Canad. Math. Bull. Vol. 17 (4), 1974

ON THE MINIMUM ORDER OF GRAPHS WITH GIVEN GROUP

by LÁSZLÓ BABAI

For G a finite group let $\alpha(G)$ denote the minimum number of vertices of the graphs X the automorphism group A(X) of which is isomorphic to G.

G. Sabidussi proved [1], that $\alpha(G) = O(n \log d)$ where n = |G| and d is the minimum number of generators of G. As $O(\log n)$ is the best possible upper bound for d, the result established in [1] implies that $\alpha(G) = O(n \log \log n)$.

We prove that

$$\alpha(G)=O(n)$$

More exactly, apart from the cyclic groups Z_3 , Z_4 and Z_5 we prove

 $\alpha(G)\leq 2n.$

It is obvious that for n=p prime, this result is sharp, i.e. $\alpha(Z_p)=2p$. As pointed out in [2], $\alpha(Z_3)=9$, $\alpha(Z_5)=15$. $\alpha(Z_4)=10$ was proved by R. L. Meriwether in 1963 (unpublished, see [3]).

THEOREM. If G is different from the cyclic groups of order 3, 4, 5 then $\alpha(G) \leq 2 |G|$.

Proof.

(i) For $|G| \le 2 \alpha(G) = |G|$. If G is the Klein group (|G| = 4), then the figure shows a graph Y with $A(Y) \ge G$ and |V(Y)| = 4.

(ii) Let $|G|=n\geq 6$. If G is cyclic, the theorem was proved in [1].

(iii) Assume that G is not cyclic and let $H = \{h_1, \ldots, d_d\}$ be a minimal generating system of G ($d \ge 2$). In the following, V(X) denotes the set of vertices, E(X) the set of edges of the graph X.

Let us define the graphs X_1 and X_2 by

$$V(X_s) = G \qquad (s = 1, 2);$$

$$E(X_1) = \{ [h_ig, h_{i+1}g] : g \in G, i = 1, \dots, d-1 \};$$

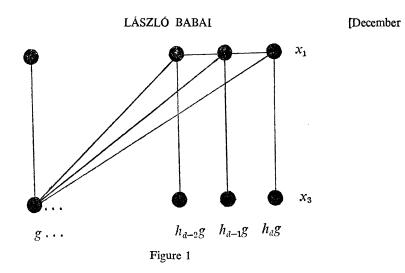
$$E(X_2) = \{ [h_1g, g] : g \in G \}.$$

The right regular representation of G is a transitive subgroup of both $A(X_1)$ and $A(X_2)$. Hence the graphs X_s (s=1, 2) are regular. Let ρ_s be the valency of the vertices of X_s . Clearly $\rho_2 \leq 2$. Hence if $\rho_1 = \rho_2$ then

(1)
$$n-1-\rho_2 \ge n-3 \ge 3 > \rho_2 = \rho_1.$$

Received by the editors September 13, 1972.

467



Let $X_3 = X_2$ if $\rho_1 \neq \rho_2$, and $X_3 = \overline{X}_2$ (the complement of X_2 , i.e. $V(X_3) = V(X_2)$; $e \in E(X_3) \leftrightarrow e \notin E(X_2)$) if $\rho_1 = \rho_2$. Let ρ_3 be the valency of the vertices of X_3 . From (1) it follows that

 $\rho_3 \neq \rho_1$.

Let us define the graph X (see Fig. 2) by

$$V(X) = G \times \{1, 3\};$$

$$E(X) = \{[(a, s), (b, s)]: s = 1, 3, [a, b] \in E(X_s)\}$$

$$\cup \{[(g, 3), (h_i g, 1)]: g \in G, i = 1, ..., d\}$$

$$\cup \{[(g, 3), (g, 1)]: g \in G\}.$$

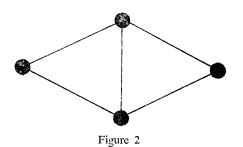
Evidently |V(X)| = 2n.

Let $A = \{\pi_g : g \in G\}$ denote the permutation group consisting of the permutations

 $\pi_g:(a, s) \to (ag, s) \qquad (a \in G, s = 1, 3).$

A acts on V(X), and clearly $A \cong G$, $A \subseteq A(X)$. We prove that A = A(X).

The valency of the vertices in $G \times \{s\}$ is $\rho_s + d + 1$. Hence, as $\rho_3 \neq \rho_1$, both $G \times \{1\}$ and $G \times \{3\}$ are invariant under the action of A(X).



468

Assume that $[h_jg_0, g_0] \in E(X_1)$ for some $g_0 \in G$, $1 \le j \le d$. Then

$$[h_{i}g_{0}, g_{0}] = [h_{i}g, h_{i+1}g]$$
 for some $g \in G$, $1 \le i \le d-1$.

