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Abstract

In this paper, we investigate the geometric growth of homogeneous multitype Markov
chains whose states have nonnegative integer coordinates. Such models are considered in
a situation similar to the supercritical case for branching processes. Finally, our general
theoretical results are applied to a class of controlled multitype branching process in
which the control is random.

Keywords: Homogeneous multitype Markov chain; geometric growth; multitype branch-
ing process

2000 Mathematics Subject Classification: Primary 60J10
Secondary 60J80

1. Introduction

One of the problems that arises in the scientific literature on population dynamics is the study
of the extinction or the indefinite growth of certain biological (human, animal, cell, etc.) or
physical (particle, cosmic ray, etc.) populations. Furthermore, if unlimited growth happens, an
interesting question from a practical viewpoint is to determine the growth rate of the population.
Traditionally, branching processes have been used to model the evolution of such populations,
and geometric growth has been found to occur in a situation known as supercritical (see, for
example, [5]).

In this work, we deal with a class of stochastic process related to population dynamics
and more general than (homogeneous) branching processes, namely homogeneous multitype
Markov chains (HMMCs) in discrete time taking values in the space of vectors with nonnegative
integer coordinates. This class of process has been recently considered in [1], where their
indefinite growth was studied in detail. As a continuation of this study, we can investigate the
conditions that must be imposed on such models in order to obtain a geometric rate of growth.
The results of this paper provide some answers to such questions. As may be expected, the
conditions obtained are closely related to those that appear in the literature on supercritical
homogeneous branching processes.

Mathematically, we consider an m-dimensional homogeneous Markov chain, {Z(n)}n≥0,
whose states have nonnegative integer coordinates, i.e. S ⊆ N

m
0 , where S is the set of states.

From now on, this chain is specifically referred to as an HMMC. As a generalization of
homogeneous branching processes, we can use HMMCs to model the evolution of a population
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in which individuals of m different types coexist. More specifically, the ith coordinate of Z(n)

might represent the number of type-i individuals n generations after the process was started.
In the next section, we investigate the limiting behaviour of some sequences of linear

functionals associated with HMMCs, showing that, under certain conditions, they can be
suitably normalized using a sequence of constants describing geometric growth. In Section 3,
we return to the m-dimensional process {Z(n)}n≥0 and prove that this process and its associ-
ated linear functionals have the same growth rate, considering almost-sure convergence and
Lα-convergence (1 ≤ α ≤ 2). Finally, in order to illustrate the power of our general theoretical
results, in Section 4 they are applied to a class of controlled multitype branching process.

2. Asymptotic behaviour of {Z(n)µ}n≥0

In this section, we investigate the geometric growth of the sequence of linear functionals
{Z(n)µ}n≥0, where µ ∈ R

m+ is a vector with positive coordinates (and the scalar product is
implicit in vector multiplication). Some of these sequences will play an important role in
our later study of {Z(n)}n≥0. Although the process {Z(n)µ}n≥0 is associated to the HMMC
{Z(n)}n≥0, notice that this process is not a Markov chain.

We consider a µ ∈ R
m+ such that

rµ := lim‖z‖→∞
E[Z(n + 1)µ | Z(n) = z]

zµ
> 1, (2.1)

where ‖ · ‖ denotes an arbitrary norm on R
m. Notice that (2.1) is an assumption on the

Markov chain {Z(n)}n≥0, and that rµ can be interpreted as the mean growth rate of the process
{Z(n)µ}n≥0. As we pointed out, this situation corresponds to the supercritical case in the context
of branching processes. Throughout the paper, we suppose that E[Zi(1) | Z(0) = z] < ∞, for
all z ∈ N

m
0 and i ∈ {1, . . . , m}, and P[‖Z(n)‖ → ∞] > 0, in order that the study make sense.

Sufficient conditions for the event {‖Z(n)‖ → ∞} to have positive probability, under (2.1),
were proposed in [1]. Obviously, since µ ∈ R

m+, this event can be rewritten as {Z(n)µ → ∞}.
For each z ∈ N

m
0 and β ≥ 1, we introduce the functions hµ(z) and Gµ,β(z), as follows:

hµ(z) := E[Z(n + 1)µ | Z(n) = z]
zµ

− rµ if z 	= 0, hµ(0) := 1,

with 0 the null vector, and

Gµ,β(z) := (E[|Z(n + 1)µ − E[Z(n + 1)µ | Z(n) = z]|β | Z(n) = z])1/β .

Notice that rµ, hµ(z), and Gµ,β(z) depend on the chosen vector µ. However, in the rest
of the paper we will avoid using µ in the notation and will instead write r , h(z), and Gβ(z),
respectively, unless there is some ambiguity.

The following result allows us to conclude that, under some conditions, {rn}n≥0 is the only
sequence of constants which can describe geometric growth of the process {Z(n)µ}n≥0.

Proposition 2.1. Let {Z(n)}n≥0 be an HMMC and choose a µ ∈ R
m+ satisfying (2.1). If

G1+δ(z) = O(‖z‖δ/(1+δ)) for some δ ≥ 0, then

lim
n→∞

Z(n + 1)µ

Z(n)µ
= r almost surely (a.s.) on {Z(n)µ → ∞}.
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Proof. First, notice that the event {Z(n)µ → ∞} has positive probability since (2.1) holds
and G1+δ(z) = O(‖z‖δ/(1+δ)) for some δ ≥ 0 (see Theorem 1 of [1]). Therefore, for simplicity
and without lost of generality, we can assume that P[Z(n)µ → ∞] = 1.

Since r > 1, we can take an ε such that 0 < ε < r − 1. Define

Bn := {|Z(n + 1)µ − rZ(n)µ| < εZ(n)µ}, n ≥ 0.

It is then sufficient to prove that

P

[ ∞⋃
k=0

∞⋂
n=k

Bn

]
= 1. (2.2)

For any N > 0, we define the stopping time T (N) by

T (N) :=
{

min{n : Z(n)µ ≥ N} if there exists an n such that Z(n)µ ≥ N,

∞ if Z(n)µ < N for all n.

