ON THE MINIMUM ORDER OF GRAPHS WITH GIVEN GROUP

BY
LÁSZLÓ BABAI

For G a finite group let $\alpha(G)$ denote the minimum number of vertices of the graphs X the automorphism group $A(X)$ of which is isomorphic to G.
G. Sabidussi proved [1], that $\alpha(G)=O(n \log d)$ where $n=|G|$ and d is the minimum number of generators of G. As $O(\log n)$ is the best possible upper bound for d, the result established in [1] implies that $\alpha(G)=O(n \log \log n)$.

We prove that

$$
\alpha(G)=O(n)
$$

More exactly, apart from the cyclic groups Z_{3}, Z_{4} and Z_{5} we prove

$$
\alpha(G) \leq 2 n .
$$

It is obvious that for $n=p$ prime, this result is sharp, i.e. $\alpha\left(Z_{p}\right)=2 p$. As pointed out in [2], $\alpha\left(Z_{3}\right)=9, \alpha\left(Z_{5}\right)=15 . \alpha\left(Z_{4}\right)=10$ was proved by R. L. Meriwether in 1963 (unpublished, see [3]).

Theorem. If G is different from the cyclic groups of order $3,4,5$ then $\alpha(G) \leq 2|G|$.

Proof.

(i) For $|G| \leq 2 \alpha(G)=|G|$. If G is the Klein group $(|G|=4)$, then the figure shows a graph Y with $A(Y) \cong G$ and $|V(Y)|=4$.
(ii) Let $|G|=n \geq 6$. If G is cyclic, the theorem was proved in [1].
(iii) Assume that G is not cyclic and let $H=\left\{h_{1}, \ldots, d_{d}\right\}$ be a minimal generating system of $G(d \geq 2)$. In the following, $V(X)$ denotes the set of vertices, $E(X)$ the set of edges of the graph X.

Let us define the graphs X_{1} and X_{2} by

$$
\begin{aligned}
& V\left(X_{s}\right)=G \quad(s=1,2) \\
& E\left(X_{1}\right)=\left\{\left[h_{i} g, h_{i+1} g\right]: g \in G, i=1, \ldots, d-1\right\} \\
& E\left(X_{2}\right)=\left\{\left[h_{1} g, g\right]: g \in G\right\} .
\end{aligned}
$$

The right regular representation of G is a transitive subgroup of both $A\left(X_{1}\right)$ and $A\left(X_{2}\right)$. Hence the graphs $X_{s}(s=1,2)$ are regular. Let ρ_{s} be the valency of the vertices of X_{s}. Clearly $\rho_{2} \leq 2$. Hence if $\rho_{1}=\rho_{2}$ then

$$
\begin{equation*}
n-1-\rho_{2} \geq n-3 \geq 3>\rho_{2}=\rho_{1} \tag{1}
\end{equation*}
$$

Received by the editors September 13, 1972.

g...

$$
h_{d-2} g \quad h_{d-1} g \quad h_{d} g
$$

Figure 1

Let $X_{3}=X_{2}$ if $\rho_{1} \neq \rho_{2}$, and $X_{3}=\bar{X}_{2}$ (the complement of X_{2}, i.e. $V\left(X_{3}\right)=V\left(X_{2}\right)$; $\left.\boldsymbol{e} \in E\left(X_{3}\right) \leftrightarrow e \notin E\left(X_{2}\right)\right)$ if $\rho_{1}=\rho_{2}$. Let ρ_{3} be the valency of the vertices of X_{3}. From (1) it follows that

$$
\rho_{3} \neq \rho_{1} .
$$

Let us define the graph X (see Fig. 2) by

$$
\begin{aligned}
V(X) & =G \times\{1,3\} ; \\
E(X) & =\left\{[(a, s),(b, s)]: s=1,3,[a, b] \in E\left(X_{s}\right)\right\} \\
& \cup\left\{\left[(g, 3),\left(h_{i} g, 1\right)\right]: g \in G, i=1, \ldots, d\right\} \\
& \cup\{[(g, 3),(g, 1)]: g \in G\} .
\end{aligned}
$$

Evidently $|V(X)|=2 n$.
Let $A=\left\{\pi_{g}: g \in G\right\}$ denote the permutation group consisting of the permutations

$$
\pi_{g}:(a, s) \rightarrow(a g, s) \quad(a \in G, s=1,3)
$$

A acts on $V(X)$, and clearly $A \cong G, A \subseteq A(X)$. We prove that $A=A(X)$.
The valency of the vertices in $G \times\{s\}$ is $\rho_{s}+d+1$. Hence, as $\rho_{3} \neq \rho_{1}$, both $G \times\{1\}$ and $G \times\{3\}$ are invariant under the action of $A(X)$.

Figure 2

Assume that $\left[h_{j} g_{0}, g_{0}\right] \in E\left(X_{1}\right)$ for some $g_{0} \in G, 1 \leq j \leq d$. Then

$$
\left[h_{i} g_{0}, g_{0}\right]=\left[h_{i} g, h_{i+1} g\right] \quad \text { for some } g \in G, \quad 1 \leq i \leq d-1
$$

That is, either
or

$$
\begin{array}{ll}
h_{j} g_{0}=h_{i} g, & g_{0}=h_{i+1} g \\
h_{j} g_{0}=h_{i+1} g, & g_{0}=h_{i} g
\end{array}
$$

In the first case $h_{j} h_{i+1}=h_{i}$, in the second case $h_{j} h_{i}=h_{i+1}$; both contradict the minimality of H.

