## A NOTE ON THE COMPOSITIONS OF AN INTEGER

T.V. Narayana and G.E. Fulton
(received March 3, 1958)

1. Partial ordering of the $r$-compositions of $n$.

Given an integer $n$, we define an $r$-composition of $n$ as follows:

An $r$-composition of $n,\left(t_{l}, \ldots, t_{r}\right)$, is a set of $t_{i}$ where
$t_{i} \geqslant 1$ is an integer for $i=1, \ldots, r$ such that

$$
\mathrm{t}_{1}+\ldots+\mathrm{t}_{\mathbf{r}}=\mathrm{n} .
$$

If $r$ is an integer such that $l \leqslant r \leqslant n$, we have, obviously, $\binom{n-1}{r-1}$ distinct $r$-compositions of $n$.

We shall say that an $r$-composition of $n,\left(t_{1}, \ldots, t_{r}\right)$, "dominates" the r-composition of $n$, ( $t_{1}$, ...., $\mathrm{t}_{\mathrm{r}}$ ), if and only if

$$
\begin{aligned}
t_{1} & \geqslant t_{1}^{\prime} \\
t_{1}+t_{2} & \geqslant t_{1}^{\prime}+t_{2}^{\prime}
\end{aligned}
$$

- 

$t_{1}+\ldots+t_{r-1} \geqslant t_{1}^{\prime}+\ldots+t_{r-1}^{\prime}$ Evidently

$$
t_{1}+\ldots+t_{r}=t_{1}^{\prime}+\ldots+t_{r}^{\prime}=n .
$$

The relation of domination defined by (A) is reflexive, transitive and anti-symmetric. It thus represents a partial ordering of the r-compositions of $n$.

We shall now make a transformation on the r-compositions of $n$, suggested by the relations (A). After this transformation,

Can. Math. Bull., vol.1, no. 3, Sept. 1958
we can decide immediately whether any two given r-compositions of $n$ satisfy the relation of domination or not. Given an r-composition of $n,\left(t_{l}, \ldots, t_{r}\right)$, we associate with it the vector of r-elements ( $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{r}}$ ) obtained as follows:

$$
\begin{aligned}
& \mathrm{T}_{1}=\mathrm{t}_{1} \\
& \mathrm{~T}_{2}=\mathrm{t}_{1}+\mathrm{t}_{2} \\
& \cdot \\
& \cdot \\
& \cdot \\
& \mathrm{~T}_{\mathrm{r}-1} \stackrel{\cdot}{\mathrm{t}_{1}}+\ldots+\mathrm{t}_{\mathrm{r}-1} \\
& \mathrm{~T}_{\mathrm{r}}=\mathrm{t}_{1}+\ldots+\mathrm{t}_{\mathrm{r}}=\mathrm{n}
\end{aligned}
$$

We notice that the $T_{i}$ are integers and

$$
\begin{equation*}
0<\mathrm{T}_{1}<\mathrm{T}_{2}<\ldots<\mathrm{T}_{\mathrm{r}}=\mathrm{n} . \tag{B}
\end{equation*}
$$

Evidently, given the composition ( $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathbf{r}}$ ), we can obtain the vector ( $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{r}}$ ) and conversely, given the vector ( $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{r}}$ ), (satisfying, of course, the relations (B)), we could obtain the $r$-composition ( $t_{1}, \ldots, t_{r}$ ). There are thus $\binom{n-1}{r-1}$ "composition-vectors" ( $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{r}}$ ) and we may, without fear of confusion, talk either of the r-composition ( $t_{1}, \ldots, t_{r}$ ) or the associated vector ( $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{r}}$ ).

If the composition $\left(t_{1}, \ldots, t_{r}\right)$ dominates $\left(t_{1}^{\prime}, \ldots, t_{r}^{\prime}\right)$ we shall find it convenient to say that the corresponding vector $\left(T_{1}, \ldots, T_{r}\right)$ dominates the corresponding vector $\left(T_{1}^{\prime}, \ldots, T_{r}^{\prime}\right)$. In the event that of two vectors, $\left(\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{r}}\right),\left(\mathrm{T}_{1}^{\prime}, \ldots, \mathrm{T}_{\mathrm{r}}^{1}\right)$, neither is dominated by the other, we shall say that they are incomparable.

