Bull. Austral. Math. Soc. Vol. 48 (1993) [303-311]

THE DUNFORD-PETTIS PROPERTY ON VECTOR-VALUED CONTINUOUS AND BOUNDED FUNCTIONS

JOSE AGUAYO AND JOSE SANCHEZ

Let X be a completely regular space, E a Banach space, $C_b(X, E)$ the space of all continuous, bounded and E-valued functions defined on X, $M(X, \mathcal{L}(E, F))$ the space of all $\mathcal{L}(E, F)$ -valued measures defined on the algebra generated by zero subsets of X. Weakly compact and β_0 -continuous operators defined from $C_b(X, E)$ into a Banach space F are represented by integrals with respect to $\mathcal{L}(E, F)$ -valued measures. The strict Dunford-Pettis and the Dunford-Pettis properties are established on $(C_b(X, E), \beta_i)$, where β_i denotes one of the strict topologies β_0 , β or β_1 , when E is a Schur space; the same properties are established on $(C_b(X, E), \beta_0)$, when E is an AM-space or an AL-space.

1. NOTATIONS AND DEFINITIONS

Let X be a completely regular space, E a Banach space, and $C_b(X, E)$ the space of all continuous, bounded and E-valued functions defined on X (if $E = \mathbb{R}$, then $C_b(X, \mathbb{R}) = C_b(X)$). We use B(X) (Ba(X)) to denote the smallest algebra (σ -algebra) containing the zero-sets, the so-called Baire algebra (Baire σ -algebra), and M(X) to denote the space of all zero-set regular measures defined on B(X). We define M(X, E')to be the space of all finitely additive vector measures $\mu: B(X) \to E'$ such that

- (1) for each $x \in E$, μ_x , defined by $\mu_x(B) = \langle \mu(B), x \rangle$, is in M(X)
- (2) $|\mu|(X) < \infty$, where $|\mu|(B) = \sup\{|\Sigma\langle\mu(B_i), s_i\rangle| : \{B_i\}$ is a finite B(X)-partition of B and $\{s_i\}$ is a finite collection from the unit ball of $E\}$.

It is known that $C_b(X, E)' = M(X, E')$.

For $B \in B(X)$, $\mu \in M(X, E')$ and a μ -measurable function f, we define $\int_B f d\mu = \lim \Sigma \mu(B_i) f(x_i)$, where the limit is taken over the directed set of all finite B(X)-partitions of B and $x_i \in B_i$.

Let F be another Banach space. We define $M(X, \mathcal{L}(E, F))$ to be the space of all finitely additive vector measures $\mu: Ba(X) \to \mathcal{L}(E, F)$ such that

(1) for each $x' \in F'$, $x'\mu$, defined by $x'\mu(B) = x'(\mu(B))$, is in M(X, E'),

Received 9 October 1992

We are very grateful to Professor S.S. Khurana for several suggestions. This work was partially supported by FONDECYT, proyect 89-655 and Dirección de Investigación, Universidad de Concepción, proyect 91.12.21-1.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

(2) $\|\mu\|(X) < \infty$, where for $B \in B(X)$, $\|\mu\|(B) = \sup\{|x'\mu|(B): \|x'\| \le 1\}$.

Let $\mu \in M(X, \mathcal{L}(E, F))$ and let f be a μ -measurable function from X into E. We say that f is μ -integrable in $B \in B(X)$ if

- (i) for each $x' \in F'$, the integral $\int_B f d(x'\mu)$ exists.
- (ii) there exists a vector in F, denoted by $\int_B f d\mu$, such that for all $x' \in F'$ we have $x' (\int f d\mu) = \int f d(x'\mu)$.

If f is μ -integrable over all B in B(X), we say that f is μ -integrable.

We shall pay careful attention [8] to three classes of Baire measures described as follows:

Let μ be a Baire measure. μ is called a σ -additive measure if $\mu(E_n) \to 0$ for every sequence $\{E_n\}$ in B(X) such that $E_n \downarrow \emptyset$. μ is called τ -additive if $\mu(E_\alpha) \to 0$ for every net $\{E_\alpha\}$ in B(X) such that $E_\alpha \downarrow \emptyset$. μ is called tight if, given $\varepsilon > 0$, there exists a compact subset K of X such that $|\mu|(X \setminus K) < \varepsilon$. It is known that each of these measures can be extended to Ba(X) [11].