Since P[Z(n)µ → ∞] = 1, we have P[T (N) < ∞] = 1. It also follows that

P

[ ∞⋃
k=0

∞⋂
n=k

Bn

]
=

∞∑
k=0

P

[ ∞⋂
n=k

Bn

∣∣∣∣ T (N) = k

]
P[T (N) = k]. (2.3)

Moreover, given that {Z(n)}n≥0 is an HMMC, for any k ≥ 0 we have

P

[ ∞⋂
n=k

Bn

∣∣∣∣ T (N) = k

]
= P

[ ∞⋂
n=k

Bn

∣∣∣∣ Z(t)µ < N, t = 0, 1, . . . , k − 1, Z(k)µ ≥ N

]

≥ inf{z : zµ≥N} P

[ ∞⋂
n=k

Bn

∣∣∣∣ Z(k) = z

]
, (2.4)

and, taking into account the fact that
∑∞

k=0 P[T (N) = k] = 1, from (2.3) and (2.4) we find that

P

[ ∞⋃
k=0

∞⋂
n=k

Bn

]
≥ inf{z : zµ≥N} P

[ ∞⋂
n=0

Bn

∣∣∣∣ Z(0) = z

]
. (2.5)

To complete the proof, it is enough to show that

lim‖z‖→∞ P

[ ∞⋃
n=0

Bc
n

∣∣∣∣ Z(0) = z

]
= 0. (2.6)

Indeed, if (2.6) holds then, for every η > 0, there exists an N ≡ N(η) > 0 such that

P

[ ∞⋂
n=0

Bn

∣∣∣∣ Z(0) = z

]
≥ 1 − η,

for all z such that zµ ≥ N . By taking (2.5) into account, we then find that

P

[ ∞⋃
k=0

∞⋂
n=k

Bn

]
≥ 1 − η

for all η > 0. Therefore, (2.2) holds.
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Let us prove (2.6). We rewrite
⋃∞

n=0 Bc
n as a disjoint union of sets Cn, defined as follows:

C0 := Bc
0, Cn := Bc

n ∩ Bn−1 ∩ · · · ∩ B0, n ≥ 1.

Thus,

P

[ ∞⋃
n=0

Bc
n

∣∣∣∣ Z(0) = z

]
=

∞∑
n=0

P[Cn | Z(0) = z].

Let us properly bound P[Cn | Z(0) = z], at least for z such that ‖z‖ is greater than or equal to
some constant k1. Since B0 ∩ · · · ∩ Bn−1 ∈ Fn, where Fn := σ(Z(0), . . . , Z(n)) for n ≥ 0, it
follows that

P[Cn | Z(0) = z] = E[1Bc
n∩Bn−1∩···∩B0 | Z(0) = z]

= E[1B0∩···∩Bn−1 E[1Bc
n

| Fn] | Z(0) = z], (2.7)

where 1B is the indicator function of the set B. Since (zµ)−1 E[Z(n + 1)µ | Z(n) = z]
converges to r as ‖z‖ → ∞, there exists a constant k1 > 0 such that, for all z̃ with ‖z̃‖ ≥ k1,

|(z̃µ)−1 E[Z(n + 1)µ | Z(n) = z̃] − r| < 1
2ε.

Also, since G1+δ(z) = O(‖z‖δ/(1+δ)), there exists a constant A > 0 such that G1+δ(z̃) ≤
A(z̃µ)δ/(1+δ). Thus, if ‖z̃‖ ≥ k1 then, by applying Markov’s inequality, we conclude that

P[Bc
n | Z(n) = z̃] = P[|Z(n + 1)µ − rZ(n)µ| ≥ εZ(n)µ | Z(n) = z̃]

≤ P[|Z(n + 1)µ − E[Z(n + 1)µ | Z(n)]| ≥ 1
2 (Z(n)µ)ε | Z(n) = z̃]

≤ (2A)1+δε−(1+δ)(z̃µ)−1

= C(z̃µ)−1, (2.8)

where C := (2A)1+δε−(1+δ). Moreover, since r − ε > 1,

B0 ∩ · · · ∩ Bn−1 ⊆ {Z(n)µ ≥ (r − ε)nZ(0)µ},
and there exists a k2 > 0 such that if z̃µ > k2 then ‖z̃‖ ≥ k1, from (2.7) and (2.8) we find that
if zµ > k2 then

P[Cn | Z(0) = z] ≤ C(zµ)−1(r − ε)−n

and, thus,

P

[ ∞⋃
n=0

Bc
n

∣∣∣∣ Z(0) = z

]
≤ C(zµ)−1

∞∑
n=0

(r − ε)−n

converges to 0 as ‖z‖ → ∞ (because r − ε > 1), which concludes the proof.

Define W(n) := r−nZ(n)µ for all n ≥ 0. Our objective is to investigate sufficient conditions
for the almost-sure convergence and the Lα-convergence (1 ≤ α ≤ 2) of the process {W(n)}n≥0
to a finite random variable nondegenerate at 0. To this end, two important facts must be taken
into account.

(i) The expectation E[Z(1)µ | Z(0) = 0] may be positive, i.e. 0 is not necessarily an
absorbing state. In addition, the condition E[Z(1)µ | Z(0) = 0] < ∞ means that the
expected immigration at the state 0 is at most finite.

https://doi.org/10.1239/jap/1134587813 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587813


Homogeneous multitype Markov chains 1019

(ii) For almost every ω ∈ {‖Z(n)‖ → ∞}, there exists an n0 ≡ n0(ω) such that Z(n)(ω)µ

is greater than 0 for every n ≥ n0. Moreover, if 0 is an absorbing state then {Z(n)µ}n≥0
is positive on the set {‖Z(n)‖ → ∞}.

The methodology applied in the proofs of the following results is similar to that applied in
[3] in the context of population-size-dependent branching processes.

Our first step is to establish a condition that guarantees the convergence of the sequence
{E[W(n)]}n≥0 to a finite and positive limit. This condition depends on the speed of the
convergence in (2.1), which is determined by the function h(z) and is given in terms of the
norm one, that is ‖z‖ = z 1, where 1 is an m-dimensional vector with all its coordinates equal
to 1.

