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Abstract. Kac introduced the notion of the canonical decomposition for a dimension vector
of a quiver. Here we will give an efficient algorithm to compute the canonical decomposition.

Our study of the canonical decomposition for quivers with three vertices gives us fractal-like
pictures.
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1. Introduction

Let Q be a quiver without oriented cycles. Let a be a dimension vector for Q. For a

fixed field K we denote by RepKðQ; aÞ the space of representations of Q of dimension

a. An expression a ¼ b1 � b2 � � � � � bk is called the canonical decomposition of the

dimension vector a if there is a Zariski open subset U of RepKðQ; aÞ such that for

V 2 U the representionV decomposesV ¼
Lk

i¼1 Vi withVi indecomposable of dimen-

sion bi for i ¼ 1; . . . ; k. The notion of canonical decomposition was introduced by

Kac who also proved its first properties and gave several conjectures (see [2] and [3]).

In the paper [5] Schofield proved many fundamental properties of the canonical

decomposition. He also gave an inductive procedure for calculating the canonical

decomposition of any dimension vector. His procedure, however, assumes that

before we calculate the decomposition of a dimension vector a we know all decom-

positions of the coordinatewise smaller dimension vectors. The reason is that we

need the inductive calculation of the generic dimensions of certain Hom and Ext

spaces. This makes this procedure not so easy to use in practice.

In the recent preprint [6], Schofield suggests a more efficient algorithm. This algo-

rithm presented there is fast at least for some examples, but still uses a recursion

which seems inefficient for large dimension vectors or large quivers.
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In this paper we give a very efficient algorithm for calculating canonical decompo-

sition. It is based on the notion of a compartment which is a modification of the

notion of an exceptional sequence. The important feature of the algorithm is that

it is expressed exclusively in terms of the Euler form. The calculations of dimensions

of Hom and Ext spaces are needed to justify the outcome of the algorithm, but each

step in the algorithm depends just on the Euler form. This allows to see many general

features of canonical decomposition, which seem to be new.

2. Preliminaries

A quiver Q is a pair Q ¼ ðQ0;Q1Þ consisting of the set of vertices Q0 and the set of

arrows Q1. Each arrow a has its head ha and tail ta, both in Q0; ta �!
a

ha. We fix an

algebraically closed field K. A representation V of Q is a family of finite-dimensional

K-vector spaces VðxÞ (x 2 Q0) and of linear maps VðaÞ : VðtaÞ ! VðhaÞ (a 2 Q1).

The dimension vector of a representation V is the function dV defined by

dVðxÞ :¼ dimVðxÞ. The dimension vectors lie in the space G of integer-valued func-

tions on Q0. A morphism f : V ! V 0 of two representations is a collection of linear

maps fðxÞ : VðxÞ ! V0ðxÞ such that for each a 2 Q1 we have V 0ðaÞfðtaÞ ¼ fðhaÞVðaÞ.

We denote the linear space of morphisms from V to V 0 by HomQðV;V
0Þ.

A path p in Q is a sequence of arrows p ¼ a1; . . . ; an such that hai ¼ taiþ1

(14 i4 n� 1). We define tp ¼ ta1; hp ¼ han. We also have trivial path eðxÞ from

x to x. We define ½x; y� to be the vector space on the basis of paths from x to y.

We assume throughout the paper that Q has no oriented cycles, i.e., there are no

paths p ¼ a1 . . . an such that ta1 ¼ han. Under this assumption the spaces ½x; y� are

finite dimensional.

The category RepðQÞ is an Abelian category. Its basic property is that it is here-

ditary, i.e. every representation has projective dimension4 1. More specifically,

for two representations V;W we have a canonical map

M
x2Q0

HomKðVðxÞ;WðxÞÞ �!
dVW

M
a2Q1

HomKðVðtaÞ;WðhaÞÞ

defined by the formula

dVWðf fxgx2Q0
Þ ¼ fWðaÞfta � fhaVðaÞga2Q1

:

The kernel of dVW is isomorphic to HomQðV;WÞ, and the cokernel to ExtQðV;WÞ.

Let a; b be two elements of G. We define the Euler inner product

ha; bi ¼
X
x2Q0

aðxÞbðxÞ �
X
a2Q1

aðtaÞbðhaÞ:

It follows that

hdV; dWi ¼ dimK HomQðV;WÞ � dimK ExtQðV;WÞ: ð1Þ
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We define the Euler matrix E as the matrix corresponding to h ; i in the standard

basis, i.e., the matrix satisfying

ha; bi ¼ taEb

(we will treat dimension vectors as column vectors). For a dimension vector a we

denote by RepðQ; aÞ the vector space of representations of Q of dimension vector a.
We define the Coxeter transform to be the linear map t : G ! G given by the for-

mula t ¼ �ðtEÞ�1E where E is the Euler matrix. The linear map t preserves the Euler

form. We also have Auslander–Reiten duality

ha; bi ¼ �hb; tai:

Let a; b be two dimension vectors. The functions

ðV;WÞ 7! dimHomQðV;WÞ;

ðV;WÞ 7! dimExtQðV;WÞ

are upper-semicontinuous on RepðQ; aÞ �RepðQ; bÞ. We denote their generic values

by homQða; bÞ, extQða; bÞ respectively.

By forgetting the orientation of the arrows of the quiver Q we obtain an undirec-

ted graph to which we can associate a Kac–Moody Lie algebra. Recall that by Kac’s

Theorem ([2]) a dimension vector a is a root for the associated Kac–Moody algebra

if and only if there are indecomposable representations of dimension a. A root a is

real when ha; ai ¼ 1, imaginary if ha; ai4 0 and isotropic if ha; ai ¼ 0. A dimension

vector a is called a Schur root if a general representation of dimension a is indecom-

posable. Equivalently (see [3]), the endomorphism ring EndQðVÞ consists of scalars

for a general representation V of dimension a.
It is clear that if a ¼

Lk
i¼1 bi is the canonical decomposition then each bi is a Schur

root. Moreover, the following is proven in [3].

