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with distal weights and applications to weighted multiple ergodic averages and multiple
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1. Introduction
By a Z system we mean a tuple X = (X, T , μX) where X is a compact, metric space, T is a
continuous action of Z on X, andμX is a Borel probability measure on X that is T invariant.
Ergodic Z systems (X, T , μX) and (Y , S, μY ) are disjoint if μX ⊗ μY is the only prob-
ability measure on X × Y that has μX and μY as its marginals and is invariant under the
diagonal action (T × S)n = T n × Sn. (Any probability measure on X × Y with these two
properties is called a joining of the two Z systems.) The notion of disjointness, introduced
in Furstenberg’s seminal paper [Fur67], is an extreme form of non-isomorphism. In
particular, if systems have a non-trivial factor in common, then they cannot be disjoint.
Furstenberg asked whether the converse is true. Rudolph [Rud79] answered this question
by producing (from his construction in the same paper of a Z system with minimal
self-joinings) two Z systems that are not disjoint and yet share no common factor.

Perhaps motivated by Furstenberg’s question, Berg [Ber71, Ber72] considered the case
when one of the systems is measurably distal. Recall that a Z system is measurably distal
if it belongs to the smallest class of Z systems that contains the trivial system and is closed
under factors, group extensions, and inverse limits; see §2 for the definitions of these
notions. That the above definition of measurably distal is equivalent to Parry’s original
definition [Par68] in terms of separating sieves was proved by Zimmer [Zim76a] (cf. §2.5).

To describe Berg’s result, recall that the Kronecker factor of an ergodic Z system is
the largest factor of the system that is isomorphic to a rotation on a compact abelian
group. Berg proved that disjointness of the Kronecker factors of two ergodic Z systems
is equivalent to both disjointness and the absence of a common factor when one of the
systems is measurably distal. We say that systems X and Y are Kronecker disjoint if their
Kronecker factors are disjoint.

THEOREM 1.1. (Berg [Ber71, Ber72]) Let X be an ergodic and measurably distal Z system
and let Y be an ergodic Z system. The following are equivalent:

(i) X and Y are disjoint;
(ii) X and Y are Kronecker disjoint;

(iii) X and Y have no non-trivial common factor.

The key ingredient in the proof of Theorem 1.1 is a weakening of the notion of
disjointness that is shown to be preserved by group extensions, factors, and inverse limits.
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The definition of this weakened property (called ‘quasi-disjointness’ in [Ber71]) is as
follows. Given ergodic Z systems X and Y, let α and β be the factor maps from X and
Y, respectively, to their maximal common Kronecker factor K(X, Y). The Z systems X
and Y are quasi-disjoint if the property
(BQD) for almost every k in K(X, Y) there is exactly one joining of the systems X and

Y giving full measure to γ−1(k)

holds, where γ (x, y) = α(x)− β(y). The main results in [Ber71, Ber72] imply that X
and Y satisfy (BQD) whenever X is an ergodic and measurably distal Z system and Y is
an ergodic Z system.

In this paper, we introduce a new definition of quasi-disjointness that applies to
measure-preserving actions of any countable group G. To describe it, we recall the
following notions. A G system is a tuple (X, T , μX) where X is a compact, metric space,
T is a continuous left action of G on X, and μX is a Borel probability measure on X that is
T invariant. The Kronecker factor of a G system X is the factor KX corresponding to the
subspace of L2(X, μX) spanned by functions f with the property that {f ◦ T g : g ∈ G}
has compact closure. Disjointness of G systems is defined just as for Z systems.

Although it is the case for ergodic Z systems, the Kronecker factor of an ergodic G
system cannot generally be modeled by a rotation on a compact, abelian group. Thus, it
is not clear how to modify (BQD) or Berg’s proofs to apply to actions of more general
groups. We instead make the following definition, which is more general and easier to
handle than (BQD).

Definition 1.2. Two G systems X = (X, T , μX) and Y = (Y , S, μY ) are quasi-disjoint if
the only joining of X and Y that projects to the product measure on the product KX × KY
of their Kronecker factors is the trivial joining μX ⊗ μY .

Our first result (proved in §3) is that ergodic Z systems X and Z are quasi-disjoint
according to Definition 1.2 if and only if they satisfy (BQD), justifying the use of the
terminology ‘quasi-disjoint’.

THEOREM 1.3. Ergodic Z systems X and Y are quasi-disjoint if and only if they satisfy
(BQD).

Our main result is an extension of Berg’s main results in [Ber71, Ber72] to G systems.
Recall that a G system is measurably distal if it belongs to the smallest class of G systems
that is closed under factors, group extensions, and inverse limits: notions that are defined
in §2.

THEOREM 1.4. If G is a countable group and X is a measurably distal G system, then X
is quasi-disjoint from any other G system Y.

As a consequence of Theorem 1.4 we obtain the following characterizations of
disjointness from a measurably distal system.

COROLLARY 1.5. If G is a countable group, X is a measurably distal G system, and Y is
a G system, then the following are equivalent:

(i) X and Y are disjoint;
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(ii) X and Y are Kronecker disjoint;
(iii) X and Y have no non-trivial common factor.
If, in addition, X and Y are ergodic, then (i)–(iii) are also equivalent to:
(iv) the product system X × Y is ergodic.

If Y is measurably distal and both X and Y are ergodic, then, as pointed out to us by
Glasner, the structure theory of measurably distal systems together with [Gla03, Theorem
3.30] provide an alternative approach to proving Corollary 1.5.

We offer two applications of our results. The first is a Wiener–Wintner-type result with
distal weights for measure-preserving actions of countable amenable groups, proved in §5.
Recall that, when dealing with actions of amenable groups, one uses Følner sequences to
average orbits, where a Følner sequence in a countable group G is a sequence N �→ �N

of finite, non-empty subsets of G such that

|�N ∩ g−1�N |
|�N | → 1

for all g in G. Lindenstrauss [Lin01] proved that the pointwise ergodic theorem holds for
actions of amenable groups along tempered Følner sequences: those for which there is
C > 0 with ∣∣∣∣

⋃
K<N

�−1
K �N

∣∣∣∣ ≤ C|�N |

for all N ≥ 2.

THEOREM 1.6. Let G be a countable discrete amenable group, let � be a tempered
Følner sequence on G and let Y = (Y , S, μY ) be an ergodic G system. For every φ in
L1(Y , μY ), there is a conull set Y ′ ⊂ Y with the following property: for any uniquely
ergodic topological G system (X, T ), with unique invariant measure μX, such that the
G system X = (X, T , μX) is measurably distal and Kronecker disjoint from Y, and for any
f ∈ C(X), any x ∈ X and any y ∈ Y ′ we have

lim
N→∞

1
|�N |

∑
g∈�N

f (T gx)φ(Sgy) =
∫
f dμX

∫
φ dμY . (1)

One can quickly derive the classical Wiener–Wintner theorem [WW41] from Theorem
1.6, which we do in §5.

The second type of application that we offer is to the theory of multiple recurrence.
It is somewhat surprising that only Kronecker disjointness is needed for the following
theorems, even though multicorrelations are typically governed by nilrotations (cf. [HK05,
Lei10, Zie07]), which, in general, are of a higher complexity than rotations on compact
abelian groups. However, as nilsystems are distal, Theorem 1.1 allows us to deduce
disjointness of nilsystems from disjointness of their Kronecker factors.

THEOREM 1.7. Let X = (X, T , μX) and Y = (Y , S, μY ) be ergodic Z systems and
assume X and Y are Kronecker disjoint. Then for every k, � ∈ N, any f1, . . . , fk ∈
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L∞(X, μX) and any g1, . . . , g� ∈ L∞(Y , μY ) we have

lim
N→∞

1
N

N∑
n=1

k∏
i=1

�∏
j=1

T infi S
jngj =

(
lim
N→∞

1
N

N∑
n=1

k∏
i=1

T infi

)(
lim
N→∞

1
N

N∑
n=1

�∏
j=1

Sjngj

)

in L2(X × Y , μX ⊗ μY ).

THEOREM 1.8. Let (Y , S) be a topological Z system and let μY be an ergodic S invariant
Borel probability measure on Y. For all G ∈ L1(Y , μY ), there exists a set Y ′ ⊂ Y with
μY (Y

′) = 1 such that for any ergodic Z system (X, T , μX) which is Kronecker disjoint
from (Y , S, μY ), any k ∈ N, any f1, . . . , fk ∈ L∞(X, μX), and any y ∈ Y ′,

lim
N→∞

1
N

N∑
n=1

G(Sny)

k∏
i=1

T infi =
( ∫

Y

G dμY

)
·
(

lim
N→∞

1
N

N∑
n=1

k∏
i=1

T infi

)

in L2(X, μX). Moreover, if (Y , S) is uniquely ergodic and G ∈ C(Y ), then we can take
Y ′ = Y .

1.1. Structure of the paper. In §2, we review basic results and facts regarding Kronecker
factors and distal systems, which are needed in the subsequent sections. In §3, we discuss
Berg’s notion of quasi-disjointness for Z systems in more detail and give a proof of
Theorem 1.3. In §4, we provide a proof of Theorem 1.4 by showing that quasi-disjointness
lifts through group extensions, is preserved by passing to factors and is preserved under
taking inverse limits. Sections 5 and 6 contain numerous applications of our main results
to questions about pointwise convergence in ergodic theory and to the theory of multiple
recurrence, including proofs of Theorems 1.7 and 1.8. Finally, in §7 we formulate some
natural open questions.