Theorem 2.1. Let {Z(n)}n≥0 be an HMMC such that P[‖Z(n)‖ → ∞] > 0, and choose a
µ ∈ R

m+ satisfying (2.1). Suppose that there exists a nonincreasing sequence {h(n)}n≥1 such
that, for all non-null vectors z, |h(z)| ≤ h(z 1) and

∑∞
n=1 n−1h(n) < ∞. Then

0 < lim
n→∞ E[W(n)] < ∞.

Proof. First, let us prove that the limit of the sequence {E[W(n)]}n≥0 exists. Since
P[Z(n)µ → ∞] > 0, it is possible to find an n0 ≥ 0 such that E[W(n)] > 0 for all n ≥ n0.

Taking into account the definition of the function h(z), we deduce that

Z(n)µh(Z(n)) = E[Z(n + 1)µ | Z(n)] − rZ(n)µ a.s. on {Z(n) 	= 0}.
By applying Lemma A.2 (see Appendix A) to the sequence {h(n)}n≥1, we find that there
exists a nonincreasing positive function h1(x), x ∈ R+, such that xh1(x) is concave and
nondecreasing, h(n) ≤ h1(n) for all n ≥ 1, and

∑∞
n=1 n−1h1(n) < ∞. If n ≥ n0 then, using

Jensen’s inequality, we have

| E[W(n + 1)] − E[W(n)]| = r−(n+1)| E[Z(n + 1)µ − rZ(n)µ]|
≤ r−(n+1) E[| E[Z(n + 1)µ | Z(n)] − rZ(n)µ|1{Z(n)	=0}]

+ r−(n+1) E[E[Z(n + 1)µ | Z(n)]1{Z(n)=0}]
= r−1 E[|W(n)h(Z(n))|1{Z(n)	=0}] + E[W(n + 1) | Z(n) = 0]
≤ r−1 E[W(n)h1(Z(n) 1)] + C1r

−n

≤ C2 E[W(n)]h1(E[Z(n) 1]) + C1r
−n

≤ E[W(n)](C2h1(r
nC3 E[W(n)]) + C1r

−n E[W(n)]−1),

for some constants C1, C2, C3 > 0. Since {E[W(n)]}n≥n0 and f (x) := C2h1(C3x) + C1x
−1

satisfy the assumptions of Lemma A.3, there exists an

L := lim
n→∞ E[W(n)] < ∞.

Moreover, we can find a value c0 such that if E[W(n)] > c0 for some n ≥ n0, then L is positive.
In particular, we have proved that, for every state ẑ ∈ N

m
0 such that ẑµ > c0 and

P[Z(n)µ → ∞ | Z(0) = ẑ] > 0, we have

lim
n→∞ E[W(n) | Z(0) = ẑ] > 0. (2.9)
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Since P[Z(n)µ → ∞] > 0 and

{Z(n)µ → ∞} =
∞⋃

n=0

∞⋂
k=n

({Z(k)µ > c0} ∩ {Z(n)µ → ∞}),

there exist a ẑ ∈ N
m
0 and an n1 ≥ 0 such that ẑµ > c0,

P[Z(n1) = ẑ] > 0, and P[Z(n)µ → ∞ | Z(0) = ẑ] > 0.

Now, using (2.9) and some known results on Markov chains, it can be shown that, for all n ≥ n1,

E[W(n)] = r−n1
∑

z̃∈N
m
0

P[Z(n1) = z̃] E[W(n − n1) | Z(0) = z̃]

and, therefore,

lim
n→∞ E[W(n)] ≥ r−n1 P[Z(n1) = ẑ] lim

n→∞ E[W(n − n1) | Z(0) = ẑ] > 0,

which concludes the proof.

In the following result, we obtain a sufficient condition for the almost-sure convergence of
the sequence {W(n)}n≥0.

Proposition 2.2. Let {Z(n)}n≥0 be an HMMC such that P[‖Z(n)‖ → ∞] > 0, and choose a
µ ∈ R

m+ satisfying (2.1). Suppose that there exists a nonincreasing sequence {h(n)}n≥1 such
that, for all non-null vectors z, |h(z)| ≤ h(z 1) and

∑∞
n=1 n−1h(n)< ∞. Then there exists a

nonnegative, finite random variable W such that {W(n)}n≥0 converges almost surely to W .

Proof. We define the sequences {T (n)}n≥0 and {Y (n)}n≥0 as follows:

T (0) := 0, T (n) := r−1
n−1∑
k=0

W(k)h(Z(k)), n > 0,

Y (n) := W(n) − T (n), n ≥ 0.

Given the previous relation, it is enough to prove that both sequences converge almost surely.
Let us first prove that the sequence {T (n)}n≥0 converges almost surely to a finite limit.

By taking a function h1(x) as in the proof of Theorem 2.1 and applying Jensen’s inequality, we
have

E[|W(n)h(Z(n))|] ≤ C1 E[W(n)]h1(E[Z(n) 1])
≤ C1 E[W(n)]h1(r

n
µC2 E[W(n)])

for some constants C1, C2 > 0. Moreover, from Theorem 2.1 we find that

0 < lim
n→∞ E[W(n)] < ∞,

and, by taking into account the fact that
∑∞

n=1 n−1h1(n) < ∞, it follows that

E

[ ∞∑
n=0

W(n)|h(Z(n))|
]

≤
∞∑

n=0

C1 E[W(n)]h1(r
n
µC2 E[W(n)]) < ∞. (2.10)
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Thus,
∑∞

n=0 W(n)h(Z(n)) converges almost surely, which implies that the sequence {T (n)}n≥0
also converges almost surely.

Finally, let us prove that the sequence {Y (n)}n≥0 is a submartingale with respect to the
sequence of σ -algebras {Fn}n≥0. Indeed, on {Z(n) 	= 0} we have

E[Y (n + 1) | Fn] = E[W(n + 1) | Fn] − T (n + 1)

= W(n) + r−1W(n)h(Z(n)) − T (n + 1)

= Y (n) a.s.,

and on {Z(n) = 0} we have

E[Y (n + 1) | Fn] = E[W(n + 1) | Z(n) = 0] − T (n)

≥ −T (n)

= Y (n) a.s.