That is, either

$$h_j g_0 = h_i g, \qquad g_0 = h_{i+1} g;$$

or

$$h_j g_0 = h_{i+1} g, \qquad g_0 = h_i g.$$

In the first case $h_i h_{i+1} = h_i$, in the second case $h_i h_i = h_{i+1}$; both contradict the minimality of H.

Thus

(2)
$$[h_j g, g] \notin E(X_1)$$
 $(j = 1, ..., d; g \in G).$

Let us consider the section graph S_g of X on the vertices in $G \times \{1\}$ which are adjacent to (g, 3),

$$V(S_g) = \{h_1g, \ldots, h_dg, g\} \times \{1\}.$$

From (2) it follows that (g, 1) is an isolated vertex in S_g .

Since S_g contains a connected section graph on its vertices which are different from (g, 1) and since

$$|V(S_g)| = d+1 \ge 3,$$

(g, 1) is the only isolated vertex in S_g . Hence if $\phi \in A(X)$, $(g, 3)\phi = (g', 3)$ then $(g, 1)\phi = (g', 1)$.

That is, if $\phi \in A(X)$, then there is a permutation $\overline{\phi}$ of G such that

$$(g, s)\phi = (g\overline{\phi}, s) \qquad (s = 1, 2; g \in G)$$

Let $\phi \in A(X), g_0 \in G, g_0\overline{\phi} = x$. Put $\psi = \phi \pi_x^{-1}$. Then
(3) $g_0\overline{\psi} = g_0$.

It suffices to prove that $\bar{\psi}$ is the identity. (3) implies that S_{σ_0} is invariant under $\bar{\psi}$. The only edges of S_{σ_0} are

(4)
$$[h_i g_0, h_{i+1} g_0]$$
 $(i = 1, ..., d-1).$

For if $[h_k g_0, h_l g_0] \in E(X_1)$ $(i \le k, l \le d, k \ne l)$, then $[h_k g_0, h_l g_0] = [h_i g, h_{i+1}g]$ for suitable g and $i (g \in G, 1 \le i \le d-1)$. That is, either

$$h_k g_0 = h_i g, \qquad h_l g_0 = h_{i+1} g;$$

or

$$h_i g_0 = h_i g, \qquad h_k g_0 = h_{i+1} g.$$

It is sufficient to deal with the first case:

$$gg_0^{-1} = h_i^{-1}h_k = h_{i+1}^{-1}h_i.$$

https://doi.org/10.4153/CMB-1974-082-9 Published online by Cambridge University Press

LÁSZLÓ BABAI

As a consequence of this and the minimality of H we obtain $\{i, i+1\} = \{k, l\}$, which proves (4).

(4) implies that $A(S_{q_0})$ contains only two elements: the identity and the reflection

(5)
$$\tau: h_i g_0 \to h_{d+1-i} g_0 \qquad (i = 1, \ldots, d).$$

We now prove

$$[h_d g_0, g_0] \notin E(X_2).$$

For if $[h_d g_0, g_0] \in E(X_2)$, then $[h_d g_0, g_0] = [h_1 g, g]$ for a suitable $g \in G$. That is, either

or

(6)

 $g_0 = g, \qquad h_d = h_1;$

 $h_d g_0 = g, \qquad g_0 = h_1 g,$

i.e. $h_d = h_1^{-1}$; both are impossible by $d \ge 2$ and the minimality of H.

From (6) and $[h_1g_0, g_0] \in E(X_2)$ it follows that

$$[h_1g_0, g_0] \in E(X_3) \longleftrightarrow [h_dg_0, g_0] \notin E(X_3).$$

Thus the reflection τ defined in (5) cannot be the restriction of $\bar{\psi}$ to $V(S_{g_0})$ (since $g_0\bar{\psi}=g_0$). Hence, as a consequence of (5), $\bar{\psi} \mid V(S_{g_0})$ is the identity. That is, the elements of Hg_0 are fixed under $\bar{\psi}$. By induction we obtain that the elements of H^2g_0, H^3g_0, \ldots are also fixed under $\bar{\psi}$. As H generates the finite group $G, H \cup H^2 \cup \cdots \cup H^r = G$ for some r. Thus $\bar{\psi}$ is the identity permutation of G which completes the proof.

References

1. G. Sabidussi, On the minimum order of graphs with given automorphism group, Monatsh. Math. 63, (1959) pp. 124–127.

2. F. Harary and E. Palmer, *The smallest graph whose group is cyclic*, Czechoslovak Math. J. **16**, (91) (1966), pp. 70–71.

3. G. Sabidussi, Review 2563, Math. Rev. 33, No. 3, March 1967. 1500

EÖTVÖS L. UNIVERSITY, BUDAPEST, HUNGARY

Université de Montréal, Montréal, Québeck

470