THEOREM 1 (Kac). The sum a ¼
Lk

i¼1 bi is the canonical decomposition if and only

if all bi are Schur roots and extðbi; bjÞ ¼ 0 for all i 6¼ j.

Remark 2. In [5, Theorem 3.8] Schofield proved that the canonical decomposition

is homogeneous in the following sense. For a Schur root b we define ðnbÞ as follows

ðnbÞ ¼
nb; if b is imaginary, nonisotropic;
b� � � � � bðn copiesÞ; if b is real or isotropic.

�

THEOREM 3 (Schofield). Let a ¼
Lk

i¼1 bi be a canonical decomposition. Then the

canonical decomposition of na is

na ¼
Mk
i¼1

ðnbiÞ:
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3. The Canonical Decomposition for Quivers with Two Vertices

Let us assume that Q ¼ yðrÞ is a quiver with two vertices x and y and with r arrows

a1; . . . ; ar with tai ¼ x; hai ¼ y for i ¼ 1; . . . ; r. If we identify a dimension vector a
with the column vector

� aðxÞ
aðyÞ

�
then the Euler matrix and Coxeter transform are given

by the formulae

E ¼
1 �r
0 1

� �
; t ¼

�1 r
�r r2 � 1

� �
:

The real Schur roots for yðrÞ are

p2k ¼ tk
0
1

� �
and p2kþ1 ¼ tk

1
r

� �
ðk ¼ 0; 1; . . .Þ

and the dimensions of preinjective modules

r2k ¼ t�k 1
0

� �
and r2kþ1 ¼ t�k r

1

� �
ðk ¼ 0; 1; . . .Þ:

Let pm ¼ pmðxÞ=pmðyÞ and similarly qm ¼ rmðxÞ=rmðyÞ. Then one sees easily that

pm < pmþ1 and

lim
m!1

pm ¼
r�

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 4

p

2
:

Similarly, qm ¼ 1=pm, so qm > qmþ1 and

lim
m!1

qm ¼
rþ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 4

p

2
:

For a dimension vector a denote a :¼ aðxÞ=aðyÞ. The canonical decomposition is

expressed in the easiest way in terms of a. If we find m such that pm < a < pmþ1 then

a decomposes into a multiple of pm and a multiple of pmþ1. If for

some m qm > a > qmþ1 then a decomposes into a multiple of rm and a multiple of

rmþ1. If

r�
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 4

p

2
4 a4

rþ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 4

p

2
;

then a is imaginary (and a can be isotropic only when r ¼ 2, a ¼ 1). All of this is pro-

ven in [3, page 159].

For r ¼ 1; 2; 3 we will draw p0; p1; p2; . . . and q0; q1; q2; . . . on the projective line.

We get the following pictures:

r¼1: p0 ¼ q2 ¼ 0 ¼ ½0 : 1�; p1 ¼ q1 ¼ 1 ¼ ½1 : 1�; p2 ¼ q0 ¼ 1 ¼ ½1 : 0�.
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r¼2: p0 ¼ ½0 : 1�; p1 ¼ ½1 : 2�; p2 ¼ ½2 : 3� and q0 ¼ ½1 : 0�; q1 ¼ ½2 : 1�; q2 ¼ ½3 : 2�.

r¼3: p0 ¼ ½0 : 1�; p1 ¼ ½1 : 3�; p2 ¼ ½3 : 8� and q0 ¼ ½1 : 0�; q1 ¼ ½3 : 1�; q2 ¼ ½8 : 3�.

If r ¼ 2 then there is one limit point, namely ½1 : 1� which corresponds to the imagin-

ary Schur root. For r ¼ 3 there is a red hole between ½1 : ð3�
ffiffiffi
5

p
Þ=2� and

½ð3�
ffiffiffi
5

p
Þ=2 : 1� corresponding to the imaginary Schur roots. For r5 4 the picture

looks similar to that for r ¼ 3.

4. The Algorithm for Canonical Decomposition

In this section we discuss the main result of this paper—the algorithm to calculate

the canonical decomposition. It is based on the notion of a compartment which

was inspired by the notion of exceptional sequence. Let us start with some defini-

tions.

We fix a quiver Q without oriented cycles. Assume that Q has n vertices.

DEFINITION 4. Let A be an Abelian hereditary category. An object X from A is

exceptional if HomAðX;XÞ ¼ K, ExtAðX;XÞ ¼ 0. A sequence E ¼ ðX1; . . . ;XrÞ of

length r of objects of an Abelian hereditary category A is exceptional if or each i Xi is

an exceptional object and for each i < j we have HomAðXi;XjÞ ¼ ExtAðXi;XjÞ ¼ 0.

If A is the category of representations of the quiver Q, the exceptional sequence of

length n ¼ #Q0 is called a complete sequence. Crawley-Boevey [1] defined the action

of braid group Bn on n strings on the set of complete exceptional sequences and

proved that this action is transitive.

We modify the notion of exceptional sequence by relaxing the condition on verti-

ces allowing arbitrary Schur roots, but adding nonnegativity condition on the values

of the Euler form. A dimension vector a is called left orthogonal to b if

homQða; bÞ ¼ extQða; bÞ ¼ 0.

DEFINITION 5. A sequence C ¼ ða1; . . . ; asÞ of length s of dimension vectors from

G is a compartment if ai is a Schur root for each i, and

(1) for each i < j ai is left orthogonal to a j,

(2) for each i < j ha j; aii5 0.