We shall denote by $M_{\sigma}(X)$, $M_{\tau}(X)$ and $M_{t}(X)$ the space of all σ -additive, τ additive and tight measures respectively. We shall understand for $M_{\sigma}(X, E')$ the space of all vector measures $\mu \in M(X, E')$ such that $\mu_{x} \in M_{\sigma}(X)$, for all $x \in E$. Similar meanings for $M_{\tau}(X, E')$ and $M_{t}(X, E')$. Finally, we shall understand by $M_{\sigma}(X, \mathcal{L}(E, F))$ the space of all vector measures $\mu \in M(X, \mathcal{L}(E, F))$ such that $y'\mu \colon B(X) \to E'$ belongs to $M_{\sigma}(X, E')$, for all $y' \in F'$. Similar meanings for $M_{\tau}(X, \mathcal{L}(E, F))$ and $M_{t}(X, \mathcal{L}(E, F))$. Clearly, we have that $M_{t}(X, \mathcal{L}(E, F)) \subset$ $M_{\tau}(X, \mathcal{L}(E, F)) \subset M_{\sigma}(X, \mathcal{L}(E, F))$.

We shall define three locally convex topologies on $C_b(X, E)$, denoted by β_1 , β and β_0 , as follows:

Let Ω and Ω_1 be, respectively, the class of all compact and all zero sets in $\beta X \setminus X$, where βX denotes the Stone-Céch compactification of X. Let $Q \in \Omega(\Omega_1)$. We define β_Q as the locally convex topology generated by the family of semi-norms $f \to ||fg||$, where $g \in B_Q = \{h \in C_b(X) : \hat{h} \equiv 0 \text{ on } Q\}$ (\hat{h} denotes its extension to βX). $\beta(\beta_1)$ is the inductive limit of the topologies β_Q as Q ranges over $\Omega(\Omega_1)$. β_0 is defined as the finest locally convex topology which coincides on the norm bounded sets with the compact-open topology.

It is known that $(C_b(X, E), \beta_i)' = M_i(X, E')$, where β_i is any one of the above topologies.

The following characterisation of β_0 -equicontinuous will be used [3].

LEMMA 1. A subset H of $M_t(X, E')$ is β_0 -equicontinuous if and only if

(a) H is norm-bounded, and

(b) for every ε > 0 there exists a compact set K ⊂ X such that |µ|(X \ K) < ε for all µ ∈ H.

Recall that a linear operator T from a topological vector space A into another B is weakly compact if it maps bounded subsets of A into relatively weakly compact subsets of B.

Katsara and Liu [7] showed the following theorem:

THEOREM 2. Let F be another Banach space. If T is a continuous weakly compact operator from $C_b^{rc}(X, E) = \{f \in C_b(X, E) : f(X) \text{ is relatively compact in } E\}$ into F, then there exists a unique $m \in M(X, \mathcal{L}(E, F))$ such that

- (1) every $f \in C_b^{rc}(X, E)$ is m-integrable and $T(f) = \int f dm$;
- (2) ||T|| = ||m||(X);
- (3) for every $x' \in F$, we have T'x' = x'm;
- (4) for every bounded set S in E, the set $V_{mS} = \{\sum m(G_i)s_i : \{G_i\}$ is a finite B-partition of X, $s_i \in S\}$ is relatively weakly compact.

Conversely, if $m \in M(X, \mathcal{L}(E, F))$ is such that (4) holds, then every f in $C_b^{rc}(X, E)$ is m-integrable and the operator $T(f) = \int f dm$ is norm-continuous and weakly compact.

The following theorem is a characterisation of a β_0 -continuous and weakly compact operator T defined from $C_b^{rc}(X, E)$ into F. It is known that $C_b^{rc}(X, E)$ is β_0 -dense in $(C_b(X, E), \beta_0)$.

