, we assume that ρ � 1 (otherwise, we use 1 + ρ in
place of ρ). Let

h(t) := µ(ρt), hn(t) := µ((ρ ∧ n)t), n � 1, t > 0.

By (1.5) and [21, Lemma 1.2.4],

µ(|(ρ ∧ n)t − hn(t)|p) � [2C(t − 1)2hn(2(t − 1))]p/2. (3.6)

Since p < 2, there exists c(p) > 0 such that

[2C(t − 1)2hn(2(t − 1))]p/2 � 1
2p

hn(tp) + c(p), t � 2
2 − p

. (3.7)

Here, we have used the fact that ρ2(t−1) � ρtp for t � 2/(2 − p) since ρ � 1. Moreover,

µ(|(ρ ∧ n)t − hn(t)|p) + hn(t)p � 1
p
µ((ρ ∧ n)tp).

Combining this with (3.6) and (3.7), we obtain

hn(tp) � C(p)(1 + hn(t))p, t ∈
[
ε,

2
2 − p

]
,
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for some constant C(p) > 0. Letting n → ∞, we have

h(tp) � C(p)(1 + h(t))p, t ∈
[
ε,

2
2 − p

]
. (3.8)

Since h(ε) < ∞, this implies that h(εpk+1) < ∞ for all k � 0 such that εpk � 2/(2 − p).
Let k0 be the largest integer such that εpk0 � 2/(2 − p). We have h(εpk0+1) < ∞ and
εpk0+1 > 2/(2 − p). Therefore, h(2/(2 − p)) < ∞. The proof is thus completed by taking
t = 2/(2 − p) in (3.8). �

4. Non-conservative Dirichlet forms

For non-conservative Dirichlet forms we have either 1 /∈ D(E) (e.g. the Dirichlet form
of the Dirichlet Laplacian on a manifold with boundary) or 1 ∈ D(E) but E(1, 1) > 0
(e.g. the Dirichlet form of a Schrödinger operator with negative potential). In these cases
we consider the following inequality instead of (1.4):

‖f‖2
Φ � CE(f, f), f ∈ D(E). (4.1)

To study this inequality, we use the following type of weak Poincaré inequality introduced
in [19]:

µ(f2) � α(r)E(f, f) + r‖f‖2
∞, r > 0, f ∈ D(E). (4.2)

Theorem 4.1. Assume (Φ) but without the condition lim infs→∞ Φ(s)/s > 0. Then
all results in Theorem 1.3 hold for (4.1) and (4.2) in place of (1.4) and (1.6), respectively.
Consequently, we have the following.

(1) Let δ > 0. Then (4.2) holds for α(r) = c logδ(1 + r−1) for some c > 0 if and only
if (4.1) holds for Φ(r) = r2 log−δ(e + r2) and some C > 0. Both inequalities are
equivalent to the sub-exponential convergence

‖Pt‖∞→2 � c1 exp[−c2t
1/(1+δ)], t > 0,

for some c1, c2 > 0.

(2) Let θ > 0. Then (4.2) with α(r) = cr−θ, which is equivalent to ‖Pt‖∞→2 � c′t−1/θ

for some c′ > 0 and all t > 0, implies that

µ(|f |p)2/p � CE(f, f), f ∈ D(E), (4.3)

for any p ∈ (0, 2/(1+ θ)) and some constant C depending on p. On the other hand,
(4.3) with p = 2/(1 + θ) implies (4.2) with α(r) = cr−θ for some c > 0.

Proof. Simply note that in the present case the formula (2.3) in the proof of Theo-
rem 1.3 (1) reduces to

µ(Φ(f̄N )) � 1
4 + CNE(f̄N , f̄N ), f ∈ D(E), ‖f‖Φ = 1, (4.4)

and the remainder of the proof of Theorem 1.3 is valid without the last assumption
in (Φ). �
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Proposition 4.2. Assume (Φ′) but without the convexity of Φ. Proposition 3.4 holds
for (4.1) in place of (1.4) and, for any p ∈ (0, 2), the result in Proposition 3.5 holds
for (4.3) in place of (1.5).

To prove this proposition, one needs only to use (4.1) and (4.3) to replace (1.4) and
(1.5), respectively, in the proofs of Propositions 3.4 and 3.5. Therefore we omit the proof.

Finally, we present below two examples in which, unlike in the situation for (1.5), (4.3)
can also be described for p < 1.

Example 4.3. We use the situation of Example 1.5 but set E = [0, ∞) and D(E) =
{f ∈ W 2,1([0, ∞); µ) : f(0) = 0}. Then, for any δ > 0, (4.3) holds for p ∈ (0, 2σ/(σ + 2))
but does not hold for p = 2σ/(σ + 2).