The sequence C is called an exceptional compartment if all ai are real Schur roots.
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Remark 6. If a; b are Schur roots, and extða; bÞ ¼ 0 then we have extðb; aÞ ¼ 0 or

homðb; aÞ ¼ 0 (see [5, Theorem 4.1]). From (1) we see that extðb; aÞ ¼ 0 if and

only if hb; ai5 0. In Definition 5 we could have replaced (2) by: for each i < j

extða j; aiÞ ¼ 0. &

PROPOSITION 7. Suppose that C ¼ ða1; . . . ; asÞ is a compartment and a is a

dimension vector such that a ¼
Ps

i¼1 ria
i for some nonnegative integers r1; . . . ; rs. We

also assume that ri ¼ 1 whenever ai is imaginary and nonisotropic. Then the canonical

decomposition of a is

a ¼ ða1Þ�r1 � ða2Þ�r2 � � � � � ðasÞ�rs :

Proof. This follows at once from Theorem 1, Definition 5 and Remark 6 and

Remark 2. &

Thus to find a canonical decomposition of a dimension vector a it is enough to find

a compartment C ¼ ða1; . . . ; asÞ such that a lies in the monoid spanned by a1; . . . ; as.
Let a be a dimension vector. The algorithm to find a compartment containing a is as

follows.

We try to find the expression a ¼
Ps

i¼1 ria
i such that

(1) ri 5 0 for i ¼ 1; . . . ; s,

(2) each ai is a Schur root,

(3) for each i < j, ai is left orthogonal to a j,

(4) ri ¼ 1 whenever ai is imaginary and not isotropic,

(5) for each i < j ha j; aii5 0.

ALGORITHM 8.

ð1Þ input : A quiver Q with n vertices, a dimension vector a.
ð2Þ Write a ¼

Ps
i¼1 ria

i satisfying (1)–(4) (for example, take s ¼ n and ai ¼ ei for

all i).

ð3Þ Omit all summands riai with ri ¼ 0. We may assume ri > 0 for all i.

(4) If a ¼
Ps

i¼1 ria
i satisfies (5), terminate with output :a ¼

Ps
i¼1 ria

i.

(5) There exist i and j with i < j such that ha j; aii < 0. We take i and j such that j� i

is minimal. Let ak1 ; ak2 ; . . . ; aka be the subsequence of aiþ1; . . . ; aj�1 of all am

with ha j; ami > 0. Let al1 ; . . . ; alc be the subsequence obtained from

aiþ1; . . . ; aj�1 by omitting ak1 ; ak2 ; . . . ; aka (exactly those am such that

ha j; ami ¼ 0). We rearrange ða1; . . . ; asÞ and ðr1; . . . ; rsÞ as follows:

ða1; . . . ; asÞ :¼ ða1; . . . ; ai�1; ak1 ; . . . ; akb ; ai; aj; al1 ; . . . ; alc ; ajþ1; . . . ; asÞ;

ðr1; . . . ; rsÞ :¼ ðr1; . . . ; ri�1; rk1 ; . . . ; rkb ; ri; rj; rl1 ; . . . ; rlc ; rjþ1; . . . ; rsÞ:
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(6) There exists an i such that haiþ1; aii < 0. We modify the pair ðai; aiþ1Þ (and

ðri; riþ1Þ) so that the Euler form haiþ1; aii after modification becomes non-

negative. The modification is performed as follows. Write x ¼ ai Z ¼ aiþ1.

Let us write p ¼ ri; q ¼ riþ1. Let us also write z ¼ pxþ qZ. We will replace

ðx; ZÞ by ðx0; Z0Þ where x0; Z0 are positive linear combinations of x; Z. Some-

times we will replace ðx; ZÞ by just one positive linear combination of x; Z,
thus reducing the number s. The replacement is performed according to

the following scheme:

(a) x; Z are real Schur roots. The category spanned by x and Z is the category of

representations of a quiver with two vertices, no cycles and m ¼ �hZ; xi
arrows. The canonical decomposition of z in this category is as described

in Section 3.

(i) hz; zi > 0: There exists nonnegative combinations x0; Z0 2 G of x and Z
such that x0 is left orthogonal to Z0, hZ0; x0i ¼ m5 0 and z ¼ p0x0 þ q0Z0

for certain nonnegative integers p0; q0. Replace ðx; ZÞ by ðx0; Z0Þ.
(ii) hz; zi ¼ 0: Replace ðx; ZÞ by z0, where z ¼ kz0 with k a positive integer

and z0 2 G is indivisible.

(iii) hz; zi < 0: Replace ðx; ZÞ by z.
(b) x is real, Z is imaginary:

(i) pþ qhZ; xi5 0: Replace ðx; ZÞ by ðx0; Z0Þ, where x0 ¼ Z� hZ; xix and

Z0 ¼ x. Now we have z ¼ qx0 þ ðpþ qhZ; xiÞZ0.
(ii) pþ qhZ; xi < 0: Replace ðx; ZÞ by z.

(c) x is imaginary, Z is real:

(i) qþ phZ; xi5 0: Replace ðx; ZÞ by ðx0; Z0Þ, where x0 ¼ Z and

Z0 ¼ x� hZ; xiZ. Now we have z ¼ ðqþ phZ; xiÞx0 þ pZ0.
(ii) qþ phZ; xi < 0: Replace ðx; ZÞ by z.

(d) x, Z are imaginary: Replace ðx; ZÞ by z.
(7) Keep repeating step 3, 4, 5, 6 (until the loop gets broken in step 4).

Before proving the algorithm, we give an example to illustrate the algorithm.