2. Preliminaries
In this section, we present various preliminary results, which will be of use throughout
the paper, on G systems, their Kronecker factors, and their joinings. We conclude with a
brief discussion of topologically and measurably distal systems. Throughout this paper, G
denotes a countable group.

2.1. Measure-preserving systems. By a topological Gsystem we mean a pair (X, T )
where X is a compact metric space and T is a continuous left action of G on X. A Gsystem
is a tuple X = (X, T , μX) where (X, T ) is a topological G system and μX is a T invariant
Borel probability measure on X. The product of two G systems X = (X, T , μX) and
Z = (Z, R, μZ) is the system X × Z = (X × Z, T × R, μX ⊗ μZ) where T × R is the
diagonal action (T × R)g = T g × Rg .

A G system Z = (Z, R, μZ) is a factor of a G system X = (X, T , μX) if there
is a G invariant, conull (that is full measure) subset X′ of X and a measurable,
measure-preserving, G equivariant map X′ → Z. Any such map, together with its conull,
invariant domain, is called a factor map.
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Given a factor Z of a G system X, the associated factor map induces an isometric
embedding of L2(Z, μZ) in L2(X, μX). Denote by E(·|Z) the orthogonal projection from
L2(X, μX) to this embedded copy of L2(Z, μZ). Given f ∈ L2(X, μX), we can think of
E(f |Z) as a function either on X or on Z.

2.2. Disintegrations. Given a factor map π : X → Y of G systems one can always find
an almost-surely defined, measurable family y �→ μy of Borel probability measures on X
such that ∫

f dμX =
∫ ∫

f dμy dμY (y)

for all f in L1(X, μX) and that T gμy = μSgy for all g ∈ G almost surely. Moreover, the
family y �→ μy is uniquely determined almost surely by these properties. If Y is the factor
corresponding (via [Zim76b, Corollary 2.2]) to the σ -algebra of T invariant sets, then the
resulting disintegration y �→ μy is a version of the ergodic decomposition of μX. We refer
the reader to [EW11, Ch. 5] for details on disintegrations of measures.

2.3. The Kronecker factor. Every G system X = (X, T , μX) induces a right action
of G on L2(X, μX) defined by (T gf )(x) = f (T gx). A function f ∈ L2(X, μX) is
almost periodic if its orbit {T gf : g ∈ G} has compact closure in the strong topology
of L2(X, μX). We write AP(X) for the closed subspace of L2(X, μX) spanned by
almost periodic functions. A G system X is almost periodic if L2(X, μX) = AP(X). It
follows from [LG61, Lemma 4.3] that AP(X) coincides with the subspace of L2(X, μX)
spanned by finite-dimensional, T invariant subspaces of L2(X, μX). There is a G invariant,
countably generated sub-σ -algebra A of the Borel σ -algebra of X such that AP(X) =
L2(X, A , μX) (cf. [FK91, Lemma 3.1]). By [Zim76b, Corollary 2.2] the σ -algebra A

corresponds to a factor KX of X called the Kronecker factor.

PROPOSITION 2.1. For any two G systems X and Z, we have AP(X × Z) = AP(X)⊗
AP(Z).

Proof. Given a G system Y, denote by WM(Y) the closure in L2(Y , μY ) of the collection
of vectors f with the property that 0 belongs to the weak closure of {T gf : g ∈ G}. By
[LG61, Corollary 4.12] one can write L2(Y , μY ) as the direct sum AP(Y)⊕ WM(Y).

Fix now G systems X = (X, T , μX) and Z = (Z, R, μZ). We have

L2(X × Z, μX ⊗ μZ)) = (AP(X)⊗ AP(Z))⊕ (WM(X)⊗ AP(Z))
⊕ (AP(X)⊗ WM(Z))⊕ (WM(X)⊗ WM(Z))

holds. Certainly AP(X)⊗ AP(Z) ⊂ AP(X × Z). If f belongs to WM(X), then f ⊗ g

belongs to WM(X × Z) for every g in L2(Z, μZ). Similarly, if g belongs to WM(Z), then
f ⊗ g belongs to WM(X × Z) for every f in L2(Z, μZ). This gives

(WM(X)⊗ AP(Z))⊕ (AP(X)⊗ WM(Z))⊕ (WM(X)⊗ WM(Z)) ⊂ WM(X ⊗ Z)

and the result follows.
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When X is ergodic [Mac64, Theorem 1] allows us to model the system KX as a
homogeneous space K/H where K is a compact group and H is a closed subgroup with
the action of G on K/H given by a homomorphism G → K with dense image. Write KX
for the underlying space of any such modeling of KX. For ergodic Z systems the Kronecker
factor can be explicitly described by the system’s discrete spectrum.

Definition 2.2. Let X = (X, T , μX) be a Z system. The discrete spectrum of X, denoted
by Eig(X), is defined to be the set of all eigenvalues of T when viewed as a unitary operator
T : L2(X, μX) → L2(X, μX),

Eig(X) = {ζ ∈ C : there exists f ∈ L2(X, μX) with f �= 0 and Tf = ζf }.
Given two ergodic G systems X and Z we can (using the Bohr compactification of G,

for instance) assume that KX and KZ are modeled by homogeneous spaces of the same
compact topological group K. That is, we may assume KX = K/HX and KZ = K/HZ for
some compact topological group K and closed subgroups HX, HZ thereof, the action of G
on both spaces determined by a homomorphism G → K with dense image. The system
K/〈HX, HZ〉 is a factor of both X and Z and serves as a model for K(X, Z), their joint
Kronecker factor by which we mean the largest almost periodic factor of both X and Z.

PROPOSITION 2.3. (Cf. [Fur81, Lemma 4.18]) If X and Z are ergodic G systems and X ×
Z is not ergodic, then L2(X, μX) and L2(Z, μZ) contain isomorphic, finite-dimensional,
invariant subspaces of non-constant functions.

Proof. If X × Z is not ergodic, then there is a non-constant function f in L2(X × Z, μX ⊗
μZ) that is T × R invariant. Therefore, 〈f , φ〉 = 〈f , (T × R)gφ〉 for all φ ∈ L2(X ×
Z, μX ⊗ μZ) and g ∈ G. In particular, if φ ∈ WM(X × Z), then 〈f , φ〉 = 0. It follows
that f belongs to AP(X × Z) and, therefore (by Proposition 2.1), to AP(X)⊗ AP(Z). Now
AP(X) and AP(Z) are spanned by finite-dimensional, invariant subspaces of L2(X, μX)
and L2(Z, μZ), respectively, thus

f =
∑
ι,κ

gι ⊗ hκ

where ι and κ enumerate the finite-dimensional subrepresentations of L2(X, μX) and
L2(Z, μZ), respectively, and gι ⊗ hκ is the projection of f on the corresponding subrep-
resentation of L2(X × Z, μX ⊗ μZ). The fact that f is invariant implies only terms of the
form gι ⊗ hι∗ contribute to the sum, where ι∗ denotes the contragradient of the represen-
tation ι. As f is non-constant there must be a non-trivial, finite-dimensional representation
of G that appears as a subrepresentation of both L2(X, μX) and L2(Z, μZ).

2.4. Joinings. Given G systems X = (X, T , μX) and Z = (Z, R, μZ), a measure λ on
X × Z is a joining of X and Z if λ is invariant under the diagonal action T × R and
the pushforwards of λ under the two coordinate projection maps πX : X × Z → X and
πZ : X × Z → Z satisfy πX(λ) = μX and πZ(λ) = μZ . We write J (X, Z) for the set of
all joinings of X with Z and Je(X, Z) for the set of joinings of X with Z that are ergodic.
The product μX ⊗ μZ is always a joining of X and Z. When X and Z are ergodic, the
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set Je(X, Z) is always non-empty because the measures in the ergodic decomposition of
μX ⊗ μZ can be shown to be ergodic joinings of X and Z.

One says that G systems X and Z are disjoint if μX ⊗ μZ is their only joining. We say
that G systems X and Z are Kronecker disjoint if their Kronecker factors KX and KZ are
disjoint.

2.5. Distal systems. Given a G system X = (X, T , μX) denote by Aut(X) the group
of invertible, measurable, measure-preserving maps on (X, μX) that commute with T,
where two automorphisms are identified if they coincide μX almost everywhere. As X is
a compact metric space, the group Aut(X) is metrizable and as such becomes a Polish
topological group. Given a compact subgroup L of Aut(X), the associated sub-σ -algebra
of L invariant sets determines a factor of X. One says that a G system X is a group extension
of a G system Y if Y is (isomorphic to) a factor of X via a compact subgroup of Aut(X)
in the above fashion. As stated in the introduction, a G system is measurably distal if it
belongs to the smallest class of G systems that contains the trivial one-point system and is
closed under group extensions, factor maps, and inverse limits.