THEOREM 3. Let T be a weakly compact operator defined from $C_b^{rc}(X, E)$ into F. The following statements are equivalent:

- (1) T is β_0 -continuous.
- (2) $T_{|B|}$ is compact-open-continuous, where B is the unit ball of $C_b^{rc}(X, E)$.
- (3) $(\forall \varepsilon > 0)(\exists K \subset X, K \text{ compact})$ $(|x'm|(X \setminus K) < \varepsilon \text{ uniformly for } ||x'|| \leq 1)$, where m is the associated vector measure given in the above theorem.

PROOF: Since β_0 is the finest locally convex topology agreeing with the compactopen topology on bounded subsets of $C_b(X, E)$, we have $(1) \Leftrightarrow (2)$.

(3) \Rightarrow (1). Let $\{f_{\alpha}\}$ be a compact-open null convergent net. Hence, for a given $\varepsilon > 0$, there exists a compact subset K of X such that $||m||(X \setminus K) = \sup\{|x'm|(X \setminus K): ||x'|| \leq 1, x' \in F'\} < \varepsilon$, which implies that $|x'm|(X \setminus K) < \varepsilon$ uniformly for $x' \in F'$, $||x'|| \leq 1$. Therefore, $\{x'm: x' \in F', ||x'|| \leq 1\}$ is a β_0 -equicontinuous subset of $M_t(X, E')$. Since x'm = T'x' and $(C_b^{rc}(X, E), \beta_0)' \cong M_t(X, E')$, we have $\{T'x': x' \in F', ||x'|| \leq 1\}$ is also β_0 -equicontinuous.

Finally, since $||Tf|| = \sup\{|T'x'(f)| : x' \in F', ||x'|| \leq 1\}$, we conclude that $Tf_{\alpha} \to 0$ in norm.

(1) \Rightarrow (3). Since $\{T'x': x' \in F', \|x'\| \leq 1\}$ is β_0 -equicontinuous is equivalent to $\{x'm: x' \in F', \|x'\| \leq 1\}$ is β_0 -equicontinuous, the arguments are similar to these given above.

THEOREM 4. Let T be a β_0 -continuous and weakly compact linear operator defined on $C_b(X, E)$. Then there exists a unique $m \in M(X, \mathcal{L}(E, F))$ such that

- (1) every $f \in C_b(X, E)$ is m-integrable and $T(f) = \int f dm$;
- (2) ||T|| = ||m||(X);
- (3) for every $x' \in F$, we have T'x = x'm;
- (4) for every bounded set S in E, the set $V_{mS} = \{\sum m(G_i)s_i : \{G_i\}$ is a finite B-partition of X, $s_i \in S\}$ is relatively weakly compact.

PROOF: Since $C_b^{rc}(X, E)$ is β_0 -dense in $(C_b(X, E), \beta_0)$, T is the unique β_0 continuous extension of $T_{|_{C_b^{rc}(X, E)}}$ to $C_b(X, E)$. By Theorem 3, $T_{|_{C_b^{rc}(X, E)}}$ has a
unique vector measure m associated to it which satisfies (1), (2), (3) and (4).

By the fact that if norm T and its restriction are the same and their respective transposes coincide, we only have to prove that each $f \in C_b(X, E)$ is *m*-integrable and $T(f) = \int f dm$.

Let $f \in C_b(X, E)$; hence, by the definition of the topology β_0 and the density of $C_b^{rc}(X, E)$, there exists a net $\{f_\alpha\} \in C_b^{rc}(X, E)$ inside the ball of radius ||f|| such that $f_\alpha \to f$ uniformly on compact subsets of X. Take any $G \in Ba(X)$; since the dual of $(C_b(X, E), \beta_0)$ is $M_t(X, E')$, we have that, for any $x' \in F'$, $\int_G f dx'm$ is defined. At the same time, it is not difficult to see that $\{\int_G f dm\}$ is a norm-Cauchy net in F and then it is convergent to some $v_G \in F$.