Since Y (n) = W(n) − T (n), (2.10) holds, and limn→∞ E[W(n)] < ∞, it follows that

sup
n≥0

E[|Y (n)|] < ∞.

Hence, by applying the martingale convergence theorem, we can ensure that the sequence
{Y (n)}n≥0 converges almost surely to a finite limit, and the proof is complete.

Obviously W can be non-null only on the set {Z(n)µ → ∞}, that is, {W > 0} ⊆
{Z(n)µ → ∞}. In the following result, we propose conditions (which obviously include
the previous ones) for the variable W to be nondegenerate at 0. In fact, under these conditions
we obtain the Lα-convergence of the sequence {W(n)}n≥0 for 1 ≤ α ≤ 2.

Theorem 2.2. Let {Z(n)}n≥0 be an HMMC such that P[‖Z(n)‖ → ∞] > 0, and choose a
µ ∈ R

m+ satisfying (2.1). Also let 1 ≤ α ≤ 2 and suppose that there exist sequences {h(n)}n≥1
and {gα(n)}n≥1 such that

(i) for each non-null vector z, |h(z)| ≤ h(z 1) and Gα(z) ≤ gα(z 1); and

(ii) the sequences {h(n)}n≥1 and {n−1gα(n)}n≥1 are nonincreasing and

∞∑
n=1

n−1h(n) < ∞,

∞∑
n=1

n−2gα(n) < ∞.

Then {W(n)}n≥0 converges almost surely and in Lα to a finite random variable W that is
nondegenerate at 0.

Proof. Taking into account the properties of the sequence {h(n)}n≥1, Theorem 2.1, and
Proposition 2.2, it is enough to show that the sequence {W(n)}n≥0 converges in Lα to a
limit W . Therefore, we prove that the sequence {W(n)}n≥0 satisfies the Lα-Cauchy convergence
criterion. Indeed, if we denote by ‖ · ‖α the norm on Lα , we obtain the following inequality:

‖Z(n + 1)µ − rZ(n)µ‖α ≤ ‖Z(n + 1)µ − E[Z(n + 1)µ | Z(n)]‖α

+ ‖ E[Z(n + 1)µ | Z(n)] − rZ(n)µ‖α. (2.11)
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Owing to the properties of the sequence {h(n)}n≥1, Lemma A.2 guarantees the existence of a
nonincreasing function ĥ(x) such that h(n) ≤ ĥ(n), xĥα(x1/α) is concave, and

∫ ∞
1 x−1ĥ(x) dx

< ∞. By applying Jensen’s inequality, we find that there exist constants C1, C2 > 0 such that

E[| E[Z(n + 1)µ | Z(n)] − rZ(n)µ|α] ≤ E[(Z(n)µ)α|h(Z(n))|α1{Z(n)	=0}]
+ (E[Z(n + 1)µ | Z(n) = 0])α

≤ E[(Z(n)µ)αĥα(Z(n) 1)] + C1

≤ C2 E[(Z(n) 1)α]ĥα(‖Z(n)1‖α) + C1. (2.12)

Furthermore, by applying Lemma A.2 to {n−1gα(n)}n≥1, we find that there exists a function
ĝα(x) such that gα(n) ≤ ĝα(n), x−1ĝα(x) is nonincreasing,

∫ ∞
1 x−2ĝα(x) dx < ∞, and

ĝα
α (x1/α) is concave. From Jensen’s inequality, it follows that

E[|Z(n + 1)µ − E[Z(n + 1)µ | Z(n)]|α] = E[Gα
α(Z(n))]

≤ E[ĝα
α (Z(n) 1)]

≤ ĝα
α (‖Z(n)1‖α). (2.13)

Since P[Z(n)µ → ∞] > 0, there exists an n0 ≥ 0 such that ‖W(n)‖α > 0 for all n ≥ n0.
Moreover, since 0 < limn→∞ E[W(n)] < ∞ (see Theorem 2.1), from (2.11), (2.12), and
(2.13), we have

‖W(n + 1) − W(n)‖α ≤ ‖Z(n)1‖α

rn+1

(
ĝα(‖Z(n)1‖α) + C

1/α
1

‖Z(n)1‖α

+ C
1/α
2 ĥ(‖Z(n)1‖α)

)
≤ C3f (‖Z(n)1‖α)

for all n ≥ n0, with f (x) := x−1(ĝα(x)+C
1/α
1 )+C

1/α
2 ĥ(x) and C3 > 0. Moreover, since f (x)

is nonincreasing and there exists a constant δ > 0 such that ‖Z(n)µ‖α ≥ ‖Z(n)µ‖1 ≥ δrn for
every n ≥ n0, we then have

‖W(n + 1) − W(n)‖α ≤ C3f (C4δr
n),

for some constant C4 > 0. Therefore, r > 1 and
∫ ∞

1 x−1f (x) dx < ∞ imply that∑∞
n=1 f (C4δr

n) < ∞, and, consequently, the sequence {W(n)}n≥0 satisfies the Lα-Cauchy
convergence criterion. This completes the proof.

Remark 2.1. It is possible to obtain another set of sufficient conditions, equivalent to the
previous one, from the function G̃α(z) := (E[|Z(n + 1)µ − rZ(n)µ|α | Z(n) = z])1/α .

Remark 2.2. The conditions on the previous results are satisfied if, for example, h(n) =
O(log−β1 n) and gα(n) = O(n log−β2 n) for some constants β1, β2 > 1. Furthermore, notice
that these conditions are given in terms of the norm one. Since all the norms on R

m are
equivalent, these conditions can be expressed in terms of an arbitrary norm ‖·‖ in the following
manner, where {xn}n≥1 = {x ∈ R+ : x = ‖z‖, z 	= 0, z ∈ N

m
0 } =: R‖·‖, such that xn < xn+1

for all n ≥ 1:

(i) |h(z)| ≤ h(‖z‖) for all non-null vectors z, h(xn) ≥ h(xn+1) for all n ≥ 1, and

∞∑
n=1

x−1
n (xn+1 − xn)h(xn) < ∞.
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(ii) Gα(z) ≤ gα(‖z‖) for all non-null vectors z, x−1
n gα(xn) ≥ x−1

n+1gα(xn+1) for all n ≥ 1,
and ∞∑

n=1

x−2
n (xn+1 − xn)gα(xn) < ∞.