We recall that a topological G system (X, T ) is topologically distal if

inf{d(T gx, T gx′) : g ∈ G} > 0

for all x �= x′ in X. In the case G = Z Parry [Par68] modified this definition to
apply to measure-preserving actions. We now recall Zimmer’s generalization [Zim76a,
Definition 8.5] of Parry’s definition to actions of countable groups. Given a G system X =
(X, T , μX) a sequence n �→ An of Borel subsets of X with μX(An) > 0 and μX(An) → 0
is called a separating sieve if there is a conull set X′ ⊂ X such that, whenever x, x′ ∈ X′
and, for each n ∈ N, one can find gn ∈ G with {T gnx, T gnx′} ⊂ An, one has x = x′.
Zimmer [Zim76a, Theorem 8.7] proved that a non-atomic G system X is measurably distal
if and only if it has a separating sieve. Using this characterization of distality, one can
show that every topological G system (X, T ) that is topologically distal has the property
that for every T invariant Borel probability measure μX on X the G system (X, T , μX)
is measurably distal. Lindenstrauss [Lin99] has proved a partial converse to this result
for Z systems by showing that every measurably distal Z system can be modeled by a
topologically distal Z system equipped with an invariant Borel probability measure.

3. Proof of Theorem 1.3
In this section, we prove Theorem 1.3. It follows a preparatory discussion parameterizing
the space of joinings of ergodic, almost-periodic Z systems and describing the ergodic
decomposition of the product of two such Z systems.

As described in §2.3, the Kronecker factor of an ergodic Z system can be modeled as
an ergodic rotation on a compact abelian group. Given two ergodic rotations on compact,
abelian groups X = (X, T , μX) and Y = (Y , S, μY ), their ergodic joinings can be easily
described as follows: let eX be the identity of the compact abelian group X, let eY be the
identity of Y, and let H be the subgroup

H = {(T × S)n(eX, eY ) : n ∈ Z}
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of X × Y . Given an ergodic joining λ ∈ Je(X, Y), let (x0, y0) ∈ X × Y be a generic
point. The support of λ is the orbit closure of (x0, y0), which is (x0, y0)+H . Hence, the
pushforward of λ under the map (x, y) �→ (x − x0, y − y0) is a measure on H invariant
under T × S and, hence, must be the Haar measure on H. It follows that λ is the Haar
measure on the coset (x0, y0)+H .

Now let K = (X × Y )/H be the group of cosets of H and write μK for Haar measure
on K. Define a map R : K → K by R : (x, y)+H �→ (T x, y)+H = (x, S−1y)+H .
Let α : X → K be defined by α(x) = (x, eY )+H and let β : Y → K be defined by
β(y) = (eX, −y)+H . It is easy to check that both α and β are factor maps onto (K , R)
and, hence, either X × Y is ergodic (and, thus, K = {id}), or X and Y share a non-trivial
common factor.

Note that γ (x, y) = (x, y)+H from X × Y to K is the maximal invariant factor
(because every invariant function is constant along cosets of H). In fact, (K , R) is the
maximal common factor of X and Y.

As γ−1((x, y)+H) = (x, y)+H , there exists exactly one ergodic joining living in
that pre-image, namely, the Haar measure. For each k ∈ K , let λk ∈ Je(X, Y) be the
unique joining such that λk(γ−1(k)) = 1. Observe that

μX ⊗ μY =
∫
K

λk dμK(k) (2)

is, therefore, the ergodic decomposition of μX ⊗ μY .

Proof of Theorem 1.3. First, suppose that X and Y are quasi-disjoint. Let (K , μK) be a
model for their joint Kronecker factor and let k �→ λk be a measurable map from K into the
space Je(X, Y) of ergodic joinings of X and Y such that λk gives full measure to γ−1(k)

for almost every k. Then

η =
∫
λk dμK(k)

is a joining of X and Y. We claim that the projection of η to KX × KY is the product
measure. Indeed, let π : X × Y → KX × KY be the corresponding factor map. We can
decompose γ = γ̃ ◦ π for some γ̃ : KX × KY → K . As π(λk) gives full measure to
γ̃−1(k), the discussion preceding this proof implies it is uniquely determined by k. In
particular, in view of equation 2, we have

π(η) =
∫
π(λk) dμK(k) = μKX ⊗ μKY

as claimed. However, then by quasi-disjointness η = μX ⊗ μY. By uniqueness of the
ergodic disintegration, the map k → λk is uniquely defined almost everywhere, so X and
Y satisfy (BQD).

Conversely, suppose that X and Y satisfy (BQD). Let η be a joining of X and Y that
projects to the product measure on KX × KY. Then γ η is the Haar measure on the maximal
common Kronecker factor K(X, Y) of X and Y. The ergodic disintegration of η is the same
as the disintegration of η over K(X, Y). By (BQD), this disintegration is, in turn, the same
as the disintegration of μ⊗ ν over K(X, Y). Therefore, η = μ⊗ ν.
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4. Quasi-disjointness for measurably distal systems
In this section, we give a proof of Theorem 1.4. The proof comprises three parts, covered
in the following three subsections. The first part consists of showing that quasi-disjointness
lifts through group extensions. The second part proves that quasi-disjointness is preserved
when passing to a factor and the third part consists of showing that quasi-disjointness is
preserved by inverse limits. As, starting from the trivial system, such operations exhaust
the class of distal systems, these three parts combined indeed yield a complete proof
of Theorem 1.4. We conclude this section with an example of a Z system that is not
measurably distal but is quasi-disjoint from every ergodic system.

4.1. Quasi-disjointness lifts through group extensions. The purpose of this subsection
is to prove the following result.

THEOREM 4.1. Let X = (X, T , μX), Y = (Y , S, μY ), and Z = (Z, R, μZ) be G systems
and assume that X is a group extension of Y. If Y is quasi-disjoint from Z, then so is X.

For the proof of Theorem 4.1, we borrow ideas from the proof of [Fur67, Theorem 1.4].
See [Gla03, Theorem 3.30] for a version of that result applicable to actions of countable
groups.

Proof of Theorem 4.1. Let πX,KX and πZ,KZ denote the projection maps from X onto KX
and from Z onto KZ, respectively. Let λ ∈ J (X, Z) be a joining of X and Z with the
property that (πX,KX × πZ,KZ)(λ) = μKX ⊗ μKZ . We want to show that λ = μX ⊗ μZ .

Let πX,Y denote the factor map from X onto Y. Note that (πX,Y × idZ)(λ) is a joining
of Y with Z whose projection onto the product of the Kronecker factors KY × KZ equals
μKY ⊗ μKZ . As Y is quasi-disjoint from Z, we conclude that (πX,Y × idZ)(λ) = μY ⊗
μZ .

As X is a group extension of Y, there exists a compact group L � Aut(X) such that the
factor Y corresponds to the sub-σ -algebra of L invariant subsets of X (cf. §2.5). Let μL
denote the normalized Haar measure on L and let L = (L, Q, μL), where Q is the action
of L on itself by left multiplication. Given ψ ∈ L∞(L, μL) with ψ � 0 we define a new
joining λψ ∈ J (X, Z) by

λψ(A) =
∫
X×Z

∫
K

1A(lx, z)ψ(l) dμL(l) dλ(x, z) (3)

for all Borel sets A ⊂ X × Z. Let λ1 denote the measure defined by (3) with ψ = 1. We
claim that λ1 = μX ⊗ μZ . To verify this claim, let f ∈ L2(X, μX), g ∈ L2(Z, μZ), and
define f ′(x) = ∫

L
f (lx) dμL(l) for all x ∈ X. Note that f ′ is L invariant and, hence, there

exists h ∈ L2(Y , μY ) such that h ◦ πX,Y = f ′. We have∫
X×Z

f ⊗ g dλ1 =
∫
X×Z

f ′ ⊗ g dλ

=
∫
X×Z

(h⊗ g) ◦ (πX,Y × idZ) dλ

=
∫
Y×Z

h⊗ g d(πX,Y × idZ)(λ)
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=
∫
Y×Z

h⊗ g dμY ⊗ μZ

=
∫
X×Z

f ′ ⊗ g dμX ⊗ μZ =
∫
X×Z

f ⊗ g dμX ⊗ μZ

because (πX,Y × idZ)λ = μY ⊗ μZ . This shows that indeed λ1 = μX ⊗ μZ .
Next, observe that

λψ(A) ≤ λ1(A)‖ψ‖∞ = (μX ⊗ μZ)(A)‖ψ‖∞. (4)

for all Borel sets A ⊂ X × Z. Inequality (4) shows that λψ is absolutely continuous
with respect to μX ⊗ μZ . Let Fψ denote the Radon–Nikodym derivative of λψ with
respect to μX ⊗ μZ . It also follows from (4) that ‖Fψ‖∞ � ‖ψ‖∞ and so Fψ ∈ L∞(X ×
Z, μX ⊗ μZ). Moreover, since λψ is a T × R invariant measure, we conclude that Fψ is
a T × R invariant function in L∞(X × Z, μX ⊗ μZ). As any T × R invariant function
is almost periodic, it follows that Fψ ∈ AP(X × Z). Therefore, Fψ ∈ AP(X)⊗ AP(Z) by
Proposition 2.1. It follows that for all f ∈ L2(X, μX) and g ∈ L2(Z, μZ),∫

X×Z
f ⊗ g dλψ =

∫
X×Z

Fψ · (f ⊗ g) d(μX ⊗ μZ)

=
∫
X×Z

Fψ · (E(f |KX)⊗ E(g|KZ)) d(μX ⊗ μZ)

=
∫
X×Z

E(f |KX)⊗ E(g|KZ) dλψ

=
∫
X×Z

∫
L

E(f |KX)(lx) E(g|KZ)(z) ψ(l) dμL(l) dλ(x, z)

=
∫
L

( ∫
X×Z

E(lf |KX)(x) E(g|KZ)(z) dλ(x, z)
)
ψ(l) dμL(l).