EXAMPLE 9. Consider the following quiver with labeled vertices:

Because of the labeling, there is a natural way of identifying G with three-dimen-

sional column vectors. Let us find the decomposition of the vector

d ¼

6
33
17

0
@

1
A:
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At each step, we can put the column vectors a1; . . . ; as in a matrix A, and we put

the integers r1; . . . ; rs in a column vector r. So at each step we have d ¼ Ar. We start

with

A ¼

1 0 0
0 1 0
0 0 1

0
@

1
A; r ¼

6
33
17

0
@

1
A:

Now a1; a2 are real Schur roots and ha2; a1i ¼ �1. So z ¼ 6a1 þ 33a2 and

hz; zi ¼ 927 > 0. We are in case (a(i)). We replace ða1; a2Þ by ða2 þ a1; a1Þ, and we

obtain

A ¼

0 1 0
1 1 0
0 0 1

0
@

1
A; r ¼

27
6
17

0
@

1
A:

Now ha2; a3i ¼ �3 and a2; a3 are real Schur roots. We set z ¼ 6a2 þ 17a3. We have

hz; zi ¼ 19, so again we are in case (a(i)). We are dealing with a quiver with two ver-

tices �ha3; a2i ¼ 3 arrows. As we have seen in Section 3 we get a decomposition

6
17

� �
¼

1
3

� ��3

�
3
8

� �
:

So we replace ða2; a3Þ by ða2 þ 3a3; 3a2 þ 8a3Þ and we get

A ¼

0 1 3
1 1 3
0 3 8

 !
; r ¼

27
3
1

 !
:

Now ha2; a1i ¼ �5 and a1; a2 are real. We are in case (a(i)), and we replace ða1; a2Þ
by ða2 þ 5a1; a1Þ. We have

A ¼

1 0 3
6 1 3
3 0 8

 !
; r ¼

3
12
1

 !
:

Now we have ha3; a2i ¼ �16, a2 and a3 are real, z ¼ 12a2 þ a3 and hz; zi ¼ �47.

We are in case (a(iii)). We replace ða2; a3Þ by z and we obtain

A ¼

1 3
6 15
3 8

 !
; r ¼

3
1

� �
:

Now a1 is real and a2 is imaginary and ha2; a1i ¼ �2. The value of 3þ 1�

ha2; a1i ¼ 1 is positive, so we are in case (b(i)). We replace ða1; a2Þ by

ða2 þ 2a1; a1Þ. We now have

A ¼

5 1
27 6
14 3

0
@

1
A; r ¼

1
1

� �
:
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We get ha2; a1i ¼ 2. So we have found the canonical decomposition

6
33
17

0
@

1
A ¼

5
27
14

0
@

1
A�

1
6
3

0
@

1
A:

LEMMA 10 (Schofield). Let a; b; g be three Schur roots. Assume that a is left

orthogonal to b and g and that b is left orthogonal to g. Assume that hg; bi > 0,

hb; ai > 0. Then hg; ai > 0.

Proof. This follows at once from Theorem 2.4 and Theorem 4.1 in [5]. &

LEMMA 11. Suppose X and Y are representations of the quiver Q, and we have an

exact sequence

0 ! X ! Z ! Y ! 0:

If HomðX;YÞ ¼ HomðY;XÞ ¼ 0, HomðY;YÞ ¼ K and in the long exact sequence

0 ! HomðY;XÞ ! HomðZ;XÞ ! HomðX;XÞ

! ExtðY;XÞ ! ExtðZ;XÞ ! ExtðX;XÞ ! 0;
ð2Þ

the connecting homomorphism HomðX;XÞ ! ExtðY;XÞ is injective, then

HomðZ;XÞ ¼ 0 and HomðZ;ZÞ ¼ K.

Proof. Clearly HomðZ;XÞ ffi HomðY;XÞ ¼ 0 from (2). From the exact sequence

0 ! HomðY;YÞ ! HomðZ;YÞ ! HomðX;YÞ ð3Þ

and HomðX;YÞ ¼ 0 follows that HomðZ;YÞ ¼ HomðY;YÞ ¼ K. From the exact

sequence

0 ! HomðZ;XÞ ! HomðZ;ZÞ ! HomðZ;YÞ ð4Þ

and HomðZ;XÞ ¼ 0 now follows that HomðZ;ZÞ ¼ K. &

COROLLARY 12. If a; b are Schur roots with homða; bÞ ¼ homðb; aÞ ¼ 0 and

extðb; aÞ 6¼ 0, then aþ b is a Schur root.

Proof. Let X be a general representation of dimension a, Y be a general repre-

sentation of dimension b and let Z be a nontrivial extension of X and Y. Clearly

HomðY;YÞ ¼ K; HomðX;YÞ ¼ HomðY;XÞ ¼ 0

and the homomorphism HomðX;XÞ ! ExtðY;XÞ is injective because

HomðX;XÞ ¼ K and the identity is mapped to the nontrivial element

Z 2 ExtðY;XÞ. Now the corollary follows from Lemma 11. &

COROLLARY 13. If a; b are imaginary Schur roots with homða; bÞ ¼ homðb; aÞ ¼ 0

and extðb; aÞ 6¼ 0, then paþ qb is a Schur root for all p; q > 0.
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Proof. We will prove by induction on p and q that paþ qb is a Schur root. If pa
and qb both are Schur roots then so is paþ qb by Corollary 12. If pa is not a Schur

root, then a is isotropic and p > 1. By induction hypothesis we may assume that

ðp� 1Þxþ qZ is a Schur root. Now homða; aÞ ¼ 0, homða; bÞ ¼ 0, therefore

homða; ðp� 1Þaþ qbÞ ¼ homððp� 1Þaþ qb; aÞ ¼ 0 and extððp� 1Þaþ qb; aÞ ¼
�qhb; ai > 0. We can apply Corollary 12 and conclude that paþ qb ¼ aþ
ððp� 1Þaþ qbÞ is a Schur root. In a similar way paþ qb is a Schur root if qZ is not a

Schur root. &

COROLLARY 14. If a is a real Schur root and b is a Schur root such that

homða; bÞ ¼ homðb; aÞ ¼ 0. then for 04 t4 � hb; ai bþ ta is a Schur root and

homðbþ ta; aÞ ¼ 0.