We claim that $\int_G f_\alpha dx'm \to \int_G f dx'm$. In fact, given $\varepsilon > 0$, there exists a compact subset K of X, such that $|x'm|(G \setminus K) \leq |x'm|(X \setminus K) < \varepsilon$ uniformly for $||x'|| \leq 1$. Also, there exists α_0 such that, for $\alpha \geq \alpha_0$,

$$\sup\{\|f_{\alpha}(x)-f(x)\|:x\in K\}<\varepsilon.$$

The claim follows from

$$\left| \int_{G} (f_{\alpha} - f) dx' m \right| \leq \int_{G} \|f_{\alpha} - f\| d |x' m|$$

$$\leq \int_{G \cap K} \|f_{\alpha} - f\| d |x' m| + \int_{G \setminus K} \|f_{\alpha} - f\| d |x' m|.$$

Since $x'(\int_G f_\alpha dm) = \int_G f_\alpha dx'm \to x'(v_G)$ and $\int_G f_\alpha dx'm \to \int_G f dx'm$, we conclude that $\int_G f dx'm = x'(v_G)$. Defining $v_G = \int_G f dm$, we have, for each $G \in Ba(X)$, $\int_G f_\alpha dm \to \int_G f dm$; in particular, $T(f_\alpha) = \int_X f_\alpha dm \to \int_X f dm$. Therefore, by the continuity of T, we have $\int_X f dm = T(f)$.

We shall adopt the following definitions:

A locally convex space E is said to have the Dunford-Pettis (respectively strict Dunford-Pettis) property if for any Banach space F, any weakly compact and continuous operator T from E into F transforms absolutely convex weakly compact subsets (respectively weakly Cauchy sequences) of E into relatively compact subsets (respectively convergent ones) of F [6]. It is known that both definitions are equivalent in Banach spaces.

The next theorem was proved in [9] and it establishes some relation between the Dunford-Pettis (D-P) and the strict Dunford- Pettis (strict D-P) properties.

THEOREM 5. If E', the topological dual of E, has a σ -compact dense subset in the $\sigma(E', E)$ -topology and E has the strict D-P property then E has the D-P property.

2. The strict Dunford-Pettis and the Dunford-Pettis properties

In this section, we shall discuss, first, the strict D-P and the D-P properties on $(C_b(X, E), \beta_i)$ with E a Schur space. After that, we shall discuss the same properties on $(C_b(X, E), \beta_0)$ with some special space E.

It is known that in $C_b(X, E)$, β_i -bounded subsets coincide with normed-bounded subsets.

Let T be an F-valued, weakly compact and β_i -continuous operator defined on $C_b(X, E)$. Since the strict topologies are coarser than the norm topology and have the same bounded subsets, we have that T is also $\|.\|$ -continuous and weakly compact. Therefore by Theorem 2, $T_{|_{C_i^{re}(X, E)}}$ has an associated measure m of $M(X, \mathcal{L}(E, F))$.

LEMMA 6. Let T be an operator as above. Then there exists a nonnegative finite real-valued, σ -additive measure μ such that, for any $\varepsilon > 0$, there exists $\delta > 0$, so that for each $A \in Ba(X)$ with $\mu(A) < \delta$, we have $|x'm|(A) < \varepsilon$, uniformly for $||x'|| \leq 1$.

PROOF: It is easy to see that each x'm in $M_i(X, E')$ can be extended to Ba(X) and that $M_i(X, E')$ is $\|.\|$ -closed in M(X, E').

Since T is weakly compact, we have that $T': F' \to C_b(X, E)' = M(X, E')$ is weakly compact. Also, by the β_i -continuity of T, we have that $T'x' \in M_i(X, E')$. Therefore, if $B_{F'}$ denotes the unit ball of F', then $\overline{T'(B_{F'})}^{\parallel \cdot \parallel}$ is convex and weakly closed contained in $M_i(X, E')$. Now, since $\sigma(M_i(X, E'), M_i(X, E')')$ coincides with the induced $\sigma(M(X, E'), M(X, E')')$ on $M_i(X, E')$, we have that $T'(B_{F'})$ is relatively weakly compact in $M_i(X, E')$.

Thus, $\{|x'm|: ||x'|| \leq 1\}$ is uniformly σ -additive and then there exists a nonnegative finite real-valued σ -additive measure μ such that for any $\varepsilon > o$, there exists $\delta > 0$, so that for each $A \in Ba(X)$ with $\mu(A) < \delta$, we have $|x'm|(A) < \varepsilon$, uniformly for $||x'|| \leq 1$ [4].