As (πX,KX × πZ,KZ)(λ) = μKX ⊗ μKZ we have∫
X×Z

E(lf |KX)⊗ E(g|KZ) dλ =
∫
X×Z

E(lf |KX)⊗ E(g|KZ) d(μX ⊗ μZ)

=
∫
X×Z

f ⊗ g d(μX ⊗ μZ).

for all l ∈ L. We conclude that∫
X×Z

f ⊗ g dλψ =
( ∫

X×Z
f ⊗ g d(μX ⊗ μZ)

)( ∫
L

ψ(l) dμL(l)
)

so, in particular, for any ψ ∈ L∞(L, μL) with ψ � 0 and
∫
L
ψ dμL = 1, the measure λψ

coincides with μX ⊗ μZ .
Finally, allowing ψ to run though an approximate identity, one can approximate λ by

λψ and thereby conclude that λ = μX ⊗ μZ , which finishes the proof.

4.2. Quasi-disjointness passes to factors. In this subsection, we prove the following
theorem.
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THEOREM 4.2. Let X = (X, T , μX), Y = (Y , S, μY ), and Z = (Z, R, μZ) be G systems
and suppose that Y is a factor of X. If X and Z are quasi-disjoint, then Y and Z are also
quasi-disjoint.

For the proof of Theorem 4.2, we need to recall the definition of relatively independent
joinings. Let X = (X, T , μX), Y = (Y , S, μY ), and Z = (Z, R, μZ) be G systems and
suppose that Y is a factor of both X and Z. Let πX,Y : X → Y and πZ,Y : Z → Y

denote the respective factor maps. Using πX,Y, we can embed L2(Y , μY ) into L2(X, μX).
Likewise, through πZ,Y we can identify L2(Y , μY ) as a subspace of L2(Z, μZ). The
relatively independent joining of X with Z over Y is the triple X ×Y Z = (X × Z, T ×
R, μX ⊗Y μZ), whereμX ⊗Y μZ denotes the unique measure onX × Z with the property
that ∫

X×Z
f ⊗ g d(μX ⊗Y μZ) =

∫
Y

E(f |Y)E(g|Y) dμY (5)

for all f ∈ L2(X, μX) and all g ∈ L2(Z, μZ).

LEMMA 4.3. Let X = (X, T , μX) and Y = (Y , S, μY ) be G systems and suppose that Y
is a factor of X. Then the relatively independent joining KX ×KY Y is a factor of X.

Proof. Let πX,Y : X → Y denote the factor map from X to Y and let πX,KX : X → KX
denote the factor map from X to KX. Let τ : X → KX × Y be defined as τ(x) =
(πX,KX(x), πX,Y(x)) for all x ∈ X. We claim that τ is a factor map from X onto
KX ×KY Y. Once this claim is verified, the proof is complete.

To show that τ is a factor map from X onto KX ×KY Y, we must show that the
pushforward of μX under τ equals μKX ⊗KY μY . It suffices to show that∫

KX×Y
f ⊗ g d(τμX) =

∫
KX×Y

f ⊗ g dμKX ⊗KY μY (6)

for all f ∈ L2(KX, μK) and all g ∈ L2(Y , μY ).
By definition, the right-hand side of (6) equals

∫
KY E(f |KY)E(g|KY) dμKY , which

can be rewritten as ∫
X

E(f ◦ πX,KX|KY)E(g ◦ πX,Y|KY) dμX.

The left-hand side of (6) equals∫
X

(f ◦ πX,KX)(g ◦ πX,Y) dμX.

As f ◦ πX,KX = E(f ◦ πX,KX|KX) and g ◦ πX,Y = E(g ◦ πX,Y|Y) we have that∫
X

(f ◦ πX,KX)(g ◦ πX,Y) dμX =
∫
X

E(f ◦ πX,KX|KX)E(g ◦ πX,Y|Y) dμX.

Hence, (6) is equivalent to∫
X

E(f ◦ πX,KX|KX)E(g ◦ πX,Y|Y) dμX =
∫
X

E(f ◦ πX,KX|KY)E(g ◦ πX,Y|KY) dμX.

(7)
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However, because E(·|KX) and E(·|Y) are orthogonal projections onto AP(X) and
L2(Y , μY ), respectively, it follows immediately from AP(X) ∩ L2(Y , μY ) = AP(Y) that
(7) is true.

LEMMA 4.4. Let A = (A, TA, μA), B = (B, TB , μB), C = (C, TC , μC), and D =
(D, TD , μD) be G systems. If B is a factor of A and D is a factor of C, then the induced
map from J (A, C) to J (B, D) is surjective.

Proof. Write πA,B and πC,D for the factor maps. Let b �→ μA,b and d �→ μC,d be
disintegrations (cf. §2.2) of μA and μC over B and D, respectively. We have T gAμA,b =
μA,T gB b

and T gCμC,d = μC,T gDd
almost surely for all g ∈ G.

Fix a joining λB,D of B and D. We claim that

λA,C =
∫
μA,b ⊗ μC,d dλB,D(b, d)

is a joining of A and C with (πA,B × πC,D)λA,C = λB,D . First note that

λA,C(E × C) =
∫
μA,b(E) dλB,D(b, d) =

∫
μA,b(E) dμB(b) = μA(E)

for all Borel sets E ⊂ A because λB,D is a joining, so the left marginal of λA,C is μA.
Similarly, its right marginal is μC .

For all f ∈ C(B) and all h ∈ C(D) we have

∫ ∫
f ⊗ h d(μA,b ⊗ μC,d) dλB,D(b, d) =

∫ ∫
f dμA,b

∫
h dμC,d dλB,D(b, d)

=
∫
f ⊗ h dλB,D

by disintegration properties, so (πA,B × πC,D)λA,C = λB,D .
Finally, for any f ∈ C(A) and any h ∈ C(C), we calculate that

∫ ∫
T
g
Af ⊗ T

g
Ch d(μA,b ⊗ μC,d) dλB,D(b, d)

=
∫ ∫

f ⊗ h d(μA,T gB b
⊗ μC,T gDd

) dλB,D(b, d)

=
∫ ∫

f ⊗ h d(μA,b ⊗ μC,d) dλB,D(b, d)

=
∫
f ⊗ h dλA,C

so λA,C is TA × TC invariant.

From Lemma 4.4, we obtain the following immediate corollary.
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COROLLARY 4.5. Let A = (A, TA, μA), B = (B, TB , μB), and C = (C, TC , μC) be G
systems and suppose that B is a factor of A. Let πA,B denote the factor map from A onto
B. Then, for any joining λ ∈ J (B, C), there exists a joining λ′ ∈ J (A, C) such that the
pushforward of λ′ under the factor map πA,B × idC equals λ.

A A × C

B B × C

πA,B πA,B×idC

We also need the following lemmas for the proof of Theorem 4.2.

LEMMA 4.6. Let π : X → Y be a factor map of G systems. If f ∈ AP(Y), then f ◦ π ∈
AP(X).

Proof. This follows from the fact that π : L2(Y , μY ) → L2(X, μX) is an isometric
embedding.

LEMMA 4.7. Let π : X → Y be a factor map of G systems. Let f ∈ WM(Y) and define
h = f ◦ π . Then h ∈ WM(X).

Proof. We need to prove that 0 belongs to the weak closure of {T gh : g ∈ G} in
L2(X, μX). Note that E(T gh|Y) = T gE(h|Y) = T gh. Fix ξ in L2(X, μX). We have

〈T gh, ξ〉 = 〈E(T gh|Y), E(ξ |Y)〉,
so the fact that f ∈ WM(Y) implies that {T gh : g ∈ G} contains 0 in its closure.

Proof of Theorem 4.2. Let πY,KY and πZ,KZ denote the factor maps from Y onto KY
and from Z onto KZ, respectively. Let λ ∈ J (Y, Z) be a joining of Y and Z with the
property that (πY,KY × πZ,KZ)(λ) = μKY ⊗ μKZ . Let W = (Y × Z, S × R, λ). Our goal
is to show that W = Y × Z or, equivalently, that λ = μY ⊗ μZ .

Observe that KY is a factor of both W and KX. Hence, we can consider the relatively
independent joining KX ×KY W with corresponding measure μKX ⊗KY λ. Note that the
underlying space of KX ×KY W is KX × Y × Z. Let π1,2 : KX × Y × Z → KX × Y

denote the projection onto the first and second coordinates and let π3 : KX × Y × Z → Z

denote the projection onto the third coordinate. Observe that π3 is a factor map from
KX ×KY W onto Z and π1,2 is a factor map from KX ×KY W onto KX ×KY Y, the
relatively independent joining of KX with Y over KY. This shows that μKX ⊗KY λ ∈
J (KX ×KY Y, Z).