3. Asymptotic behaviour of {Z(n)}n≥0

In the previous section, for each µ ∈ R
m+ satisfying (2.1), and under some conditions, we

proved that the sequence {r−nZ(n)µ}n≥0 converges to a random variable nondegenerate at 0.
As a consequence, we can now prove the almost-sure convergence and Lα-convergence
(1 ≤ α ≤ 2) of {r−nZ(n)}n≥0 to a random vector W̃ , concentrated in a one-dimensional
subspace of R

m, whose magnitude is given by the limit of a sequence {r−nZ(n)µ}n≥0 for a
particular µ ∈ R

m+.
We need to introduce new notation and assumptions. Let us impose the following condition

on the transition vector of means of the chain (throughout, in products vectors are taken to be
row or column vectors as appropriate):

E[Z(n + 1) | Z(n) = z] = zM̃ + h̃(z), z ∈ N
m
0 . (3.1)

Here, M̃ is a matrix of order m with nonnegative coefficients and h̃(z) is a function from R
m

to R
m such that h̃j (z) = o(‖z‖) for all j ∈ {1, . . . , m}. We also suppose that the matrix M̃

is positively regular. Therefore, if we denote by ρ̃ its Perron–Frobenius eigenvalue and by
µ̃ ∈ R

m+ one of its associated right eigenvectors (see [6]), it follows that

lim‖z‖→∞
E[Z(n + 1)µ̃ | Z(n) = z]

zµ̃
= ρ̃,

and, consequently, (2.1) is equivalent to ρ̃ > 1.
Let µ̃(1), . . . , µ̃(m) be a basis of right eigenvectors and right generalized eigenvectors of M̃ ,

such that µ̃(1) = µ̃. Let ν̃ ∈ R
m+ be the left eigenvector associated to ρ̃ satisfying ν̃µ̃ = 1 and,

consequently, ν̃µ̃(i) = 0 for each i ∈ {2, . . . , m}. Finally we define G
(i)
α (z), for each z ∈ N

m
0 ,

i ∈ {1, . . . , m}, and α, 1 ≤ α ≤ 2, by

G(i)
α (z) := (E[|Z(n + 1)µ̃(i) − E[Z(n + 1)µ̃(i) | Z(n) = z]|α | Z(n) = z])1/α.

Note that G
(1)
α (z) is equal to Gµ̃,α(z). We can now formulate the following result.

Theorem 3.1. Let {Z(n)}n≥0 be an HMMC satisfying (3.1) with ρ̃ > 1 and such that
P[‖Z(n)‖ → ∞] > 0. Also let 1 ≤ α ≤ 2 and suppose that, for each i ∈ {1, . . . , m},
there exist sequences {h(i)

(n)}n≥1 and {g(i)
α (n)}n≥1 such that

(i) for each non-null vector z and i ∈ {1, . . . , m},
|h̃(z)µ̃(i)| ≤ (z 1)h

(i)
(z 1) and G(i)

α (z) ≤ g(i)
α (z 1),

and

(ii) {h(i)
(n)}n≥1 and {n−1g(i)

α (n)}n≥1 are nonincreasing and

∞∑
n=1

n−1h
(i)

(n) < ∞,

∞∑
n=1

n−2g(i)
α (n) < ∞.
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Then the sequence {ρ̃−nZ(n)}n≥0 converges almost surely and in Lα to a finite and random
vector, W̃ := ν̃W , nondegenerate at 0, where W is the almost-sure limit of the sequence
{ρ̃−nZ(n)µ̃}n≥0.

Proof. In order to prove the result, we apply a similar reasoning to that used in [4] in the
context of population-size-dependent multitype branching processes.

First we observe that if {ρ̃−nZ(n)}n≥0 converges in Lα to a limit, W̃ , then this limit will be
nondegenerate at 0 if and only if the limit of the process {ρ̃−nZ(n)µ̃(1)}n≥0 is nondegenerate
at 0.

The growth rate of the process {Z(n)µ̃(1)}n≥0 is r = ρ̃, and it follows that h(z) =
(zµ̃(1))−1h̃(z)µ̃(1) for all non-null vectors z. By taking into account the equivalence of the
norms on R

m, we see that |h(z)| is bounded by C1h
(1)

(z 1) for some constant C1 > 0. Then,
by applying Proposition 2.2 and Theorem 2.2 to such a process, with h(n) = C1h

(1)
(n) and

gα(n) = g(1)
α (n), we find that

lim
n→∞ ρ̃−nZ(n)µ̃(1) = W a.s. and in Lα,

where W is finite and nondegenerate at 0.
To complete the proof it is sufficient to prove that, for each i ∈ {2, . . . , m},

lim
n→∞ ρ̃−nZ(n)µ̃(i) = 0 a.s. and in Lα.

Indeed, if the previous equality holds then, for each a ∈ R
m,

lim
n→∞ ρ̃−nZ(n)a = lim

n→∞

m∑
i=1

aiρ̃
−nZ(n)µ̃(i) = a1W a.s. and in Lα,

where a1, . . . , am are the coordinates of a in the basis µ̃(1), . . . , µ̃(m). Moreover, since ν̃µ̃(i) =
0 for i ∈ {2, . . . , m}, we have a1 = ν̃a. Therefore, for each j ∈ {1, . . . , m}, {ρ̃−nZj (n)}n≥0
converges almost surely and in Lα to ν̃jW , which implies the almost-sure convergence and
Lα-convergence of {ρ̃−nZ(n)}n≥0 to ν̃W .