The measure μ , given in the above theorem, is called a control measure of $\{|x'm|: ||x'|| \leq 1\}$.

A Banach space E is a Schur space if weakly convergent sequences of E are norm convergent on it.

THEOREM 7. If E is a Schur space, then $(C_b(X, E), \beta_i)$ has the strict D-P property.

PROOF: Let T be a weakly compact and β_i -continuous operator defined from $C_b(X, E)$ into a Banach space F. We shall denote by m its associated vector measure.

Since T is weakly compact and, in particular, β_1 -continuous, we have that $\{|x'm| : ||x'|| \leq 1\}$ has a control measure μ ([Lemma 6]). Let $\{f_n\}$ be a weakly Cauchy sequence in $(C_b(X, E), \beta_i)$; hence $\{f_n\}$ is uniformly bounded and, for each $x \in X$, $\{f_n(x)\}$ is a weakly Cauchy sequence in E (this follows from the fact that $\delta_x \otimes e' \in M_i(X, E')$, where $\delta_x \otimes e'(f) = e'(f(x))$ and $e' \in E$). Using the fact that E is a Schur space, for each $x \in X$, $\{f_n(x)\}$ is norm-Cauchy. By Egoroff's Theorem, given $\varepsilon > 0$, there exists a compact subset K of X, such that $\mu(X \setminus K) < \varepsilon$ and $\{||f_n||\}$ converges uniformly on K. Now, since

$$\begin{aligned} \|T(f_n - f_m)\| &= \sup\{|x'T(f_n - f_m)| : \|x'\| \leq 1\} = \sup\left\{\left|\int f dx'm\right| : \|x'\| \leq 1\right\} \\ d & \left|\int f dx'm\right| \leq \int_K \|f\| \, d \, |x'm| + \int_{X \setminus K} \|f\| \, d \, |x'm| < \varepsilon \, |x'm| \, (K) + 2M\varepsilon \end{aligned}$$

and

uniformly for $||x'|| \leq 1$, where M is the uniform bound of $\{f_n\}$, we have that $\{T(f_n)\}$ is convergent in F. This proves the theorem.

THEOREM 8. If E is a Schur space and X is σ -compact, then $(C_b(X, E), \beta_i)$ has the Dunford-Pettis property.

PROOF: The proof is exactly the same as in Theorem 3.2 [1].

LEMMA 9. If Y is a compact space, then $(C_b(X, C(Y)), \beta_0)$ is β_0 -homeomorphic to $(C_b(X \times Y), \beta_0)$. Consequently, $(C_b(X, C(Y)), \beta_0)$ has both properties, the strict and the Dunford-Pettis properties [9].

PROOF: The function $\Psi: C_b(X, C(Y)) \to C_b(X \times Y)$, define by $\Psi(f)(x, y) = f(x)(y)$, is one-one and onto with inverse function $\Psi: C_b(X \times Y) \to C_b(X, C(Y))$ defined by $\Psi(g): X \to C(Y)$ where $\Psi(g)(x)(y) = g(x, y)$.

Note that $|\Psi(f)(x, y)| = |f(x)(y)| \leq ||f(x)||$ which implies Ψ is continuous in the β_0 -topology.

On the other hand, if $\{f_{\alpha}\}$ is a net in $C_b(X \times Y)$, converging to 0 in the β_0 -topology, and K is a compact subset of X, then, by the compactness of Y, $f_{\alpha} \to 0$ uniformly on $K \times Y$; therefore $\Phi(f_{\alpha}) \to 0$ uniformly on K.

Π

An AM-space is a Banach lattice which satisfies the axiom $||\sup\{x, y\}|| = \sup\{||x||, ||y||\}$. It is known that every AM-space E with unit is isomorphic to C(K), where K is some compact space [10].

THEOREM 10. If E is a AM-space, then $(C_b(X, E), \beta_0)$ has both properties, the strict and the Dunford-Pettis properties.

PROOF: It follows from Lemma 9 and the fact that every AM-space is isomorphic to a C(Y), for some compact space Y.

An AL-space is a Banach lattice which satisfies ||x + y|| = ||x|| + ||y|| for $x \ge 0$, $y \ge 0$. It is known that every AL-space is isomorphic to $L^1(\mu)$, where μ is a Radon measure defined on a locally compact space.