Let τ denote the factor map from X to KX ×KY Y in the proof of Lemma 4.3. We
can now apply Corollary 4.5 with A = X, B = KX ×KY Y, and C = Z to find a joining
ρ ∈ J (X, Z) with the property that (τ × idZ)(ρ) = μKX ⊗KY λ. Let W′ = (X × Z, T ×
R, ρ).

Let π1,3 : KX × Y × Z → KX × Z denote the projection onto the first and third
coordinates. We claim that π1,3(μKX ⊗KY λ) = μKX ⊗ μZ . This claim implies that the
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diagram

W′ KX ×KY W KX × Z

KX × KZ

τ×idZ

πX,KX×πZ,KZ

π1,3

idKX ×πZ,KZ

of factor maps commutes, giving (πX,KX × πZ,KZ)ρ = μKX ⊗ μKZ whence ρ = μX ⊗
μZ because X and Z are assumed to be quasi-disjointness. If follows that the measure
(τ × idZ)(ρ) on KX ×KY W is the product of the measures from KX ×KY Y and Z and,
hence, λ = μY ⊗ μZ as desired.

It remains to prove the claim. Fix f in AP(X) and φ in L2(Z, μZ). We have∫
f ⊗ φ dπ1,3(μKX ⊗KY λ) =

∫
f ⊗ 1 ⊗ φ d(μKX ⊗KY λ)

=
∫

E(f |KY)E(1 ⊗ φ|KY) dμKY ,

so it suffices to prove that

E(1 ⊗ φ|KY) =
∫
φ dμZ (8)

in L2(Y × Z, λ). Fix ψ in AP(Y). We have∫
(ψ ⊗ 1)(1 ⊗ φ) dλ =

∫
(ψ ⊗ 1)E(1 ⊗ φ|KW) dλ

because ψ ⊗ 1 is in AP(W) by Lemma 4.6. However,

E(1 ⊗ φ|KW) = E(1 ⊗ E(φ|KZ)|KW)

by Lemmas 4.6 and 4.7 upon writing φ = E(φ|KZ)+ (φ − E(φ|KZ)). Thus, we calculate
that ∫

(ψ ⊗ 1)(1 ⊗ φ) dλ =
∫
(ψ ⊗ 1)(1 ⊗ E(φ|KZ)) dλ

=
∫
ψ ⊗ E(φ|KZ) dλ

=
∫

E(ψ |KY)⊗ E(φ|KZ) dλ =
∫
ψ dμY

∫
φ dμZ ,

where we have used, in the last equality, the fact that λ projects to the product joining of
KY and KZ. This establishes (8) and, therefore, the claim.

4.3. Quasi-disjointness is preserved by inverse limits.

THEOREM 4.8. Let X and Z be G systems and assume that X is the inverse limit of a
sequence n �→ Xn of G systems. If each Xn is quasi-disjoint from Z, then so is X.

Proof. Fix a joining λ of X and Z whose projection to a joining of KX with KZ is
the product measure. For every n, the system KXn is a factor of KX so λ projects
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to the product joining of KXn with KZ. As Xn and Z are assumed quasi-disjoint, the
projection of λ to a joining of Xn with Z is the product measure μXn ⊗ μZ . Therefore,
λ(A× B) = μX(A)μZ(B) for all measurable A ⊂ Xn and all B ⊂ Z for all n ∈ N. In
other words, λ and μX ⊗ μZ agree on all measurable sets of the form A× B where
A ⊂ Xn for some n ∈ N and B ⊂ Z. As the σ -algebra generated by such sets is the Borel
σ -algebra on X × Z we must have λ = μX ⊗ μZ as desired.

4.4. An example. It follows from Theorem 1.1 that any ergodic measurably distal Z
system is quasi-disjoint from itself. However, the converse is not true.

Example 4.9. There exists an ergodic Z system X which is not measurably distal but is
quasi-disjoint from itself and every other ergodic system.

Proof. In [GW89, Theorem 2.2], Glasner and Weiss constructed a continuous Z action
on a compact, metric space X that is minimal and uniquely ergodic, but for which the
corresponding Z system (X, T , μX) is not measurably distal. Moreover, they prove for
their system that the only invariant measure on the set X̃ = {μ ∈ M(X) : πX,KX(μ) =
μKX} is the Dirac measure δμX at the unique invariant measure μX ∈ X̃ of X.

Given any ergodic system Y, let λ ∈ Je(X, Y) and assume that λ projects to the product
measure in KX × KY. Let λ = ∫

Y
λy dμY (y) be the disintegration of λ with respect to the

factor map (X × Y , λ) → (Y , μY ). Observe that

μKX ⊗ μKY =
∫
Y

πX,KX(λy)⊗ πY,KY(δy) dμY (y)

and so πX,KX(λy) = μKX, which implies that λy ∈ X̃.
Let ν be the measure on X̃ obtained as the pushforward of μY by the map y �→ λy . As

ν is invariant, it follows that ν = δμX and, therefore, λ = μX ⊗ μY . We conclude that X
and Y are quasi-disjoint as desired.

5. Proof of Theorem 1.6
In this section, we prove Theorem 1.6.

Proof of Theorem 1.6. In view of a version for amenable groups of the Jewett–Krieger
theorem [Ros86], we can assume that Y is uniquely ergodic. Fix (X, T , μX) Kronecker
disjoint from (Y , S, μY ), a function f ∈ C(X), and a point x ∈ X. Kronecker disjointness
together with Theorem 1.4 implies that the sequence

1
|�N |

∑
g∈�N

δ(T gx,Sgy)

of measures converges to μX ⊗ μY for every y ∈ Y . This implies that we can take Y ′ = Y

when φ is continuous.

https://doi.org/10.1017/etds.2022.19 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.19


1968 J. Moreira et al

For the general case, fix φ in L1(Y , μY ). Let k �→ φk be a sequence in C(Y ) with
φk → φ in L1(Y , μY ). Let Y ′ be the set of points y ∈ Y such that

lim
N→∞

1
|�N |

∑
g∈�N

|φk(Sgy)− φ(Sgy)| = ‖φk − φ‖1 (9)

for all k ∈ N. In view of Lindenstrauss’ pointwise ergodic theorem [Lin01], we have
that μY (Y ′) = 1. Next, let y ∈ Y ′, let f ∈ C(X), x ∈ X, and let k, N ∈ N. By rescaling,
assume that sup{f (x) : x ∈ X} � 1. We have

∣∣∣∣ 1
|�N |

∑
g∈�N

f (T gx)φk(S
gy)− 1

|�N |
∑
g∈�N

f (T gx)φ(Sgy)

∣∣∣∣
� 1

|�N |
∑
g∈�N

|φk(Sgy)− φ(Sgy)|, (10)

lim
N→∞

1
|�N |

∑
g∈�N

f (T gx)φk(S
gy) =

∫
X

f dμX

∫
Y

φk dμY (11)

and putting (9), (10), and (11) together, we obtain

lim sup
N→∞

∣∣∣∣ 1
|�N |

∑
g∈�N

f (T gx)φ(Sgy)−
∫
X

f dμX

∫
Y

φk dμY

∣∣∣∣ � ‖φk − φ‖1

for every k ∈ N. As φk → φ in L1, we obtain the desired result.

We now see how to derive the classical Wiener–Wintner theorem from Theorem 1.6.

COROLLARY 5.1. (Wiener–Wintner theorem) Let X = (X, T , μX) be a Z system and let
f ∈ L1(X, μX). There exists a set X0 ⊂ X with μ(X0) = 1 such that for every α ∈ R and
every x ∈ X0 the limit

lim
N→∞

1
N

N∑
n=1

f (T nx)e(nα) (12)

exists.

Proof. Denote by T the circle R/Z. For each α ∈ R, let Rα : T → T be the rotation
Rα : t �→ t + α. The pointwise ergodic theorem of Birkhoff applied to the system (X × T,
T × Rα) implies that there exists a set Xα ⊂ X with full measure such that, for every
x ∈ Xα , the limit (12) exists. The discrete spectrum Eig(X) of X (cf. Definition 2.2) is at
most countable, so the intersection X1 = ⋂

α∈Eig(X) Xα still has full measure.
Next, let X2 ⊂ X be the full measure set given by Theorem 1.6 applied to X in place of

Y. As for every α /∈ Eig(X) the systems X and (T, Rα) are Kronecker disjoint, it follows
that for every x ∈ X2, the limit in (12) exists. Therefore, the limit exists for every α ∈ R

and every x ∈ X0 = X1 ∩X2.
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6. Applications to multicorrelation sequences and multiple recurrence
In this section, we present applications of our main results to the theory of multiple
recurrence. In particular, this section contains proofs of Theorems 1.7 and 1.8. We remark
that Theorems 1.7 and 1.8 only concern measure-preserving Z systems. The analogs for
more general groups G remain open. We formulate some open questions in this direction
in §7.

6.1. Preliminaries on nilmanifolds. In [HK05], Host and Kra established a struc-
ture theorem for multiple ergodic averages which revealed a deep connection between
multi-correlation sequences and single-orbit dynamics on compact nilmanifolds. In the
proofs of Theorems 1.7 and 1.8, we make use of refinements of the Host–Kra structure
theorem which appeared in [BHK05, HK09, MR19, MR21]. The purpose of this
subsection is to give an overview of these results and some related methods that we use in
the subsequent sections.