Thus, to finish the proof, let us show that, for each i ∈ {2, . . . , m},
∞∑

n=0

‖ρ̃−nZ(n)µ̃(i)‖α < ∞. (3.2)

From (3.2) it immediately follows that ρ̃−nZ(n)µ̃(i) converges to 0 in Lα and, by applying
Markov’s inequality, we have, for every ε > 0,

∞∑
n=0

P[|ρ̃−nZ(n)µ̃(i)| > ε] < ∞.

The complete, and, therefore, the almost-sure, convergence of the sequence {ρ̃−nZ(n)µ̃(i)}n≥0
to 0 follows.

Since M̃ is positively regular, the eigenvalue ρ̃ has multiplicity 1 and |λ| < ρ̃ for any other
eigenvalue λ. Suppose that λ is an eigenvalue with multiplicity s ≥ 1, corresponding to the
right generalized eigenvectors µ̃(i1), . . . , µ̃(is ); that is,

M̃µ̃(i1) = λµ̃(i1), M̃µ̃(it ) = λµ̃(it ) + µ̃(it−1), t ∈ {2, . . . , s}.
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Let us prove by induction on t that, for each t ∈ {1, . . . , s},
∞∑

n=0

‖ρ̃−nZ(n)µ̃(it )‖α < ∞.

For t = 1, using (3.1) and a procedure similar to the one applied in deriving (2.12) and (2.13),
we have

‖Z(n + 1)µ̃(i1)‖α ≤ ‖Z(n + 1)µ̃(i1) − E[Z(n + 1)µ̃(i1) | Z(n)]‖α

+ ‖ E[Z(n + 1)µ̃(i1) | Z(n)]‖α

≤ |λ| ‖Z(n)µ̃(i1)‖α + ‖(Z(n) 1)h
(i1)

(Z(n) 1)‖α

+ |h̃(0)µ̃(i1)| + ‖g(i1)
α (Z(n) 1)‖α

≤ |λ| ‖Z(n)µ̃(i1)‖α + ‖Z(n)1‖αĥ(i1)(‖Z(n)1‖α)

+ C2 + ĝ(i1)
α (‖Z(n)1‖α) (3.3)

for some constant C2 > 0, with ĥ(i1)(x) and ĝ
(i1)
α (x) nonincreasing functions such that∫ ∞

1 x−1ĥ(i1)(x) dx < ∞ and
∫ ∞

1 x−2ĝ
(i1)
α (x) dx < ∞. By setting

f (i1)(x) := x−1(ĝ(i1)
α (x) + C2) + ĥ(i1)(x),

we find that f (i1)(x) is nonincreasing and
∫ ∞

1 x−1f (i1)(x) dx < ∞.
Since P[‖Z(n)‖ → ∞] > 0, there exists an n0 ≥ 0 such that ‖Z(n)1‖α > 0 for all n ≥ n0.

Therefore, from (3.3), we have

‖ρ̃−n−1Z(n + 1)µ̃(i1)‖α ≤ ρ̃−1|λ| ‖ρ̃−nZ(n)µ̃(i1)‖α

+ ρ̃−1f (i1)(‖Z(n)1‖α)‖ρ̃−nZ(n)1‖α

for all n ≥ n0. The sequence {‖ρ̃−nZ(n)1‖α}n≥0 is bounded because {ρ̃−nZ(n)µ̃(1)}n≥0
converges in Lα and all the norms on R

m are equivalent. Also, since the limit is nondegenerate
at 0, there exists a δ > 0 such that ‖Z(n)1‖α ≥ ‖Z(n)1‖1 ≥ δρ̃n for every n ≥ n0, implying
that ∞∑

n=n0

f (i1)(‖Z(n)1‖α) ≤
∞∑

n=n0

f (i1)(δρ̃n) < ∞,

because
∫ ∞

1 x−1f (i1)(x) dx < ∞ and ρ̃ > 1. Therefore, by virtue of Lemma A.4, it follows
that ∞∑

n=n0

‖ρ̃−nZ(n)µ̃(i1)‖α < ∞.

To conclude, let us consider t ∈ {2, . . . , s}. Then

‖Z(n + 1)µ̃(it )‖α ≤ ‖Z(n + 1)µ̃(it ) − E[Z(n + 1)µ̃(it ) | Z(n)]‖α

+ ‖ E[Z(n + 1)µ̃(it ) | Z(n)]‖α

≤ |λ| ‖Z(n)µ̃(it )‖α + ‖Z(n)µ̃(it−1)‖α + |h̃(0)µ̃(it )|
+ ‖(Z(n) 1)h

(it )
(Z(n) 1)‖α + ‖g(it )

α (Z(n)1)‖α.
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By the induction hypothesis,
∑∞

n=0 ‖ρ̃−nZ(n)µ̃(it−1)‖α < ∞ and, using arguments similar to
those used in the case t = 1, we have

∞∑
n=0

ρ̃−n[‖(Z(n) 1)h
(it )

(Z(n) 1)‖α + |h̃(0)µ̃(it )| + ‖g(it )
α (Z(n) 1)‖α] < ∞.

Applying Lemma A.4 once more, we conclude that

∞∑
n=0

‖ρ̃−nZ(n)µ̃(it )‖α < ∞,

completing the proof.

Remark 3.1. Notice that although the random variable W depends on the right eigenvector µ̃

chosen, the random vector W̃ = ν̃W does not.

Remark 3.2. Under the conditions of the previous theorem, an HMMC exhibits the same
behaviour as a supercritical, positively regular multitype branching process (see [5]); that is, W̃
has a fixed direction given by ν̃ and a random magnitude provided by the limit of the sequence
{ρ̃−nZ(n)µ̃}n≥0. Moreover, since ν̃ ∈ R

m+ and P[W > 0] > 0 we deduce that

P[Zi(n) → ∞, 1 ≤ i ≤ m] > 0.