Proof. Let us extend functions in D(E) onto R by setting f |(−∞,0] = 0 and letting
µ̃ be the probability measure in Example 1.5. By (1.6) with α(r) = cr−2/σ indicated
in Example 1.5 and noting that µ̃(f)2 � 1

2 µ̃(f2) for f ∈ D(E), we obtain (4.2) for
α(r) = c′r−2/σ for some c′ > 0. The desired assertions are then direct consequences of
Theorem 4.1 and Proposition 4.2. �

Example 4.4. We use the situation of Example 1.7 (1) but consider δ ∈ (1, 2) and the
Dirichlet form with D(E) = {f ∈ L2(µ) : E(f, f) < ∞, f(0) = 0}. Then (4.3) holds for all
p ∈ (0, 2(δ − 1)) but fails when p = 2(δ − 1). The proof is similar to that of Example 4.3
by noting that in the present setting

µ(f)2 � µ(f2)(1 − µ0).

5. Applications to porous media equations

Let p ∈ (0, 2). Consider the differential equation

∂tu(t, ·) = L{u(t, ·)m}, u(0, ·) = f, (5.1)

where m > 1, f is a bounded measurable function on E and um := sgn(u)|u|m. In
particular, if L = ∆ on R

d or a regular domain with Dirichlet or Neumann boundary
condition, then (5.1) is called the porous medium equation (see, for example, [3,13] and
references within).

We call Ttf := u(t, ·) a solution to (5.1) if u(t, ·)m ∈ D(L) for t > 0 and um ∈
L1

loc([0, ∞) → D(E); dt) such that, for any g ∈ D(E),

µ(u(t, ·)g) = µ(fg) −
∫ t

0
E(g, u(s, ·)m) ds, t > 0.

In general, since (L,D(L)) is a Dirichlet operator, one has (see [7, p. 242])

µ(f lLfm) � − 4lm

(l + m)2
E(f (l+m)/2, f (l+m)/2) (5.2)
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for l, m > 0 and f such that fm ∈ D(L) and f (l+m)/2 ∈ De(E), where De(E) is the
extended domain (see [8]). If, in particular, L is a second-order elliptic differential oper-
ator on a Riemannian manifold such that E(f, g) = µ(〈∇f,∇g〉) for f, g ∈ D(E), then
the equality in (5.2) holds by the chain rule.

Proposition 5.1. Assume that, for any bounded f ∈ D(L), Equation (5.1) has a
unique solution, Ttf .

(1) Let p ∈ (1, 2) and m = 3 − p. If (1.5) holds, then

µ(|Ttf |p) �
{

µ(|f |p)(p−2)/p +
(p − 1)(2 − p)(3 − p)t

C

}−p/(2−p)

, t � 0, µ(f) = 0.

(5.3)
If the equality in (5.2) holds, then the converse is true.

(2) Let p ∈ (1, 2) and m = 3 − p. Assertions in (1) hold for (4.3) in place of (1.5) and
for (5.3) without the restriction µ(f) = 0.

(3) Let p ∈ (0, 2) and m = (4 − p)/p. Then (4.3) implies that

µ((Ttf)2) �
{

µ(f2)(p−2)/p +
(4 − p)(2 − p)

2C
t

}−p/(2−p)

, t � 0, (5.4)

and the converse is true, provided that the equality in (5.2) holds.

Proof. We first prove (1). Let f ∈ D(L) with µ(f) = 0. By (1.5) and (5.2), we have

d
dt

µ(|Ttf |p) = pµ((Ttf)p−1L{(Ttf)3−p})

� −p(p − 1)(3 − p)E(Ttf, Ttf)

� −p(p − 1)(3 − p)
C

µ(|Ttf |p)2/p.

This implies (5.3). Since the equality in (5.3) holds at t = 0, the inequality remains
true by taking derivatives with respect to t at t = 0 for both sides. Combining with the
equality in (5.2), we obtain (1.5).

Since the proof of (2) is completely similar to that of (1), it remains to prove (3). By
(4.3) we have

d
dt

µ((Ttf)2) = −2E(Ttf, (Ttf)(4−p)/p)

� − (4 − p)p
2

E((Ttf)2/p, (Ttf)2/p)

� − (4 − p)p
2C

µ((Ttf)2)2/p.

This implies (5.4). If the equality in (5.2) holds, then, as explained above, one may take
the derivative at t = 0 to derive the converse. �
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