Thus

$$
\begin{equation*}
\left[h_{j} g, g\right] \notin E\left(X_{1}\right) \quad(j=1, \ldots, d ; g \in G) . \tag{2}
\end{equation*}
$$

Let us consider the section graph S_{g} of X on the vertices in $G \times\{1\}$ which are adjacent to ($g, 3$),

$$
V\left(S_{g}\right)=\left\{h_{1} g, \ldots, h_{d} g, g\right\} \times\{1\}
$$

From (2) it follows that $(g, 1)$ is an isolated vertex in S_{g}.
Since S_{g} contains a connected section graph on its vertices which are different from ($g, 1$) and since

$$
\left|V\left(S_{g}\right)\right|=d+1 \geq 3
$$

$(g, 1)$ is the only isolated vertex in S_{g}. Hence if $\phi \in A(X),(g, 3) \phi=\left(g^{\prime}, 3\right)$ then $(g, 1) \phi=\left(g^{\prime}, 1\right)$.

That is, if $\phi \in A(X)$, then there is a permutation $\bar{\phi}$ of G such that

$$
(g, s) \phi=(g \bar{\phi}, s) \quad(s=1,2 ; g \in G)
$$

Let $\phi \in A(X), g_{0} \in G, g_{0} \bar{\phi}=x$. Put $\psi=\phi \pi_{x}^{-1}$. Then

$$
\begin{equation*}
g_{0} \bar{\psi}=g_{0} \tag{3}
\end{equation*}
$$

It suffices to prove that $\bar{\psi}$ is the identity. (3) implies that $S_{g_{0}}$ is invariant under $\bar{\psi}$. The only edges of $S_{g_{0}}$ are

$$
\begin{equation*}
\left[h_{i} g_{0}, h_{i+1} g_{0}\right] \quad(i=1, \ldots, d-1) \tag{4}
\end{equation*}
$$

For if $\left[h_{k} g_{0}, h_{l} g_{0}\right] \in E\left(X_{1}\right)(i \leq k, l \leq d, k \neq l)$, then $\left[h_{k} g_{0}, h_{l} g_{0}\right]=\left[h_{i} g, h_{i+1} g\right]$ for suitable g and $i(g \in G, 1 \leq i \leq d-1)$. That is, either

$$
h_{k} g_{0}=h_{i} g, \quad h_{l} g_{0}=h_{i+1} g
$$

or

$$
h_{l} g_{0}=h_{i} g, \quad h_{k} g_{0}=h_{i+1} g
$$

It is sufficient to deal with the first case:

$$
g g_{0}^{-1}=h_{i}^{-1} h_{k}=h_{i+1}^{-1} h_{i}
$$

As a consequence of this and the minimality of H we obtain $\{i, i+1\}=\{k, l\}$, which proves (4).
(4) implies that $A\left(S_{g_{0}}\right)$ contains only two elements: the identity and the reflection

$$
\begin{equation*}
\tau: h_{i} g_{0} \rightarrow h_{d+1-i} g_{0} \quad(i=1, \ldots, d) \tag{5}
\end{equation*}
$$

We now prove

$$
\begin{equation*}
\left[h_{a} g_{0}, g_{0}\right] \notin E\left(X_{2}\right) . \tag{6}
\end{equation*}
$$

For if $\left[h_{d} g_{0}, g_{0}\right] \in E\left(X_{2}\right)$, then $\left[h_{d} g_{0}, g_{0}\right]=\left[h_{1} g, g\right]$ for a suitable $g \in G$. That is, either

$$
g_{0}=g, \quad h_{d}=h_{1}
$$

or

$$
h_{d} g_{0}=g, \quad g_{0}=h_{1} g
$$

i.e. $h_{d}=h_{1}^{-1}$; both are impossible by $d \geq 2$ and the minimality of H.

From (6) and $\left[h_{1} g_{0}, g_{0}\right] \in E\left(X_{2}\right)$ it follows that

$$
\left[h_{1} g_{0}, g_{0}\right] \in E\left(X_{3}\right) \leftrightarrow\left[h_{a} g_{0}, g_{0}\right] \notin E\left(X_{3}\right)
$$

Thus the reflection τ defined in (5) cannot be the restriction of $\bar{\psi}$ to $V\left(S_{g_{0}}\right)$ (since $\left.g_{0} \bar{\psi}=g_{0}\right)$. Hence, as a consequence of (5), $\bar{\psi} \mid V\left(S_{g_{0}}\right)$ is the identity. That is, the elements of $H g_{0}$ are fixed under $\bar{\psi}$. By induction we obtain that the elements of $H^{2} g_{0}, H^{3} g_{0}, \ldots$ are also fixed under $\bar{\psi}$. As H generates the finite group $G, H \cup$ $H^{2} \cup \cdots \cup H^{r}=G$ for some r. Thus $\bar{\psi}$ is the identity permutation of G which completes the proof.

References

1. G. Sabidussi, On the minimum order of graphs with given automorphism group, Monatsh. Math. 63, (1959) pp. 124-127.
2. F. Harary and E. Palmer, The smallest graph whose group is cyclic, Czechoslovak Math. J. 16, (91) (1966), pp. 70-71.
3. G. Sabidussi, Review 2563, Math. Rev. 33, No. 3, March 1967. 1500

Eötvös L. University, Budapest, Hungary
Université de Montréal, Montréal, Québeck