We begin with the definition of a nilmanifold. A closed subgroup � of G is called
uniform if G/� is compact or, equivalently, if there exists a compact set K such that
K� = G. Let G be a k-step nilpotent Lie group and let � ⊂ G be a uniform and
discrete subgroup of G. The quotient space G/� is called a nilmanifold. Naturally, G acts
continuously and transitively on G/� via left-multiplication, that is, a(g�) = (ag)� for
all a ∈ G and all g� ∈ G/�. On any nilmanifold G/�, there exists a unique G invariant
Borel probability measure called the Haar measure of G/�, which we denote by μG/�
(cf. [Rag72, Lemma 1.4]). Given a fixed group element a ∈ G the map R : G/� → G/�

defined by R(x) = ax for all x = g� ∈ G/� is a niltranslation and the resulting Z system
(G/�, R, μG/�) is called a k-step nilsystem. We remark that (G/�, R, μG/�) is ergodic
if and only if R acts transitively on G/�; in fact, if R is transitive, then μG/� is the
unique R invariant Borel probability measure on G/� (cf. [AGH63, Par69]). Finally,
for any x ∈ G/�, the orbit closure Y = {Rnx : n ∈ Z} ⊂ G/� is a sub-nilmanifold of
G/�, meaning that there exists a closed subgroup H of G such that a ∈ H , Y = Hx

and � = H ∩ � is a uniform and discrete subgroup of H. In this case, there exists a
unique H invariant Borel probability measure μY on Y, called the Haar measure of
the sub-nilmanifold Y, and the system (Y , R, μY ) is a nilsystem, as it is isomorphic to
(H/�, R, μH/�) (cf. [Lei06]). For more information on nilmanifolds and nilsystems, we
refer the reader to [AGH63, Par69, Par70, Rag72].

THEOREM 6.1. (See [MR21, Revised Theorem 7.1]) Let k ∈ N, let X = (G/�, R, μG/�)
be an ergodic nilrotation and assume thatG/� is connected. Define S = R × R2 × · · · ×
Rk and for every x ∈ G/� consider the sub-nilmanifold �(X, x) of (G/�)k = Gk/�k

defined as

�(X, x) = {Sn(x, x, . . . , x) : n ∈ Z}.

Let μ�(X,x) denote the Haar measure on�(X, x) and let θ ∈ [0, 1). If e(θ) /∈ Eig(X), then
for almost every x ∈ G/�, e(θ) /∈ Eig(�(X, x), S, μ�(X,x)).
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For our purposes, we need a generalization of Theorem 6.1 that holds for nilmanifolds
G/� that are not necessarily connected.

THEOREM 6.2. Let k ∈ N and let Z = (G/�, R, μG/�) be an ergodic nilsystem. Define
S = R × R2 × · · · × Rk and

�(Z, x) = {Sn(x, x, . . . , x) : n ∈ Z} ⊂ (G/�)k .

For any θ ∈ [0, 1), if e(θ) /∈ Eig(Z) then for almost every x ∈ G/�, e(θ) /∈ Eig(�(Z, x),
S, μ�(Z,x)).

To derive Theorem 6.2 from Theorem 6.1, we need the following well-known lemma
regarding nilsystems.

LEMMA 6.3. (Cf. [AGH63, Lei05, Par69]) Suppose Z = (G/�, R, μG/�) is a nilsystem.
Then the following are equivalent:
(i) G/� is connected and Z is ergodic;

(ii) Z is totally ergodic.

Proof of Theorem 6.2. Suppose G/� is not connected. As G/� is compact, it splits into
finitely many distinct connected components Z0, Z1, . . . , Zt−1. It is also straightforward
to show that Zi is itself a nilmanifold with Haar measure μZi and that μG/� = 1/t (μZ0 +
μZ1 + · · · + μZt−1). The ergodic niltranslation R : G/� → G/� cyclically permutes
these connected components, so after re-indexing them, if necessary, we have Rtn+iZ0 =
Zi for all n ∈ N and i ∈ {0, 1, . . . , t − 1}. In particular, for every i ∈ {0, . . . , t − 1} the
component Zi is Rt invariant and Rt : Zi → Zi is an ergodic niltranslation on Zi . Let
Zi = (Zi , Rt , μZi ).

As Zi is connected, it follows from Lemma 6.3 that Zi is totally ergodic. This means
that Eig(Zi ) contains no roots of unity. Also note that the function

∑t−1
i=0 e(i/t)1Zi is an

eigenfunction for R with eigenvalue e(i/t), where e(x) = e2πix for all x ∈ R. We conclude
that

Eig(Z) ∩ {roots of unity} =
{

1, e
(

1
t

)
, e

(
2
t

)
, . . . , e

(
t − 1
t

)}
.

On the other hand, if ζ is not a root of unity, then ζ is an eigenvalue for R if and only if ζ t

is an eigenvalue for Rt ; therefore,

Eig(Z) = (Eig(Z0))
1/t ·

{
1, e

(
1
t

)
, e

(
2
t

)
, . . . , e

(
t − 1
t

)}
.

Let x ∈ Z and let i0 ∈ {0, 1, . . . , t − 1} be such that x ∈ Zi0 . Define

�(Zi0 , x) = {Stn(x, x, . . . , x) : n ∈ Z}.
Observe that for i ∈ {0, . . . , t − 1},

Si�(Zi0 , x) ⊂ Zi0+i × Zi0+2i × · · · × Zi0+ki

and, hence, Si�(Zi0 , x) ∩ Sj�(Zi0 , x) = ∅ for i �= j . As Zi0 is totally ergodic, it follows
from Theorem 6.1 that for almost every x ∈ Zi0 , the nilsystem (�(Zi0 , x), St ) is also
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totally ergodic. In view of Lemma 6.3, this means that �(Zi0 , x) is connected. We deduce
that for almost every x ∈ Z, the nilmanifold�(Z, x) has t connected components, because

�(Z, x) =
t−1⋃
i=0

Si�(Zi0 , x),

where �(Zi0 , x), S1�(Zi0 , x), . . . , St−1�(Zi0 , x) are connected and distinct.
Finally, suppose θ ∈ [0, 1) is such that e(θ) /∈ Eig(Z). Then e(θ)t /∈ Eig(Zi )

for all i. From Theorem 6.1, we deduce that for almost every x ∈ Z, e(θ)t /∈
Eig(�(Zi0 , x), St , μ�(Zi0 ,x)) (where, again, i0 ∈ {0, . . . , t − 1} is such that x ∈ Zi0 )
and, hence, e(θ) /∈ Eig(�(Z, x), S, μ�(Z,x)).

COROLLARY 6.4. Let k ∈ N and let Z = (G/�, R, μG/�) be an ergodic nilsystem. Define
S = R × R2 × · · · × Rk and

�(Z, x) = {Sn(x, x, . . . , x) : n ∈ Z} ⊂ (G/�)k .

Let X = (X, T , μX) be a Z system. If X and Z are Kronecker disjoint, then for almost
every x ∈ G/�, the Z systems X and (�(Z, x), S, μ�(Z,x)) are Kronecker disjoint.

Proof. By way of contradiction, assume that there is a positive measure set X′ ⊂ G/�

such that X and (�(Z, x), S, μ�(Z,x)) are not Kronecker disjoint whenever x ∈ X′. This
means that for any x ∈ X′, we can find some θx ∈ [0, 1) such that e(θx) is a common
eigenvalue for the systems X and (�(Z, x), S, μ�(Z,x)). As X only possesses countably
many eigenvalues, there exists a positive measure subset X′′ ⊂ X′ such that θx = θ is
constant for all x ∈ X′′. As e(θ) belongs to Eig(�(Z, x), S, μ�(Z,x)) for all x ∈ X′′ and
X′′ has positive measure, it follows from Theorem 6.2 that e(θ) belongs to Eig(Z). This
contradicts the assumption that X and Z are Kronecker disjoint.

6.2. Proofs of Theorems 1.7 and 1.8. The following result, which is used in the proofs
of Theorems 1.7 and 1.8, is contained implicitly in [HK09, §7.3].

THEOREM 6.5. (Cf. [HK09, §7.3]) Let k ∈ N, let X = (X, T , μX) be a Z system, and
let f1, . . . , fk ∈ L∞(X, μX). Then, for every ε > 0, there exists a k-step nilsystem
(G/�, R, μG/�), which is a factor of (X, T , μX), and there exist continuous functions
g1, . . . , gk ∈ C(G/�) such that for every bounded complex-valued sequence (an)n∈N, one
has

lim sup
N→∞

∥∥∥∥ 1
N

N∑
n=1

an

k∏
i=0

T infi − 1
N

N∑
n=1

an

k∏
i=0

(Ringi) ◦ π
∥∥∥∥

2
≤ ε sup

n∈N
|an|,

where π : X → G/� denotes the factor map from (X, T , μX) onto (G/�, R, μG/�).

We also need the following lemma.