Proof. Let W be a general representation of dimension a, Y be a general repre-

sentation of dimension b. We have

HomðW;YÞ ¼ HomðY;WÞ ¼ 0 and HomðY;YÞ ¼ K: Put t ¼ �hb; ai:

A general representation X of dimension ta is isomorphic to the direct sum of t

copies of W. We have HomðX;YÞ ¼ HomðY;XÞ ¼ 0. Let Z 2 ExtðY;XÞ be a general

extension. In the long exact sequence

0 ! HomðY;WÞ ! HomðZ;WÞ ! HomðX;WÞ ! ExtðY;WÞ

! ExtðZ;WÞ ! ExtðX;WÞ ! 0;
ð5Þ

the connecting homomorphism HomðX;WÞ ! ExtðY;WÞ is injective because Z is a

generic extension and dimðHomðX;WÞÞ ¼ t4 � hb; ai ¼ dimðExtðY;WÞÞ. In the

long exact sequence (2), the connecting homomorphism HomðX;XÞ ! ExtðY;XÞ

is a direct sum of homomorphisms HomðX;WÞ ! ExtðY;WÞ coming from (5). It

follows that HomðX;XÞ ! ExtðY;XÞ is injective and by Lemma 11 we conclude

that HomðZ;ZÞ ¼ K and HomðZ;XÞ ¼ 0. So bþ ta is a Schur root, and

homðbþ ta; aÞ ¼ 0. &

COROLLARY 15. If a is a Schur root and b is a real Schur root such that

homða; bÞ ¼ homðb; aÞ ¼ 0 then for 04 t4 � hb; ai, aþ tb is a Schur root and

homðb; aþ tbÞ ¼ 0.

Proof. Let Qop be the quiver obtained from Q by reversing all arrows. We can

identify dimension vectors for Q and Qop. Notice that homQða; bÞ ¼ homQopðb; aÞ
and extQða; bÞ ¼ extQop ðb; aÞ. Also a is a real or imaginary Schur root for Q if and

only if it is a real or imaginary Schur root for Qop. From the assumtions

homQða; bÞ ¼ homQðb; aÞ ¼ 0 follows that homQopða; bÞ ¼ homQop ðb; aÞ ¼ 0. We can

apply Corollary 14 (with a and b interchanged) to Qop, and we obtain that aþ tb is a

Schur root when 04 � ha; biQop ¼ �hb; aiQ. Also we have that homQop ðaþ tb; bÞ ¼
homQðb; aþ tbÞ ¼ 0. &
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THEOREM 16. Algorithm 8 terminates after finitely many steps with output

a ¼
Ps

i¼1 ria
i satisfying ð1Þ–ð5Þ. The canonical decomposition of a is

a ¼ ða1Þ�r1 � ða2Þ�r2 � � � � � ðasÞ�rs :

Proof. First, we will prove that throughout the algorithm, a ¼
Ps

i¼1 riai satisfies
(1)–(4). When we are in step 2, a ¼

Ps
i¼1 riai is unchanged. Clearly, after step 3,

a ¼
Ps

i¼1 riai still satisfies (1)–(4). It is clear that after step 5, a ¼
Ps

i¼1 riai satisfies
(1), (2) and (4). Let us show that it also satisfies (3).

Now hakp ; alqi5 0 for all p; q by the assumptions on minimality of j� i. From

Lemma 10 below, haj; alqi ¼ 0 and ha j; akpi > 0 it follows that also hakp ; alqi4 0.

We conclude that akp is left orthogonal to alq for all p; q. Similarly one shows that

akp is left orthogonal to ai for all p. We also have that alq is right orthogonal to a j

for all q.

After step 6, it is clear that a ¼
Ps

i¼1 ria
i satisfies (1). We show that (4) is also

satisfied. In case a(i), ðx; ZÞ is replaced by ðx0; Z0Þ with x0; Z0 both real. There is noth-

ing to prove. In (a)(ii) z0 is isotropic, so again, there is nothing to prove. In cases

(a)(iii) (b)(ii) (c)(ii) and (d) ðx; ZÞ is being replaced by z. Now z will have coefficient

1 in the decomposition of a. In case (b)(i), ðx; ZÞ is being replaced by ðx0:Z0Þ with Z0

real and x0 imaginary. If x0 is nonisotropic, then hx0; x0i ¼ hZ; Zi < 0, so Z is also

nonisotropic. Assuming that (4) was satisfied before step 6, we get that q ¼ 1.

Now q is exactly the coefficient of x0 in the decomposition of a after step 6. In

a similar way, we can prove that if we are in case (c)(i), (4) will be satisfied after

step 6.

Now we will prove that after step 6, properties (2) and (3) are still satisfied. Notice

that a positive linear combination of x ¼ ai and Z ¼ aiþ1 is right orthogonal to a j for

j < i and left orthogonal to a j if j > iþ 1. So we’ll have to prove that whenever ðx; ZÞ
is replaced by a pair ðx0; Z0Þ, then x0, Z0 are Schur roots and x0 is left orthogonal to Z0.
Whenever ðx; ZÞ is replaced by a single dimension vector z, then we must prove that

z is a Schur root.

In case (a), the problem can be reduced to the category spanned by x and Z. We

reduce to the case of an quiver without cycles with two vertices and properties (2)

and (3) follow from Section 3.

In case (b)(i) and (c)(i), properties (2) and (3) follow immediately from Corollary

14 and 15 respectively.

Suppose that we are in case (b)(ii). First we assume that Z is not isotropic. Then

q ¼ 1 and p < �hZ; xi. From Corollary 14 follows that z ¼ pZþ x is a Schur root.

If Z is isotropic, then we notice that for t ¼ �hZ; xi, Zþ tx is a Schur root by 14.