THEOREM 11. If E is an AL-space, then $(C_b(X, E), \beta_0)$ has the strict Dunford-Pettis Property.

PROOF: By the above remark, it is enough to prove that $C_b(X, L^1)$ has the strict Dunford-Pettis Property. Let T be a weakly compact and β_0 -continuous linear operator from $C_b(X, L^1)$ into a Banach space F and let m be its associated vector measure. Take an arbitrary weakly Cauchy sequence $\{f_n\}$ in $C_b(X, L^1)$ and denote by M its uniform bound.

By Theorem 3, given $\varepsilon > 0$, there exists a compact subset K of X such that $|x'm|(X \setminus K) < \varepsilon/4M$, uniformly for $x' \in F'$, $||x'|| \leq 1$.

We claim that $\{f_{n|_{K}}\}$ is weakly Cauchy in $(C(K, L^{1}), \|.\|)$. In fact, let λ be a continuous linear functional on $C(K, L^{1})$ and let us define $\lambda_{1}: C_{b}(X, L^{1}) \to \mathbb{R}$ by $\lambda_{1}(f) = \lambda(f_{|_{K}})$. Clearly, λ_{1} is $\|.\|$ and β_{0} -continuous and then, $\lambda(f_{n|_{K}} - f_{m|_{K}}) = \lambda_{1}(f_{n} - f_{m}) \to 0$ as $n, m \to \infty$.

Now, we define $L: C(K, L^1) \to F$ by $L(f) = \int_K f dm$. L is weakly compact and $\|.\|$ -continuous. Therefore, since $C(K, L^1)$ has the strict Dunford-Pettis or simply the Dunford-Pettis property [2], we have that, for the $\varepsilon > 0$ given above, there exists $N \in \mathbb{N}$ such that for $n, m \ge N$,

$$\|L(f_n-f_m)\| = \left\|\int_K (f_n-f_m)dm\right\| < \varepsilon/2$$

and then

$$\left|\int_{K} (f_n - f_m) dx' m\right| < \varepsilon/2$$
 uniformly for $||x'|| \leq 1$

Now, let $n, m \ge N$. Since

$$\|T(f_n - f_m)\| = \sup\{|x'(T(f_n - f_m))| : x' \in F, \|x'\| \leq 1\}$$

= $\sup\{\left|\int (f_n - f_m)dx'm\right| : x' \in F, \|x'\| \leq 1\},\$

we have

$$\left| \int (f_n - f_m) dx' m \right| \leq \left| \int_K (f_n - f_m) dx' m \right| + \int_{X \setminus K} \|f_n - f_m\| d |x'm|$$

 $< \varepsilon/2 + 2M(\varepsilon/4M) = \varepsilon$

uniformly for $||x'|| \leq 1$. Therefore,

$$||T(f_n - f_m)|| = \sup\left\{\left|\int (f_n - f_m)dx'm\right| : x' \in F, ||x'|| \leq 1\right\} < \epsilon$$

for $n, m \ge N$.

This proves the theorem.

THEOREM 12. If E is an AL-space, then $(C_b(X, E), \beta_0)$ has the Dunford-Pettis property.

PROOF: By the isomorphism between E and L^1 , it is enough to assume that $E = L^1$.

We shall first suppose that X has a σ -compact dense subset X. Then, developing the same argument given in [9, Theorem 3, p.363], we prove that $(M_t(X, L^1), w^*)$ contains a σ -compact dense. Therefore, by Theorem 5 and Theorem 11 we conclude that $(C_b(X, L^1), \beta_0)$ has the Dunford-Pettis property.

Suppose now that X is not necessarily as above and let T be a weakly compact, β_0 -continuous operator defined from $C_b(X, L^1)$ into F with associated vector measure m.

By Theorem 3, given $\varepsilon = 1/n$, there exists a compact subset K_n of X such that $|x'm|(X \setminus K_n) < 1/n$, uniformly for $x' \in F'$, $||x'|| \leq 1$. Defining X_0 as the closure of $\bigcup K_n$, we have that X_0 is a σ -compact subset of X and $|x'm|(X \setminus X_0) = 0$, uniformly for $x' \in F'$, $||x'|| \leq 1$.

