p-INJECTIVITY OF SIMPLE PRE-TORSION MODULES by K. VARADARAJAN* AND K. WEHRHAHN

(Received 5 August, 1985)

Introduction. V-rings and their generalisations have been studied extensively in recent years [2], [3], [5], [6], [7]. All the rings we consider will be associative rings with $1 \neq 0$ and all the modules considered will be unitary left *R*-modules. All the concepts will be left-sided unless otherwise mentioned. Thus by an ideal in *R* we mean a left ideal of *R*. A ring *R* is called a V-ring (respectively a GV-ring) if every simple (resp. simple, singular) module is injective. An *R*-module *M* is called p-injective if any homomorphism $f: I \rightarrow M$ with *I* a principal left ideal of *R* can be extended to a homomorphism $g: R \rightarrow M$. A ring *R* is called a p-V-ring (resp. a p-V'-ring) if every simple (resp. simple, singular) module over R is p-injective. The object of the present paper is to introduce torsion theoretic generalizations of p-V-rings and prove results similar to those obtained by Yue Chi Ming about p-V-rings and p-V'-rings [6], [7]. For any $M \in R$ -mod, J(M) will denote the Jacobson radical of *M* and Z(M) the singular submodule of *M*. For any $\lambda \in R$, we denote the left annihilator $\{r \in R \mid r\lambda = 0\}$ of λ in *R* by $l(\lambda)$.

In what follows we will follow the terminology from [4] regarding torsion theories. σ will denote a left exact pre-radical in *R*-mod, $\mathbf{T}_{\sigma} = \{M \in R \text{-mod} \mid \sigma(M) = M\}$ the associated hereditary pretorsion class, $\mathcal{F}_{\sigma} = \{I \subset R \mid R/I \in \mathbf{T}_{\sigma}\}$ the associated left linear topology on *R*.

LEMMA 1. Suppose every simple module S in \mathbf{T}_{σ} is p-injective. Let λ be any element of R. Let $I \in \mathcal{F}_{\sigma}$ satisfy $I \supset R\lambda R + l(\lambda)$. Then I = R.

Proof. Suppose if possible that $I \neq R$. Then there exists a maximal left ideal L of R with $I \subset L$. Since $I \in \mathcal{F}_{\sigma}$, it follows that $L \in \mathcal{F}_{\sigma}$ and hence R/L is a simple module in \mathbf{T}_{σ} . Define $g: R\lambda \to R/L$ by $g(r\lambda) = r + L$. Observe that g is well-defined. Since R/L is p-injective, there exists an extension $f: R \to R/L$ of g. Let f(1) = c + L. Then $1 + L = g(\lambda) = f(\lambda) = \lambda c + L$. But $\lambda c \in R\lambda R \subset I \subset L$. This implies that $1 \in L$, a contradiction. This contradiction proves that I = R.

THEOREM 1. Suppose every simple module S in \mathbf{T}_{σ} is p-injective. Then

- (1) any $I \in \mathcal{F}_{\sigma}$ is idempotent,
- (2) for any $0 \neq I \in \mathcal{F}_{\sigma}$ there exists a simple quotient of I,
- (3) $J(R) \cap \sigma(R) = 0$,
- (4) if c is any element of R satisfying l(c) = 0 and $RcR \in \mathcal{F}_{\sigma}$ then R = RcR.

Proof. (1) Suppose $I \neq I^2$. Let $a \in I$ satisfy $a \notin I^2$. Using Zorn's lemma choose a left ideal L of R with $I^2 \subset L \subset I$ and maximal with respect to the property $a \notin L$. It is well-known and easy to see that (Ra + L)/L is simple. But $(Ra + L)/L \approx Ra/(L \cap Ra)$.

* The first author was partially supported by NSERC grant A8225 while carrying out this research.

Glasgow Math. J. 28 (1986) 223-225.

Hence $Ra/(L \cap Ra)$ is simple. Let $\eta: Ra \to Ra/(L \cap Ra)$ denote the canonical quotient map and $\bar{a} = \eta(a)$. Then $R\bar{a}$ is simple; moreover $l(\bar{a}) = (L \subset Ra:a) = (L:a)$. From $Ia \subset I^2 \subset L$ we get $l(\bar{a}) \supset I$, hence $l(\bar{a}) \in \mathcal{F}_{\sigma}$ yielding $R\bar{a} \in \mathbf{T}_{\sigma}$. It follows that $R\bar{a}$ is p-injective. Hence there exists an extension $f: R \to Ra/L \cap Ra$ of η . If

$$f(1) = \lambda a + L \cap Ra,$$

then $a + L \cap Ra = \eta(a) = f(a) = a\lambda a + L \cap Ra$. Hence $a - a\lambda a \in L \cap Ra$. But $a\lambda a \in RaRa \subset L \cap Ra$. It follows that $a \in L \cap Ra$, contradicting the fact that $a \notin L$ by the very choice of L. Hence $I = I^2$.