We have homðZ; Zþ txÞ ¼ homðZþ tx; ZÞ ¼ 0 because homðZ; xÞ ¼ homðx; ZÞ ¼ 0

and homðZ; ZÞ ¼ 0. Also we have extðZþ tx; ZÞ 6¼ �hZþ tx; Zi ¼ �thx; Zi > 0. Now

we can write tz ¼ pðZþ txÞ þ ðtq� pÞZ and by Corollary 12 we we get that tz is a

Schur root. Therefore z is a Schur root. In a similar way, in case (c)(ii), property

(2) follows from Corollaries 15 and 13.
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In case (d), property (2) follows Corollary 13. This completes the proof that after

step 6, properties (1)–(4) always are satisfied.

Finally we will prove that the algorithm terminates. After step 3, we have an

expression a ¼
Ps

i¼1 ria
i, with ri > 0 for all i. It is clear that

Pk
i¼1 ri gets smaller after

each loop. Therefore the algorithm must terminate. &

For the remaining of this section we allow the quiver Q to have oriented cycles. We

will show how to compute the canonical decomposition of a dimension vector in this

more general setting. Define a new quiver Q̂ ¼ ðQ̂0; Q̂1Þ where Q̂0 ¼ Q0 � f0; 1g and

Q̂1 ¼ fcx : x0 ! x1 j x 2 Q0g [ fâ : ðtaÞ0 ! ðhaÞ1 j a 2 Q1g:

Notice that Q̂ does not have oriented cycles, because all arrows go from Q0 � f0g to

Q0 � f1g. If a is a dimension vector for Q then we define a dimension vector â for Q̂

by âðxiÞ ¼ aðxÞ for all x 2 Q0 and i 2 f0; 1g.

LEMMA 17. If the canonical decomposition of a is a ¼ a1 � a2 � � � � � as then the

canonical decomposition of â is â ¼ â1 � â2 � � � � � âs:
Proof. For any representation of V of Q we define a representation V̂ of Q̂ by

V̂ðxiÞ ¼ VðxÞ for all x 2 Q0 and i 2 f0; 1g, V̂ðâÞ ¼ VðaÞ for all a 2 Q1 and V̂ðcxÞ ¼ id

for all x 2 Q0. If W is a representation of Q such that WðcxÞ is invertible for all

x 2 Q0, then we define a representation ~W by ~WðxÞ ¼ Wðx0Þ for all x 2 Q0 and
~WðaÞ ¼ WðcxÞ

�1WðâÞ for all a 2 Q1. It is easy to check that for a representation V

of Q we have
~̂
V ffi V.

Notice that if V is an indecomposable representation of Q, then V̂ is indecom-

posable. Indeed, suppose that V̂ ffi W1 �W2 with W1 and W2 representations of Q̂.

Since V̂ðcxÞ is an isomorphism, W1ðcxÞ and W2ðcxÞ are both isomorphisms

for all x 2 Q0. Now we have V ffi
~̂
V ffi ~W1 � ~W2 which contradicts that V is

indecomposable.

Suppose that W is a general representation of dimension â. We may assume that

WðcxÞ is invertible for all x and that the decomposition of ~W is the canonical decom-

position of a. We can choose bases of Wðx0Þ and Wðx1Þ in such a way that WðcxÞ will

be the identity. This shows that W ffi V̂ for some representation V of Q. In fact, V is

isomorphic to
~̂
V ffi ~W. Let

V ffi ~W ffi V1 � V2 � � � � � Vs

be the canonical decomposition of V, such that dVi
¼ ai. Then the canonical decom-

position of W is W ffi V̂ ffi V̂1 � V̂2 � � � � V̂s and dV̂i
¼ âi for all i. &

If b is a dimension vector for Q̂, then we define a dimension vector ~b by
~bðxÞ ¼ bðx0Þ for all x 2 Q0. Notice that

~̂b ¼ b.

COROLLARY 18. If â ¼ b1
� b2

� � � � bs is the canonical decomposition of â, then
the canonical decomposition of a is a ¼ ~b1

� ~b2
� � � � ~bs:
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Proof. Let a ¼ a1 � a2 � � � � at be the canonical decomposition of a. By Lemma 17

the canonical decomposition of ~a is ~a ¼ ~a1 � ~a2 � � � � ~at: It follows that b1; . . . ; bs is a
permutation of ~a1; . . . ; ~at, and ~b1; . . . ; ~bs is a permutation of a1; . . . ; at. &

Lemma 18 gives us a method for computing the canonical decomposition for arbi-

trary quivers. If a is a dimension vector for Q, then we can compute the canonical

decomposition of â using Algorithm 8, say

â ¼ ðb1
Þ
r1 � ðb2

Þ
r2 � � � � � ðbsÞrs :

Then we have

a ¼ ð ~b1
Þ
r1 � ð ~b2

Þ
r2 � � � � � ð ~bsÞrs :

5. Consequences

The algorithm presented in the previous section allows to draw several conclusions

about the nature of canonical decomposition.

COROLLARY 19. Suppose that

a ¼ ðb1
Þ
�t1 � ðb2

Þ
�t2 � � � � � ðbuÞ�tu :

is the canonical decomposition of a (ti > 0 for all i), and we can write a ¼
Ps

i¼1 ria
i

satisfying properties (1)–(3), then any bi is a nonnegative integral combination of

a1; . . . ; as.
Proof. Whenever ai is an imaginary Schur root, we can replace ai by riai and ri

by 1. We may assume that a ¼
Ps

i¼1 ria
i satisfies (1)–(4). In step 2 of Algorithm 8,

we could start with these a1; . . . ; as. In step 6 of the algorithm, some ai and aiþ1 are

being replaced by one or two Schur roots which are positive combinations of

a1; . . . ; as. The corollary follows. &

COROLLARY 20. Suppose that we can write a ¼
Ps

i¼1 ria
i satisfying (1)–(3) and

ri 6¼ 0 for all i. If one of the ai is imaginary, then a does not have a dense orbit.