We define $L: C_b(X_0, L^1) \to F$ by $L(f) = \int_{X_0} f dm$. We claim that L is weakly compact and $\|.\|$ -continuous. By Katsara [7], it is enough to prove that, for all bounded S in E, the sets V_S and $V_{0_S} = \{\Sigma m(G_i)s_i: \{G_i\}$ is a finite B-partition of X, $s_i \in S\}$ are equal. In fact, we note first that, for any $s \in E$, $\|s\| \leq 1$, $|x'm(X \setminus X_0)s| \leq$ $|x'm|(X \setminus X_0) = 0$ and then $\|m(X \setminus X_0)s\| = 0$, which implies that $m(X \setminus X_0) \equiv 0$. By the same argument, we show that, for any $G \in B(X)$, $m(G \cap X \setminus X_0) \equiv 0$. Thus,

$$m(G)s = m((G \cap X \setminus X_0) \cup (G \cap X_0))s = m(G \cap X \setminus X_0)s + m(G \cap X_0)s = m(G \cap X_0)s$$

and then $V_S \subset V_{0_S}$. On the other hand, let $\Sigma m(G_i)s_i \in V_{0_S}$, where $X_0 = \bigcup G_i$ and $s_i \in S$. Hence, taking the B(X)-partition $G_1, \ldots, G_n, X \setminus X_0$ of X and any $s \in S$, we have that $\Sigma m(G_i)s_i = \Sigma m(G_i)s_i + m(X \setminus X_0)s \in V_S$.

0

[8]

[9]

Now, since V_S is relatively weakly compact in F, so is V_{0_S} . Then L is weakly compact and $\|.\|$ -continuous [Theorem 4].

The operator $\phi: C_b(X, L^1) \to C_b(X_0, L^1)$ defined by $\phi(f) = f_{|X_0|}$ is clearly β_0 continuous, since X_0 is closed. Therefore, ϕ is weak-weak continuous. Also, $T = L_0\phi$, since $m(X \setminus X_0) \equiv 0$. Therefore, if B is an absolutely convex, weakly compact subset of $C_b(X, L^1)$, then $\phi(B)$ is an absolutely convex and relatively weakly compact subset of $C_b(X_0, L^1)$. Since $(C_b(X, L^1), \beta_0)$ has the D-P property, $L(\phi(B))$ is relatively compact in F, and since $T(B) = L(\phi(B))$, we have that T transforms absolutely convex and weakly compact subsets of $C_b(X, L^1)$ into compact subsets of F. This proves the theorem.

References

- J. Aguayo and J. Sanchez, 'Separable measures and The Dunford-Pettis property', Bull. Austral. Math. Soc. 43 (1991), 423-428.
- [2] J. Bourgain, 'On the Dunford-Pettis property', Proc. Amer. Math. Soc. 81 (1981), 256-272.
- [3] S. Choo, 'Strict topologies on space of continuous vector-valued functions', Canad. J. Math. 31 (1979), 890-898.
- [4] J. Diestel and J. Uhl, Vector measures, Survey Number 15 (American Mathematical Society, Providence, 1977).
- [5] R.A. Fontenot, 'Strict topologies for vector-valued functions', Canad. J. Math. 26 (1974), 831-853.
- [6] A. Grothendieck, 'Sur les applications linéaires faiblement compact d'espaces du type C(K)', Canad. J. Math. 5 (1953), 129-173.
- [7] A. Katsaras and B. Liu, 'Integral representations of weakly compact operator', Pacific J. Math. 56 (1975), 547-556.
- [8] S.S. Khurana, 'Topologies on spaces of vector-valued continuous functions', Trans. Amer. Math. Soc. 241 (1978), 195-211.
- [9] S.S. Khurana, 'Dunford-Pettis property', J. Math. Anal. Appl. 65 (1978), 361-364.
- [10] H. Schaefer, Banach lattices and positive operators (Springer-Verlag, Berlin, Heidelberg, New York, 1974).
- [11] R. Wheeler, 'A survey of Baire measures and strict topologies', Exposition Math. 29 (1983), 97-190.

Departamento de Matemática Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción Casilla 3-C Concepción Chile