4. On controlled multitype branching processes

In this section, we apply the results obtained for HMMCs to a class of controlled multitype
branching process introduced in [1], where the production of new individuals depends on the
size of the population. This model generalizes both the controlled multitype branching process,
considered in [7], and the population-size-dependent multitype branching process, studied in
[4]. In addition, randomness in the control function and dependence between the individuals
in the same generation at the reproduction time are allowed. These properties make the model
more accurate in describing some real situations. Mathematically, we consider a sequence of
m-dimensional random vectors {Z(n)}n≥0 defined recursively by

Z(0) = z(0) ∈ N
m
0 , Z(n + 1) =

m∑
i=1

φn
i (Z(n))∑
j=1

Xi,n,j (Z(n)), n ≥ 0.

Here, {φn(z), n = 0, 1, . . . , z ∈ N
m
0 } and

{Xi,n,j (z), i = 1, . . . , m, n = 0, 1, . . . , j = 1, 2, . . . , z ∈ N
m
0 }

are independent sequences of m-dimensional, nonnegative, integer-component random vectors
defined on the same probability triple (�, A, P). They have the following properties.

(i) The stochastic processes {φn(z), z ∈ N
m
0 }, n ≥ 0, are independent and, for each z ∈ N

m
0 ,

the vectors {φn(z), n = 0, 1, . . . } are identically distributed.

(ii) The stochastic processes {Xi,n,j (z), i = 1, . . . , m, j = 1, 2, . . . , z ∈ N
m
0 }, n ≥ 0, are

independent and identically distributed. Moreover, for each i ∈ {1, . . . , m} and z ∈ N
m
0 ,

the vectors {Xi,n,j (z), n = 0, 1, . . . , j = 1, 2, . . . } are identically distributed.
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The stochastic process {Z(n)}n≥0 is called a controlled multitype branching process with
random control and population-size-dependent reproduction (CMPD).

From the definition, it follows that a CMPD is an HMMC. Moreover, taking into account
the independence between reproduction and control, it follows that, for each z ∈ N

m
0 ,

E[Z(n + 1) | Z(n) = z] =
m∑

i=1

E[φ0
i (z)] E[Xi,0,1(z)].

It seems natural that the conditions we are searching for can be written in terms of E[φ0
i (z)]

and E[Xi,0,1(z)]. More specifically, we will make the following assumptions.

Assumption 4.1. There exist mij ≥ 0, i, j ∈ {1, . . . , m}, such that

E[Xi,0,1
j (z)] = mij + hR

ij (z), where hR
ij : R

m → R, hR
ij (z) = o(1).

Assumption 4.2. There exist λi ≥ 0, i ∈ {1, . . . , m}, such that

E[φ0
i (z)] = λizi + hc

i (z), where hc
i : R

m → R, hc
i (z) = o(‖z‖).

Assumption 4.1 is a hypothesis commonly used in population-size-dependent models; a
possible intuitive interpretation of its effect is the stabilization of the average number of
descendants per individual as the population size grows indefinitely.

On the other hand, Assumption 4.2 implies that the average number of progenitors of a
certain type is proportional to the number of individuals of that type plus or minus some
number of progenitors that is negligible with respect to the total population. Notice that,
under Assumption 4.2, immigration or emigration of progenitors of each type is allowed.
Immigration is possible even if there are no individuals of a given type. This could not
happen if hc

i (z) = zio(1). However, in this case we could determine λi explicitly according to
λi = lim‖z‖→∞, zi 	=0 z−1

i E[φ0
i (z)].

Given Assumptions 4.1 and 4.2, (3.1) holds with M̃ := (λimij )1≤i,j≤m and

h̃j (z) =
m∑

i=1

(λizih
R
ij (z) + hc

i (z)mij + hc
i (z)h

R
ij (z))

for each j ∈ {1, . . . , m}. Moreover, the matrix (λimij )1≤i,j≤m is positively regular if and only
if λi > 0 for all i ∈ {1, . . . , m} and the matrix (mij )1≤i,j≤m is positively regular.

In order to apply the results proved in the previous sections, let us conveniently bound
|h̃(z)µ̃(i)| and G

(i)
α (z), where z ∈ N

m
0 , i ∈ {1, . . . , m}, and 1 ≤ α ≤ 2. Since Assumption 4.1

holds, it follows that

|h̃(z)µ̃(i)| =
∣∣∣∣ m∑
j=1

( m∑
k=1

(λkzkh
R
kj (z) + hc

k(z)mkj + hc
k(z)h

R
kj (z))

)
µ̃

(i)
j

∣∣∣∣
≤ C1(z 1) max

1≤k,j≤m
{|hR

kj (z)|} + C2 max
1≤k≤m

{|hc
k(z)|}
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for some constants C1, C2 > 0, and

G(i)
α (z) = (E[|Z(n + 1)µ̃(i) − E[Z(n + 1)µ̃(i) | Z(n) = z]|α | Z(n) = z])1/α

=
∥∥∥∥ m∑

l=1

m∑
j=1

(φ0
l (z)∑
k=1

X
l,0,k
j (z) − E[φ0

l (z)] E[Xl,0,1
j (z)]

)
µ̃

(i)
j

∥∥∥∥
α

≤
m∑

l=1

m∑
j=1

|µ̃(i)
j |

∥∥∥∥φ0
l (z)∑
k=1

(X
l,0,k
j (z) − E[Xl,0,1

j (z)])
∥∥∥∥

α

+
m∑

l=1

m∑
j=1

|µ̃(i)
j | E[Xl,0,1

j (z)]‖φ0
l (z) − E[φ0

l (z)]‖α.

Furthermore,

∥∥∥∥φ0
l (z)∑
k=1

(X
l,0,k
j (z) − E[Xl,0,1

j (z)])
∥∥∥∥

α

≤ ‖φ0
l (z)‖α‖Xl,0,1

j (z) − E[Xl,0,1
j (z)]‖α.

On the other hand, if the random vectors Xi,0,k(z), k ≥ 1, i ∈ {1, . . . , m}, are independent
for each fixed z ∈ N

m
0 , then, since 1 ≤ α ≤ 2, and using the von Bahr–Esseen inequality

(see [8]), we can establish the following bound:

∥∥∥∥φ0
l (z)∑
k=1

(X
l,0,k
j (z) − E[Xl,0,1

j (z)])
∥∥∥∥

α

≤ E[φ0
l (z)]1/α‖Xl,0,1

j (z) − E[Xl,0,1
j (z)]‖α.