Proof. Whenever ai is an imaginary Schur root, we can replace ai by riai and ri
by 1. We may assume that a ¼

Ps
i¼1 ria

i satisfies (1)–(4). In step 2 of Algorithm 8,

we could start with these a1; . . . ; as. It is clear from step 6 that in each loop there

always will be an i such that ai is imaginary. When the algorithm terminates, one of

the summands of the canonical decomposition of a will be imaginary, so a does not

have a dense orbit. &

COROLLARY 21. For a dimension vector a, let rðaÞ be the number of distinct real

Schur roots and iðaÞ be the number of distinct imaginary Schur roots in the canonical

decomposition of a. Then we have rðaÞ þ 2iðaÞ4 n where n is the number of vertices of

the quiver Q.
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Proof. In Algorithm 8 we can start with n simple Schur roots a1; . . . ; an. In step 6

of the algorithm, the number of roots always decreases or stays the same. The only

way for the number of imaginary roots to increase is, is when two real Schur roots

are being replaced by one imaginary Schur root. &

We will now try to understand the canonical decomposition in more geometric

terms. Suppose that Q is a quiver with vertices x1; . . . ; xn without oriented cycles.

For a dimension vector a, we define a point

½a� :¼ ½aðx1Þ : aðx2Þ : � � � : aðxnÞ�

in projective space Pn�1. If C ¼ ða1; . . . ; asÞ is a compartment we define ½C� as the

simplex in Pn�1 spanned by ½a1�; . . . ; ½as�.
Notice that it is possible that ½C� ¼ ½C0�, without the compartments C and C0 being

equal. For example, if hai; aiþ1i ¼ 0, then we can make such a compartment C0 by

interchanging ai and aiþ1 in C. If ai is a Schur root, then we can make another com-

partment C0 by replacing ai in C by a multiple of itself.

COROLLARY 22. If ½a� lies in ½C� for some compartment C ¼ ða1; . . . ; asÞ, then we

can write a ¼
Ps

i¼1 ria
i and the canonical decomposition of a is

a ¼ ðr1a1Þ � ðr2a2Þ � � � � � ðrsasÞ

ðsee Remark 2Þ.

Proof. This follows from Proposition [7]. &

It is clear from the uniqueness of the canonical decomposition, that for every

dimension vector a there is a unique open simplex ½C�� containing ½a�.

COROLLARY 23. Let S be the set of all ½C� with C an exceptional compartment. Let

D � Pn�1 be the union of S. Then S is a triangulation of the topological space D. A

dimension vector a has a dense orbit if and only if ½a� 2 D.

6. Quivers with Three Vertices

We assume that Q is a quiver with three vertices, without oriented cycles. We label

the vertices with 1, 2 and 3. Let bi;j be the number of arrows i ! j. We assume that

bi;j ¼ 0 for i4 j. In view of Corollary 21 there are the following possibilities for a

dimension vector a:

(1) a has a dense orbit, and the canonical decomposition only involves real Schur

roots;

(2) a decomposes b�r
� g�s with b a real and g an imaginary Schur root, r; s > 0;

(3) a is an imaginary Schur root.
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The first case we already studied. The set D � P2 of dimension vectors with dense

orbit has a nice triangulation (Corollary 23). Using the braid group action as defined

in [1] we can obtain all exceptional sequences C ¼ ða1; a2; a3Þ. Of those exceptional

sequences, we can select the exceptional compartments. A compartment C corre-

sponds to a triangle ½C�. The canonical decomposition in this triangle is given by

Corollary 22.

We will study the second case. Suppose that a ¼ b�r
� g�s is the canonical decom-

position with r; s > 0 and b is real, g is imaginary. Let us fix a real Schur root b. We

will investigate what the possibilities are for a. There are two possibilities, b is left

orthogonal to g, or b is right orthogonal to g. Let us assume b is left orthogonal to g.
The right orthogonal category of b is again a quiver category, because b is real.

This category is generated by two dimension vectors, b1; b2, with b1 left orthogonal

to b2 and p ¼ hb2; b1i4 0. We can write g ¼ r1b1 þ r2b2 with r1; r2 5 0. The root g is

imaginary, so hg; gi4 0. This means that

1

l
4

r1
r2

4l

where l ¼ ðpþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4

p
Þ=2. The line segment between ½b1 þ lb2� and ½lb1 þ b2� cor-

responds to all imaginary roots right orthogonal to b.
An other condition is that hg; bi5 0. Choose a point Ið½b�Þ on the intersection of

the lines h�; bi ¼ 0 intersects hb; �i ¼ 0 (usually this point is unique). There are four

cases

(1) hb1 þ lb2; bi5 0, hlb1 þ b2; bi5 0: The point ½g� can be anywhere in the inter-

val between ½b1 þ lb2� and ½lb1 þ b2�.

(2) hb1 þ lb2; bi < 0, hlb1 þ b2; bi5 0: Now Ið½b�Þ lies in the line segment between

½b1 þ lb2� and ½lb1 þ b2�. The point ½g� can be anywhere in the interval between

Ið½b�Þ and ½lb1 þ b2�.

(3) hb1 þ lb2; bi5 0, hlb1 þ b2; bi < 0: Now Ið½b�Þ lies in the line segment between

½b1 þ lb2� and ½lb1 þ b2�. The point ½g� can be anywhere in the interval between

Ið½b�Þ and ½b1 þ lb2�.

(4) hb1 þ lb2; bi < 0, hlb1 þ b2; bi < 0: This gives a contradiction with the exi-

stance of g.