It can be proved by mathematical induction that the number of $r$-compositions of $n$ which are dominated by a particular $r-$ composition, whose vector is ( $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{r}}$ ), is given by $\mathrm{D}_{\mathrm{r}-1}$ in the following formula:
$D_{k}=\binom{T_{k}}{1} D_{k-1}-\binom{T_{k-1}+1}{2} D_{k-2}+\binom{T_{k-2}+2}{3} D_{k-3} \ldots, \ldots .$. .$+(-1)^{k-1}\binom{T_{1}+k-1}{k} D_{0}$, where $D_{0}=1$.
2. Lattice formed by the r-compositions of $n$.

Given two vectors, $T=\left(T_{1}, \ldots, T_{r}\right), T^{\prime}=\left(T_{1}^{\prime}, \ldots, T_{r}^{\prime}\right)$ corresponding to the $r$-compositions of $n$, $\left(t_{1}, \ldots, t_{r}\right)$, ( $t_{1}^{\prime}, \ldots, t_{r}^{\prime}$ ) respectively, let

$$
\begin{aligned}
& M_{i}=\max \left(T_{i}, T_{i}^{\prime}\right) \\
& N_{i}=\min \left(T_{i}, T_{i}^{\prime}\right) \\
& \left(M_{r}=N_{r}=n\right)
\end{aligned}
$$

The vectors

$$
\begin{aligned}
\mathrm{M} & =\left(\mathrm{M}_{1}, \ldots, M_{\mathrm{r}}\right) \\
\mathrm{N} & =\left(\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{r}}\right)
\end{aligned}
$$

are easily seen to correspond to r-compositions of $n$, and we can prove easily that
(i) M dominates both T and $\mathrm{T}^{\prime}$.
(ii) If $V$ dominates $T$ and if $V$ dominates $T^{\prime}$, then $V$ dominates $M$.

Thus $M$ is the l.u.b. of $T$ and $T^{\prime}$, and similarly $N$ is the g.l.b. of $T$ and $T^{\prime}$.

Let $T=\left(T_{1}, \ldots, T_{r}\right), T^{\prime}=\left(T_{1}^{\prime}, \ldots, T_{r}^{\prime}\right)$ and $T^{\prime \prime}=$ ( $\mathrm{T}_{\mathrm{l}}^{\prime \prime}, \ldots, \mathrm{T}_{\mathrm{r}}^{\prime \prime}$ ) be the composition-vectors corresponding to any three r-compositions of $n$. Utilising the standard notation of lattice theory, we can easily prove that

$$
\left(T \cup T^{i}\right) \cap T^{\prime \prime}=\left(T \cap T^{\prime \prime}\right) \cup\left(T^{\prime} \cap T^{\prime \prime}\right)
$$

for, this is equivalent to proving that, for all $\mathrm{i}=1, \ldots, \mathrm{r}$, $\min \left[\max \left(T_{i}, T_{i}^{\prime}\right), T_{i}^{\prime \prime}\right]=\max \left[\min \left(T_{i}, T_{i}^{\prime \prime}\right), \min \left(T_{i}^{\prime}, T_{i}^{\prime \prime}\right)\right]$ which is established by considering all possible relations between $T_{i}, T_{i}^{\prime}, T_{i}^{\prime \prime}$ such as:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{i}}<\mathrm{T}_{\mathrm{i}}^{\prime}<\mathrm{T}_{1}^{\prime \prime} \\
& \mathrm{T}_{\mathrm{i}}=\mathrm{T}_{1}^{\prime}<\mathrm{T}_{\mathrm{i}}^{\prime \prime} \\
& \mathrm{T}_{\mathrm{i}}<\mathrm{T}_{\mathrm{i}}^{\prime}=\mathrm{T}_{\mathrm{i}}^{\prime \prime} \text { etc. }
\end{aligned}
$$

We see that:

THEOREM 1. The $r$-compositions of an integer $n$ form $a$ distributive lattice. ( $1 \leqslant r \leqslant n$ )
3. An anti-isomorphism and an application.

Let $T=\left(T_{1}, \ldots, T_{r}\right)$ be the vector corresponding to an r-composition of $n$. Deleting the integers $T_{1}, \ldots, T_{r-1}$ from the set of positive integers ( $1, \ldots, n$ ) in their natural order, we have a set of ( $n-r+1$ ) integers which corresponds to the ( $n-r+1$ ) - composition vector $T^{\prime}=\left(T_{1}^{\prime}, \ldots, T_{n-r+1}^{\prime}=n\right.$ ). It is clear that, if we start with the ( $\mathrm{n}-\mathrm{r}+\mathrm{l}$ )-composition vector $T^{\prime}=\left(T_{1}^{\prime}, \ldots, T_{n-r+1}^{\prime}=n\right)$ and follow the above procedure, we arrive at the $r$-composition vector $T=\left(T_{1}, \ldots, T_{r}\right)$.