(2) We will actually show that if $0 \neq I \in \mathcal{F}_{\sigma}$, then $I \notin J(R)$. This will prove (2), because if M is a maximal left ideal of R with $I \notin M$, then $I \cap M$ is a maximal submodule of I. Now, suppose on the contrary $I \subseteq J(R)$. Let $0 \neq a \in I$. Let L be a submodule of I maximal with respect to the property $a \notin L$. Then as in (1), $Ra/(L \cap Ra)$ is simple. We claim that $Ia \subseteq L$. If $Ia \notin L$ then $Ia + L \cap Ra = Ra$, yielding $a = \lambda a + x$ with $\lambda \in I$, $x \in L \cap Ra$. Thus $(1 - \lambda)a = x \in L$. From $\lambda \in I \subseteq J(R)$ we see that $(1 - \lambda)$ is a unit. Hence $a \in L$, a contradiction to the choice of L. Hence $Ia \subseteq L \cap Ra$. This implies $Ra/(L \cap Ra) \in \mathbf{T}_{\sigma}$ as in (1). Hence $Ra/(L \cap Ra)$ is injective. As in (1) this again yields an element $r \in R$ with $a - ara \in L$. Thus $(1 - ar)a \in L$. From $a \in I \subseteq J(R)$ we see that (1 - ar) is a unit. Hence $a \in L$, leading to a contradiction. This contradiction proves that $I \notin J(R)$.

(3) Let $\lambda \in J(R) \cap \sigma(R)$. From $\lambda \in \sigma(R)$ we see that $R\lambda \in \mathbf{T}_{\sigma}$, hence $l(\lambda) \in \mathscr{F}_{\sigma}$. In particular $R\lambda R + l(\lambda) \in \mathscr{F}_{\sigma}$. From Lemma 1 we get $R\lambda R + l(\lambda) = R$. Now $R\lambda R \subseteq J(R)$. Since J(R) is small in R we get $l(\lambda) = R$, hence $\lambda = 0$.

(4) Since l(c) = 0 we get RcR = RcR + l(c). If $RcR \in \mathcal{F}_{\sigma}$, by Lemma 1 we get R = RcR + l(c). Hence R = RcR.

REMARKS. (a) Let $\sigma(M) = M$ for all $M \in R$ -mod. Then σ is a left exact radical with $\mathscr{F}_{\sigma} = \{ \text{all the left ideals } I \text{ in } R \}$ and $\mathbf{T}_{\sigma} = R$ -mod. In this case Theorem 1 yields the following.

COROLLARY 1. Let R be a p-V-ring. Then

(1) every left ideal of R is idempotent,

(2) every non-zero left ideal of R has a simple quotient,

(3) J(R) = 0,

(4) R = RcR for every $c \in R$ with l(c) = 0.

This slightly strengthens Lemma 1 of [6].

(b) Let $\sigma = z$, the singular left exact pre-radical. Then $\mathscr{F}_z = \{I \mid I \text{ is an essential left} ideal in R\}$. Given any $\lambda \in R$ we can choose a left ideal K of R with $(R\lambda R + l(\lambda)) \cap K = 0$ and $(R\lambda R + l(\lambda)) \oplus K$ essential in R. Thus in this case Lemma 1 yields the following.

COROLLARY 2. Let R be a p-V'-ring. Then for any $\lambda \in R$ there exists a left ideal K in R with $(R)R + I(\lambda) \cap K = 0$ and $(R)R + I(\lambda) \cap K = R$

$$(R\lambda R + l(\lambda)) \cap K = 0$$
 and $(R\lambda R + l(\lambda)) \oplus K = R$

This is Lemma 1 of [7].

Also in this case Theorem 1 yields the following:

COROLLARY 3. Let R be a p-V'-ring. Then

(1) every essential left-ideal of R is idempotent,

(2) every essential left ideal of R has a simple quotient,

(3) $J(R) \cap Z(R) = 0$,

(4) R = RcR for every non-zero divisor c in R (i.e. l(c) = 0 = r(c)).

Here r(c) is the right annihilator of c in R.

Actually (1), (2), (3) follow from (1), (2), (3) of Theorem 1. As for (4), from Corollary 2 we get $K \subset R$ with $RcR \oplus K = R$. Now $cK \subset RcR \cap K = 0$. Since r(c) = 0 we get K = 0. Hence R = RcR.

Corollary 3 slightly strengthens Proposition 3 of [7].

REFERENCES

1. R. Arens and I. Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc. 63 (1948), 457-481.

2. G. O. Michler and O. E. Villamayor, On rings whose simple modules are injective, J. Algebra 25 (1973), 185-201.

3. V. S. Ramamurthy and K. M. Rangaswamy, Generalised V-rings, Math. Scand. 31 (1972), 69-77.

4. Bo Stenström, *Rings of quotients*, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band 217 (Springer-Verlag, 1975).

5. K. Varadarajan, Generalised V-rings and torsion theories, to appear in Comm. algebra.

6. R. Yue Chi Ming, On simple p-injective modules, Math. Japon. 19 (1974), 173-176.

7. R. Yue Chi Ming, On Von Neumann regular rings-II, Math. Scand. 39 (1976), 167-170.

The University of Calgary Calgary, Alberta T2N 1N4 Canada

UNIVERSITY OF SYDNEY N.S.W. 2006 Australia