In [1], it was proved that P[‖Z(n)‖ → ∞ | Z(0) = z(0)] > 0 if ρ̃ > 1, if z(0) is large
enough, and if, for some δ ≥ 0 and every i, j ∈ {1, . . . , m},

‖φ0
i (z) − E[φ0

i (z)]‖1+δ = O(‖z‖δ/(1+δ)) (4.1)

and
‖φ0

i (z)‖1+δ‖Xi,0,1
j (z) − E[Xi,0,1

j (z)]‖1+δ = O(‖z‖δ/(1+δ)). (4.2)

In summary, we establish the following result for CMPDs.

Corollary 4.1. Let {Z(n)}n≥0 be a CMPD satisfying Assumptions 4.1 and 4.2, where the
matrix (λimij )1≤i,j≤m is positively regular with Perron–Frobenius eigenvalue ρ̃ > 1. Also let
1 ≤ α ≤ 2 and suppose that there exist sequences {hR

(n)}n≥1, {hc
(n)}n≥1, and {gα(n)}n≥1

such that

(i) for each non-null vector z,

max
1≤i,j≤m

{|hR
ij (z)|} ≤ h

R
(z 1), max

1≤i≤m
{|hc

i (z)|} ≤ (z 1)h
c
(z 1),

max
1≤i,j≤m

{‖φ0
i (z) − E[φ0

i (z)]‖α, ‖φ0
i (z)‖α‖Xi,0,1

j (z) − E[Xi,0,1
j (z)]‖α} ≤ gα(z 1);

(4.3)
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and

(ii) {hR
(n)}n≥1, {hc

(n)}n≥1, and {n−1gα(n)}n≥1 are nonincreasing and

∞∑
n=1

n−1h
R
(n) < ∞,

∞∑
n=1

n−1h
c
(n) < ∞,

∞∑
n=1

n−2gα(n) < ∞.

If (4.1) and (4.2) hold then the sequence {ρ̃−nZ(n)}n≥0 converges almost surely and in Lα to
a finite random vector, W̃ , nondegenerate at 0.

Remark 4.1. Under the assumption of independence of the reproduction vectors (the Xs), (4.3)
can be replaced by

max
1≤i,j≤m

{‖φ0
i (z) − E[φ0

i (z)]‖α, E[φ0
i (z)]1/α‖Xi,0,k

j (z) − E[Xi,0,1
j (z)]‖α} ≤ gα(z 1).

Remark 4.2. The present study applies to the controlled multitype branching processes pro-
posed in [7], which have not as yet been investigated. Also, the previous result extends those
of [4] on the geometric growth of population-size-dependent multitype branching processes.

Appendix A. Lemmas

Lemma A.1. Let {an}n≥1 be a nonincreasing sequence of positive real numbers. Then the
function

h(x) :=
(

a1 +
∫ x1/α

1
a�t dt

)α

,

where �t denotes the greatest integer less than or equal to t , is concave on x > 1 for any α,
1 ≤ α ≤ 2.

Proof. From the definition of the function h(x), it follows that

h(x) =

⎧⎪⎪⎨⎪⎪⎩
xaα

1 if 1 < x < 2α,(
a1 +

n−1∑
k=1

ak + an(x
1/α − n)

)α

if nα ≤ x < (n + 1)α, n ≥ 2.

Obviously h(x) is a concave function for x with 1 < x < 2α . For x with nα ≤ x <

(n + 1)α, n ≥ 2, the function

h′′(x) = α−1(α − 1)anx
(1−2α)/α

(a1 + ∑n−1
k=1 ak + an(x1/α − n))1−α

(
anx

1/α

a1 + ∑n−1
k=1 ak + an(x1/α − n)

− 1

)
is nonpositive, because {an}n≥1 is a nonincreasing sequence of positive real numbers and
nan ≤ a1 + ∑n−1

k=1 ak . To conclude, let us prove that h′−(nα) ≥ h′+(nα), n ≥ 2, where h′−(x0)

and h′+(x0) respectively denote the left-hand and the right-hand derivatives of h(x) evaluated
at x0. Indeed,

h′−(nα) = an−1

(
a1 +

n−1∑
k=1

ak

)α−1

n1−α ≥ an

(
a1 +

n−1∑
k=1

ak

)α−1

n1−α = h′+(nα).
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Lemma A.2. Let {an}n≥0 be a nonincreasing sequence of positive real numbers such that∑∞
n=1 n−1an < ∞. Then there exists a nonincreasing, positive function a(x), defined on R+,

such that an ≤ a(n) for every n, xa(x) is nondecreasing and concave, and
∑∞

n=1 n−1a(n) < ∞.

Remark A.1. By applying Lemma A.1, we find that the function a(x) described in Lemma A.2
is such that, for every α, 1 < α ≤ 2, xaα(x1/α) is concave for x > 1. Indeed, the function
a(x) is defined for all x ≥ 0 as

a(x) := a11[0,1)(x) + x−1
(

a1 +
∫ x

1
a�t dt

)
1[1,∞)(x),

and, therefore,

xaα(x1/α) =
(

a1 +
∫ x1/α

1
a�t dt

)α

for all x ≥ 1.

Lemma A.3. Let f (x) be a positive, nonincreasing function on R+ such that
∑∞

n=1 n−1f (n) <

∞ and xf (x) is nondecreasing, and let {an} be a sequence of positive numbers such that
|an+1 − an| ≤ anf (anb

n) for some b > 1. Then

lim
n→∞ an = a < ∞.

Moreover, there exists a value z0, which depends on the function f (x) and on b, such that a > 0
if a0 > z0.

Lemma A.4. Let {an}n≥0 and {bn}n≥0 be sequences of nonnegative real numbers such that
an+1 < can + bn, n ≥ 0, where 0 < c < 1. If

∑∞
n=0 bn < ∞ then

∑∞
n=0 an < ∞.

We refer the reader to [4] for the proof of the Lemmas A.2 and A.4, and to [2] for the proof
of Lemma A.3.
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