COROLLARY 24. If we fix a real Schur root b, then a has a canonical decomposition

b�r
� g�s with r; s > 0 and g imaginary and right orthogonal to b if and only if ½a� lies

in the relative interior of the triangle Tb defined by

(1) hb1 þ lb2; bi5 0, hlb1 þ b2; bi5 0: Tb is spanned by ½b�, ½b1 þ lb2� and

½lb1 þ b2�.

(2) hb1 þ lb2; bi < 0, hlb1 þ b2; bi5 0: Tb is spanned by ½b�, Ið½b�Þ and ½lb1 þ b2�.

(3) hb1 þ lb2; bi5 0, hlb1 þ b2; bi < 0: Tb is spanned by ½b�, Ið½b�Þ and ½b1 þ lb2�.

(4) hb1 þ lb2; bi < 0, hlb1 þ b2; bi < 0: Tb ¼ ;.
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If p ¼ 2 (and l ¼ 1) we are in a degenerate case: Tb will be a line segment.

In a similar way we can define a Tb
0 such that a has a canonical decomposition

b�r
� g�s with r; s > 0 and g imaginary and left orthogonal to b if and only if ½a� lies

in the relative interior of the triangle Tb
0. So for each real Schur root b we have

defined two triangles Tb and Tb
0 (which may be empty). In many cases, the two tri-

angles are adjacent and have the vertices ½b� and Ið½b�Þ in common.

EXAMPLE 25. We consider the quiver

This quiver is of finite type (Dynkin type A3). Every dimension vector has a dense

orbit. The set of dimension vectors is divided up in 5 triangles, corresponding to

exceptional compartments of length 3.
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EXAMPLE 26. We consider the quiver

This quiver is of tame type (type ~A2). The dimension vectors with no dense orbit

correspond to the open line segment between ½0 : 1 : 0� and ½1 : 0 : 1�. The set D � P2

of vectors with dense orbit, is triangulated with infinitely many triangles. The only

imaginary Schur root is ½1 : 1 : 1�.

EXAMPLE 27. We consider the quiver
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This quiver is of wild type. The black triangles correspond to exceptional compart-

ments. The red triangles correspond to dimension vectors who decompose into a

multiple of an imaginary Schur root and a multiple of a real Schur root. The star

shaped region in the interior corresponds to the imaginary Schur roots. Notice that

this region is not convex. The picture is like a fractal. Also, notice how the red tri-

angles come in pairs. The quadric ha; ai ¼ 0 is graphed in green.

EXAMPLE 28. We consider the quiver

This is another example of a wild quiver. For real roots ½b�, Ið½b�Þ seems to be a

mirror image of ½b� inside the quadric ha; ai ¼ 0. We will study the map I.

Let us consider the transformation I : P2
! P2 of the projective plane which we

have defined as

a 7! fha;�i ¼ h�; ai ¼ 0g
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sending a point a to the (generically unique up to scalar) solution of linear equations

ha;�i ¼ h�; ai ¼ 0.

PROPOSITION 29. The map I is a birational involution of the projective plane. In

fact, it is a quadratic transformation corresponding to three points which are the

eigenvectors of the Coxeter transform t related to the Euler form h�; �i.

Proof. Let us start with the Euler matrix

E ¼

1 0 0
b2;1 1 0
�b3;1 �b2;1 1

0
@

1
A;

where bi;j is the number of arrows from the ith to jth vertex.

By direct calculation one can see that the characteristic polynomial of t� ðtEÞ�1E

is given by the formula

wðt; lÞ ¼ 1þ ð3� JÞlþ ð3� JÞl2 þ l3;

where

J ¼ b22;1 þ b23;1 þ b23;2 þ b2;1b3;1b3;2

is the basic invariant of the triple ðb1;2; b1;3; b2;3Þ.
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The symmetry of wðt; lÞ means that �1 is an eigenvalue. In fact the vector

b ¼

b2;3
�b1;3
b1;2

0
@

1
A

is the corresponding eigenvector. The other two eigenvalues l1; l2 have to satisfy

l1l2 ¼ 1.

PROPOSITION 30. The quiver Q is of finite type if J ¼ 0; 1; 2, is of tame type if

J ¼ 4 and is of wilde type if J > 4. If Q is wild, then the Coxeter transform has three

distinct real eigenvalues. The eigenvectors corresponding to eigenvalues l1; l2 lie on the

ellipse of isotropic dimension vectors, given by the equation ha; ai ¼ 0.

Proof. The first statement is an easy check. After dividing the characteristic

polynomial wðt; lÞ by lþ 1 we get the quadratic polynomial 1þ ð2� JÞlþ l2. Its

discriminant equals J2 � 4J, so we have two distinct positive real roots l1; l2 for

J > 4. Let v1 and v2 be the eigenvectors corresponding to l1 and l2 respectively.

Then we have

l1hv1; v1i ¼ hv1; tv1i ¼ �hv1; v1i

so hv1; v1i ¼ 0 because l1 6¼ �1. In a similar way, v2 is isotropic. &

The rational map I is given by the formulas

ða1; a2; a3Þ 7! ðM3;2;�M3;1;M2;1Þ;

where

M3;2 ¼ b3;2ha; ai þ a1u;

�M3;1 ¼ �b3;1ha; ai þ a2u;

M2;1 ¼ b2;1ha; ai þ a3u;

where

u ¼ �b3;2a1 þ ðb3;1 þ b2;1b3;2Þa2 � b2;1a3:

The rational map I is an involution by definition, therefore a birational map of the

projective plane. The three quadrics M1;2;M1;3;M2;3 that define it have three com-

mon zeros: the point b and two intersections of the line u ¼ 0 with the ellipse

ha; ai ¼ 0. It follows that I is a quadratic transformation blowing up these three

points and collapsing the three lines joining them. The involution I fixes every point

on the ellipse ha; ai ¼ 0. &
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