LEMMA 6.6. Let (Y , S) be a topological Z system, let μY be an ergodic S invariant
Borel probability measure on Y, and let G ∈ L1(Y , μY ). Then there exists a set Y ′ ⊂ Y

with μY (Y ′) = 1 such that for any ergodic nilsystem system (G/�, μG/� , R) which is
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Kronecker disjoint from (Y , S, μY ), any F ∈ C(G/�), any x ∈ G/�, and any y ∈ Y ′ we
have

lim
N→∞

1
N

N∑
n=1

F(Rnx)G(Sny) =
∫
G/�

F dμG/�

∫
Y

G dμY .

Moreover, if (Y , S) is uniquely ergodic and g ∈ C(Y ), then we can take Y ′ = Y .

Proof. As any nilsystem is measurably distal (see [Lei05, Theorem 2.14]), Lemma 6.6 is
a special case of Theorem 1.6.

Proof of Theorem 1.7. Let X = (X, T , μX) and Y = (Y , S, μY ) be Z systems and assume
X and Y are Kronecker disjoint. Let k, � ∈ N, f1, . . . , fk ∈ L∞(X, μX) and g1, . . . , g� ∈
L∞(Y , μY ). According to [HK05, Zie07], the limit

F = lim
N→∞

1
N

N∑
n=1

k∏
i=1

T infi

exists in L2(X, μX) and the limit

G = lim
N→∞

1
N

N∑
n=1

�∏
j=1

Sjngj

exists in L2(Y , μY ). Moreover, in view of [Tao08] also the limit

H = lim
N→∞

1
N

N∑
n=1

k∏
i=1

�∏
j=1

T infiS
jngj

exists in L2(X × Y , μX ⊗ μY ). Our goal is to show that

H = F ⊗G. (13)

We can assume without loss of generality that ‖fi‖∞ ≤ 1 and ‖gj‖∞ ≤ 1. Fix ε > 0.
First, we apply Theorem 6.5 to find a k-step nilsystem (GX/�X, RX, μGX/�X), which is
a factor of (X, T , μX), and a set of continuous functions f̃1, . . . , f̃k ∈ C(GX/�X) such
that for every bounded complex-valued sequence (an)n∈N one has

lim sup
N→∞

∥∥∥∥ 1
N

N∑
n=1

an

k∏
i=1

T infi − 1
N

N∑
n=1

an

k∏
i=1

(RinX f̃i) ◦ π
∥∥∥∥

2
≤ ε sup

n∈N
|an|,

where π : X → GX/�X denotes the factor map from (X, T , μX) onto (GX/�X, RX,
μGX/�X). In particular, if we choose an = ∏�

j=1 S
jngj (y) as y runs through Y, we obtain

sup
y∈Y

lim sup
N→∞

∥∥∥∥ 1
N

N∑
n=1

k∏
i=1

�∏
j=1

T infiS
jngj (y)

− 1
N

N∑
n=1

k∏
i=1

�∏
j=1

((RinX f̃i) ◦ π)Sjngj (y)
∥∥∥∥

2
≤ ε. (14)

https://doi.org/10.1017/etds.2022.19 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.19


Disjointness for measurably distal group actions 1973

From (14), it follows that

lim sup
N→∞

∥∥∥∥ 1
N

N∑
n=1

k∏
i=1

�∏
j=1

T infiS
jngj − 1

N

N∑
n=1

k∏
i=1

�∏
j=1

((RinX f̃i) ◦ π)Sjngj
∥∥∥∥

2
≤ ε. (15)

Similarly, we can pick a �-step nilsystem (GY /�Y , RY , μGY /�Y ), which is a factor of
(Y , S, μY ), and a set of continuous functions g̃1, . . . , g̃� ∈ C(GY /�Y ) such that, for every
bounded complex-valued sequence (bn)n∈N, one has

lim sup
N→∞

∥∥∥∥ 1
N

N∑
n=1

bn

�∏
j=1

Sjngj − 1
N

N∑
n=1

bn

�∏
j=1

(R
jn
Y g̃j ) ◦ η

∥∥∥∥
2

≤ ε sup
n∈N

|bn|,

where η : Y → GY/�Y denotes the factor map from (Y , S, μY ) onto (GY /�Y , RY ,
μGY /�Y ). If we set bn = ∏k

i=1(R
in
X f̃i) ◦ π(x), then we obtain

sup
x∈X

lim sup
N→∞

∥∥∥∥ 1
N

N∑
n=1

k∏
i=1

�∏
j=1

(RinX f̃i)(πx)S
jngj

− 1
N

N∑
n=1

k∏
i=1

�∏
j=1

(RinX f̃i)(πx)((R
jn
Y g̃j ) ◦ η)

∥∥∥∥
2
� ε (16)

and, hence,

lim sup
N→∞

∥∥∥∥ 1
N

N∑
n=1

k∏
i=1

�∏
j=1

((RinX f̃i) ◦ π)Sjngj

− 1
N

N∑
n=1

k∏
i=1

�∏
j=1

((RinX f̃i) ◦ π)((RjnY g̃j ) ◦ η)
∥∥∥∥

2
≤ ε. (17)

Combining (15) and (17) yields

lim sup
N→∞

∥∥∥∥ 1
N

N∑
n=1

k∏
i=1

�∏
j=1

T infiS
jngj − 1

N

N∑
n=1

k∏
i=1

�∏
j=1

((RinX f̃i) ◦ π)((RjnY g̃j ) ◦ η)
∥∥∥∥

2
≤ 2ε.

(18)

Next, we claim that for almost every x ∈ GX/�X and almost every y ∈ GY/�Y , we
have

lim
N→∞

∣∣∣∣ 1
N

N∑
n=1

k∏
i=1

�∏
j=1

f̃i (R
in
X x)g̃j (R

jn
Y y)

−
(

1
N

N∑
n=1

k∏
i=1

f̃i (R
in
X x)

)(
1
N

N∑
n=1

�∏
j=1

g̃j (R
jn
Y y)

)∣∣∣∣ = 0. (19)
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Assume for now that this claim holds. It follows from (14) and (16) that

lim sup
N→∞

∥∥∥∥
(

1
N

N∑
n=1

k∏
i=1

RinX f̃i ◦ π
)(

1
N

N∑
n=1

�∏
j=1

R
jn
Y g̃j ◦ η

)

−
(

1
N

N∑
n=1

k∏
i=1

T infi

)(
1
N

N∑
n=1

�∏
j=1

Sjngj

)∥∥∥∥
2

≤ 2ε. (20)

Thus, combining (20) with (19) and (18) gives

lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

k∏
i=1

�∏
j=1

T infiS
jngj −

(
1
N

N∑
n=1

k∏
i=1

T infi

)
·
(

1
N

N∑
n=1

�∏
j=1

Sjngj

)∥∥∥∥
2
� 4ε.

As ε > 0 was chosen arbitrarily, the proof of (13) is complete.
It remains to show that (19) is true. Define SX = RX × R2

X × · · · × RkX and for
every x ∈ GX/�X consider �(X, x) = {SnX(x, x, . . . , x) : n ∈ Z}. In addition, define
F = f̃1 ⊗ · · · ⊗ f̃k . Similarly, we define SY = RY × R2

Y × · · · × R�Y , �(Y, y) =
{SnY (y, y, . . . , y) : n ∈ Z} and G = g̃1 ⊗ · · · ⊗ g̃�. Hence, (19) can be rewritten as

lim
N→∞

∣∣∣∣ 1
N

N∑
n=1

F(SnX(x, . . . , x))G(SnY (y, . . . , y))

−
(

1
N

N∑
n=1

F(SnX(x, . . . , x))
)(

1
N

N∑
n=1

G(SnY (y, . . . , y))
)∣∣∣∣ = 0. (21)

Note that (GX/�X, RX, μGX/�X) and (GY /�Y , RY , μGY /�Y ) are Kronecker disjoint,
because (X, T , μX) and (Y , S, μY ) are Kronecker disjoint. In view of Corollary 6.4
it therefore follows that for μX-almost every x ∈ GX/�X and for μY -almost every
y ∈ GY/�Y the two nilsystems (�(X, x), SX, μ�(X,x)) and (�(Y, y), SY , μ�(Y,y)) are
Kronecker disjoint. We can now apply Lemma 6.6 to conclude that for almost every
x ∈ GX/�X and almost every y ∈ GY/�Y , we have

lim
N→∞

1
N

N∑
n=1

F(SnX(x, . . . , x))G(SnY (y, . . . , y))

=
∫
�(X,x)

F dμ�(X,x)

∫
�(Y,y)

G dμ�(Y,y). (22)

As (�(X, x), SX) and (�(Y, y), SY ) are uniquely ergodic, we have that

lim
N→∞

1
N

N∑
n=1

F(SnX(x, . . . , x)) =
∫
�(X,x)

F dμ�(X,x), (23)

lim
N→∞

1
N

N∑
n=1

G(SnY (x, . . . , x)) =
∫
�(Y,y)

G dμ�(Y,y). (24)

Combining (22) with (23) and (24) yields (21), which, in turn, implies (19). This completes
the proof of Theorem 1.7.
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Proof of Theorem 1.8. Let (Y , S) be a topological Z system, let μY be an S invariant Borel
probability measure on Y, and let G ∈ L1(Y , μY ). First, we apply Lemma 6.6 to find a
set Y ′ ⊂ Y with μY (Y ′) = 1 such that for any ergodic nilsystem system (G/�, μG/� , R)
which is Kronecker disjoint from (Y , S, μY ), any F ∈ C(G/�), any x ∈ G/�, and any
y ∈ Y ′ we have

lim
N→∞

1
N

N∑
n=1

F(x)G(y) =
∫
G/�

F dμG/�

∫
Y

G dμY .