We have thus defined a one-to-one correspondence between the r-compositions and the ( $n-r+1$ )-compositions of $n$.

Let us consider the vectors $T^{(1)}=\left(T_{1}(1), \ldots, T_{r}(1)\right)$ and $T(2)=\left(T_{1}(2), \ldots, T_{r}^{(2)}\right)$ associated with two distinct $r$-compositions of $n$, and the corresponding ( $n-r+1$ )-composition vectors $\mathrm{F}^{(1)^{\prime}}=\left(\mathrm{T}_{1}\left({ }^{\prime}\right)^{\prime}, \ldots, \mathrm{T}_{\mathrm{n}-\mathrm{r}^{\prime}}^{(1)}{ }^{\prime}\right)$ and $\mathrm{T}^{(2)^{\prime}}=\left(\mathrm{T}_{1}(2)^{\prime}, \ldots, \mathrm{T}_{\mathrm{n}-\mathrm{r}+1}^{(2)^{\prime}}\right.$. It is obvious that $\mathrm{T}^{(2)}$ 'dominates, is dominated by or is incomparable with $T(1)^{\prime}$ according as $T(1)$ dominates, is dominated by or is incomparable with $T(2)$, and hence:

THEOREM 2. The one-to-one correspondence between the $r$-compositions of $n$ and the ( $n-r+1$ )-compositions of $n$ is an anti-isomorphism.

Let $a(n)$ and $b(n)$ be the set of all compositions of $n$ with elements $\leqslant 2$ and $\geqslant 2$ respectively.

If an $r$-composition of $n$ involves the integers 1 and 2 only, the elements of the associated vector, ( $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{r}}$ ), will be such that

$$
T_{i}-T_{i-1}=1 \text { or } 2, \text { for } i=2, \ldots, r
$$

and $\quad \mathrm{T}_{1} \quad=1$ or 2 .
Obviously, the elements of the corresponding ( $\mathrm{n}-\mathrm{r}+\mathrm{l}$ )-composition vector, $\left(T_{1}^{\prime}, \ldots, T_{n-r+1}^{\prime}\right)$, will be such that

$$
T_{i}^{\prime}-T_{i-1}^{\prime} \geqslant 2, \text { for } i=2, \ldots,(n-r),
$$

while
and

$$
\mathrm{T}_{\mathrm{n}-\mathrm{r}+1}^{\prime}-\mathrm{T}_{\mathrm{n}-\mathrm{r}}^{\prime} \geqslant 1
$$

$\mathrm{T}_{1}^{\prime} \geqslant 1$.

To ensure that all elements of our ( $\mathrm{n}-\mathrm{r}+\mathrm{l}$ )-composition are $\geqslant 2$, we add one to the first and last elements, giving us an $(n-r+1)$-composition belonging to $b(n+2)$. Clearly, starting with an ( $n-r+1$ )-composition of $b(n+2)$ and applying the above procedure in reverse, we obtain an r-composition of $a(n)$. Thus the anti-isomorphism of theorem 2 yields a one-to-one correspondence between the compositions belonging to $a(n)$ and the compositions belonging to $b(n+2)$.

A simple procedure for obtaining the composition of $b(n+2)$ corresponding to the composition of $a(n)$ is due to L.E. Bush. It can easily be seen that his procedure will give us the same one-to-one correspondence between the compositions belonging to $a(n)$ and the compositions belonging to $b(n+2)$.

## Acknowledgment

This work was done while one of the authors was at the Summer Research Institute of the Canadian Mathematical Congress.

The equality of the number of compositions in $a(n)$ and $b(n+2)$ was posed as a problem in a recent Putnam examination. Professor Leo Moser suggested that there might be a one-to-one correspondence between these sets and we thank him and Professor Lambek for their interest in this note.

## References

T.V. Narayana, C.R. Acad. Sci. Paris, (1955),1188-1189.
L.E. Bush, Amer. Math. Monthly, G4 (1957), 649-654.

McGill University

## EDITORIAL NOTE

The correspondence given by L. E. Bush is in his report of solutions to problems on the Putnam examination. Such a correspondence was given earlier by K. Bush.