Lemma 6.6 also guarantees that if (Y , S) is uniquely ergodic and G ∈ C(Y ), then we can
take Y ′ = Y . Now let (X, T , μX) be a Z system that is Kronecker disjoint from (Y , S, μY ).
Fix k ∈ N and let f1, . . . , fk ∈ L∞(X, μX). Our goal is to show that for any y ∈ Y ′ we
have

lim
N→∞

1
N

N∑
n=1

G(Sny)

k∏
i=1

T infi =
( ∫

Y

G dμY

)
·
(

lim
N→∞

1
N

N∑
n=1

k∏
i=1

T infi

)
(25)

in L2(X, μX).
Note that (25) is trivially true if G is a constant function. Hence, by replacing G with

G− ∫
Y
G dμY if necessary, we can assume without loss of generality that

∫
Y
G dμY = 0.

In this case, (25) reduces to

lim
N→∞

1
N

N∑
n=1

G(Sny)

k∏
i=1

T infi = 0. (26)

We can also assume without loss of generality that ‖G‖∞ ≤ 1 and that ‖fi‖∞ ≤ 1 for all
i = 1, . . . , k.

Fix ε > 0. We apply Theorem 6.5 to find a k-step nilsystem (G/�, R, μG/�), which is
a factor of (X, T , μX), and a set of continuous functions f̃1, . . . , f̃k ∈ C(G/�) such that

lim sup
N→∞

∥∥∥∥ 1
N

N∑
n=1

G(Sny)

k∏
i=1

T infi − 1
N

N∑
n=1

G(Sny)

k∏
i=1

(Rinf̃i) ◦ π
∥∥∥∥

2
≤ ε,

where π : X → G/� denotes the factor map from (X, T , μX) onto (G/�, R, μG/�).
Therefore, to show (26) it suffices to show that for almost every x ∈ G/� one has

lim
N→∞

1
N

N∑
n=1

G(Sny)

k∏
i=1

Rinf̃i(x) = 0. (27)

Define S = R × R2 × · · · × Rk , Yx = {Sn(x, x, . . . , x) : n ∈ Z} and also F = f̃1 ⊗
· · · ⊗ f̃k . Clearly, (27) is equivalent to

lim
N→∞

1
N

N∑
n=1

G(Sny)SnF (x, . . . , x) = 0. (28)

It follows from Corollary 6.4 that for almost every x ∈ GX/�X, the two systems
(Yx , S, μYx , S) and (Y , S, μY ) are Kronecker disjoint. Hence, Lemma 6.6 implies that
for almost every x ∈ GX/�X, (28) holds. This finishes the proof.
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6.3. An example of multiple recurrence. In this section, we obtain an application of
Theorem 1.4 to multiple recurrence.

Definition 6.7. Let q be an integer � 2. A function w : N → C is called strongly
q-multiplicative if w(n) = w(a0) · · · w(ak), where

n =
k∑
i=0

aiq
i , 0 � ai � q − 1

is the base q expansion of n. For convenience, we assume w(0) = 1.

The {−1, 1}-valued Thue–Morse sequence is an example of a strongly 2-multiplicative
sequence, obtained by letting w(0) = 1 and w(1) = −1.

When a strongly q-multiplicative function takes only finitely many values, sayw : N →
A ⊂ C, we can identify the function with a point (which, by a slight abuse of notation, we
also denote by w) in the symbolic space AN. Let S : AN → AN be the usual shift map.

PROPOSITION 6.8. [Lia87] Let w : N → A ⊂ C be a strongly q-multiplicative function.
Then the orbit closure Y =

(
{Snw : n ∈ N}, S

)
is a uniquely ergodic system. Moreover,

the discrete spectrum Eig(Y) with respect to the unique invariant measure μY is contained
in the set {e(a/qn) : a, n ∈ N}.

Putting this proposition together with Theorem 1.8, we obtain the following corollary.

COROLLARY 6.9. Letw : N → C be a strongly q-multiplicative function taking only finite
many values and let X = (X, T , μX) be a system with Eig(X) ∩ {e(a/qn) : a, n ∈ N} =
{1}. For every f1, . . . , fk ∈ L∞(X), we have

lim
N→∞

1
N

N∑
n=1

w(n)

k∏
i=1

T infi =
(

lim
N→∞

1
N

N∑
n=1

w(n)

)
·
(

lim
N→∞

1
N

N∑
n=1

k∏
i=1

T infi

)
.

We can use this to derive a multiple recurrence result for level sets of strongly
q-multiplicative functions.

THEOREM 6.10. Let m, q ∈ N, let A ⊂ C be the set of mth roots of 1, and let w : N →
A be a strongly q-multiplicative function. For every z ∈ A, the level set R = {n ∈ N :
w(n) = z} either has 0 density or satisfies the following multiple recurrence property: let
X = (X, T , μX) be a Z system and assume that Eig(X) contains no non-trivial qth root of
1. Then, for every A ⊂ X with μ(A) > 0 and every k ∈ N, there exists n ∈ R such that

μ(A ∩ T −nA ∩ T −2nA ∩ · · · ∩ T −knA) > 0.

Proof. The indicator function 1R(n) of R = {n ∈ N : w(n) = z} can be expressed as δz ◦
w(n), where δz : A → C is the function δz(u) = 1 if u = z and δz(u) = 0 otherwise. The
space of functions from A to C is a vector space spanned by the functions u �→ uj , j =
0, . . . , m− 1, and, in particular, δz is a linear combination of the functions uj . It follows
that 1R(n) is a linear combination of the functions wj(n) for j = 0, . . . , m− 1.
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Observe that each power wj of w is a strongly q-multiplicative function and, thus,
Corollary 6.9 applied to the functions fi = 1A implies that

lim
N→∞

1
N

N∑
n=1

wj(n)μ

( k⋂
i=0

T −inA
)

=
(

lim
N→∞

1
N

N∑
n=1

wj(n)

)
·
(

lim
N→∞

1
N

N∑
n=1

μ

( k⋂
i=0

T −inA
))

.

By linearity, this implies that

lim
N→∞

1
N

N∑
n=1

1R(n)μ
( k⋂
i=0

T −inA
)

=
(

lim
N→∞

1
N

N∑
n=1

1R(n)
)

·
(

lim
N→∞

1
N

N∑
n=1

μ

( k⋂
i=0

T −inA
))

.

If R has positive density, then the first factor on the right-hand side of the previous equation
is positive. The fact that the second factor is also positive is the content of Furstenberg’s
multiple recurrence theorem [Fur77, Theorem 11.13]. Therefore, the left-hand side has to
be positive as well and this implies the desired conclusion.

7. Some open questions
It is tempting to define X and Z to be quasi-disjoint if the natural map from Je(X, Z) to
Je(KX, KZ) is a bijection. However, [Ber71, Example 2] shows this is, in fact, a strictly
stronger notion than quasi-disjointness, which amounts to requiring that the above map be a
bijection almost everywhere with respect to the measure on Je(X, Z) given by the ergodic
decomposition of the product measure. In light of this we ask the following question.

Question 7.1. Is it true that a system X is quasi-disjoint from Y if and only if the support
of the measure appearing in the ergodic decomposition of μ× ν equals Je(X, Y).

The notion of disjointness can be described in terms of factor maps. We ask whether a
similar characterization of quasi-disjointness is possible.

Question 7.2. Is is true that X and Y are quasi-disjoint if and only if any system Z which
has X, Y and KX × KY as factors, also has X × Y as a factor?

We are also interested in the following potential extensions of our theorem and its
applications.

Question 7.3. Is a system X quasi-disjoint from any ergodic system if and only if it is
quasi-disjoint from itself?

We expect the following question, which seeks a generalization of Theorem 1.7 to
countable, amenable groups, to be quite difficult.
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Question 7.4. Fix a countable, amenable group G with a Følner sequence �. Let X =
(X, T , μX) be an ergodic Gk system and let Y = (Y , S, μY ) be an ergodic G� system.
Given 1 ≤ i ≤ j ≤ k, write T[i,j ] for the G action induced by the inclusion of G in Gk

diagonally on the coordinates i, . . . , j and similarly for S[i,j ] with 1 ≤ i ≤ j ≤ �. Under
what conditions on X and Y do we have

lim
N→∞

1
|�N |

∑
g∈�N

k∏
i=1

T
g

[1,i]fi

�∏
j=1

S
g

[1,j ]hj

=
(

lim
N→∞

1
|�N |

∑
g∈�N

k∏
i=1

T
g

[1,i]fi

)(
lim
N→∞

1
|�N |

∑
g∈�N

�∏
j=1

S
g

[1,j ]hj

)

in L2(X × Y , μX ⊗ μY ) for all f1, . . . , fk in L∞(X, μX) and all h1, . . . , h� in
L∞(Y , μY )?
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