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The behaviour of unconjugated chromosomes has been studied mainly in haploids
and polyhaploids of the Triticinae. Riley & Chapman (1957) have recently reviewed
the literature on this subject; it has been found that during the first meiotic division
univalents are distributed to the poles either at random or that distribution was
numerically more equal. Person (1955) and Riley & Chapman (1957) interpreted
the observations as consequences of the various pairwise associations which chromo-
somes can undergo. No study of the subject has yet been attempted in Nicotiana.
An investigation of bivalent frequencies in various hybrids and haploids of this
genus by Sficas & Gerstel (1962) provided the material for the analysis of univalent
behaviour. Though the observations were made at a time when the conjugated
pairs were lying across the centre of the spindles all the univalents were frequently
located near the poles; this stage may be termed meta-anaphase following Tometorp
(1939) and Person (1955). Only those cells out of the total sample were used in
which both the number of bivalents and the univalent distribution to the poles could
be clearly identified; cells with univalents near the plate were excluded from con-
sideration.

A probability distribution was developed for testing randomness of the distri-
bution of univalents and the observations were fitted to the theoretical expectations.

1. THE PROBABILITY DISTRIBUTION

Let n\ be the number of chromosomes from one species and n% from the other, then
the total number of chromosomes in the hybrid will be N = n\ + n^. Bivalents give
an equal number of chromosomes to the poles and univalents will be assumed to be
distributed at random to either pole. The probability that a particular univalent
will move to one of the poles is 1/2, hence, the probability that u univalents will be
distributed to the two poles as x and u — x without identifying poles, will be

Dr = 2
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Statistical analysis of chromosome distribution 267

If i bivalents have been formed, then u = N — 2i and the distribution of chromo-
somes to the poles will be

A + . = 2 (*) («• for x < \
\Xf A

Equation (1) can be used to calculate the distribution of chromosomes to the poles
if the same number i of bivalents is observed in all PMC's. If the number of bivalents
varies from cell to cell the same equation could be used as an approximation to
calculate the expectations by substituting the mean number of bivalents for i. An
exact distribution for this later case will be developed. Let the probability that i
bivalents will be formed be Bt (i = 0, 1,..., iV/2, when JV is an even number, and
(N— l)/2, when N is an odd number). The probability that zero chromosomes will
go to one pole and all N chromosomes to the other will be

D(0,N) = 2(1)^0

The probability that the distribution of chromosomes to the poles will be as 1 and
N~l is

and, in general, for y < Nj2

D(y,N-y) = *Q (^Bo + 2 ^ ) (i)*-2B1+... + 2 ^ ^ ) («*-**„ (2)

and for y = Nj2, N being an even number

On the basis of equations (2) and (3) numerical values for different N's can be
calculated as follows for the case of N being an even number.

(1) ForiV = ni + W2 = 2:

D(0,2) = 50(0-5000)

D(l , l ) = JB0(0-5000)+JBI (1-000)

(2) For N = ni + n2 = 4:

Z>(0,4) = B0(0-1250)

Z>o(l,3) = 50(0-5000)+ 51(0-5000)

-Do(2,2) = JB0(0-3750) + B I ( 0 - 5 0 0 0 ) + 5 2 ( 1 - 0 0 0 )

Following the above pattern a table of the coefficients of the B's was calculated
for N = 24 (Table 1 a). This table can be used for any even number of N ̂  24 as
follows. Let D = co\[D(0,2i) D(i,2i—l)...D(i,i)] be the column vector of the
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Statistical analysis of chromosome distribution 269

distribution of chromosomes to the poles, B = {BiB^.-.B^ be the row vector of
bivalent frequency and Ai be the ith. rowed lower part of the triangular matrix A
of Table la, symbolically

A =

aly a2y
avv

an

The expected distribution of chromosomes to the poles is calculated as follows if
2t is the total number of chromosomes and i is the maximum possible number of
bivalents

D(0,2i)

a n

BQa2i+Blal(i_1)

Bo

If N is an odd number the calculations are made as follows:

(1) For N = n-i + n2 = 3:

Z>(0,3) = .Bo(0-2500)
D(l,2) = 50(0-7500) + 5i(l-000)

(2) ForiV = wi + ?i2 = 5:
D(0,5) = £0(0-0624)
Z)(l,4) = 50(0-3124)+5i(0-2500)
.0(2,3) = 50(

.. . + Bi an

(4)
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270 A. G. SFICAS

Following the pattern Table 1 b was calculated for N = 19. This table can be used
for any odd number N < 19.

An approximate method can be suggested by considering as 1:1 separation of a
number of chromosomes equal to the mean number of bivalents and assuming
random movement of univalents. For this case formula (1) can be applied, where i
is the closest to the mean bivalents integer.

Using formulae (1) and (2) (or the tables) the expected distribution is calculated
for any experiment and compared with the observed one by means of a x2 test with
degrees of freedom equal the number of classes minus one. The last low frequency
classes are pooled to an expected number > 5.

If the number of chromosomes of the hybrid is large, the test of the randomness
of movement of the univalents can be made by the use of the second moment about
D(NI2, N/2). A peaked distribution will have a smaller second moment and a
flattened distribution a higher second moment than the expected. If mi stands for
the second moment and assuming random movement of univalents to the poles, the
distribution of u univalents will follow the binomial distribution with^j = 1/2. The
expected second moment about {u\2, u/2) will be

Exp. m2(w/2,w/2) = u(\\2){\\2) = «/4
Since u = N — 2m, where m is the mean number of bivalents, the expected second
moment about D(N/2, 2V/2) equals to that about D(uj2, u/2), hence

Exp.TO2(iV/2,iV/2) = (JV-2m)/4 (5)
A test of significance can be performed by means of x2 or F

xfc-n = -Pfc-i.oo) = Obs. ra2/Exp. ra2 (6)
with degrees of freedom equal to c — 1 (where c is the number of PMC's) for x2, and
c — 1 and oo for F.

When N is an odd number the second moment is calculated about

/JV-1 N+l)

and has the same expected value as in (5).
The above relations are also valid when trivalents are formed by considering

each trivalent as one bivalent, since the third chromosome involved will move at
random to either pole. A quadrivalent should be counted as two bivalents since the
distribution to the poles of its chromosomes will be D(2,2).

The problem can be reversed when it is desired to calculate the bivalent distri-
bution given the chromosome distribution to the poles. This can be obtained by
using equations (2) and (3) (or the tables) and solving backwards for the B's. This
solution is valid if it is assumed that univalents move at random to the poles.

2. EXPERIMENTAL RESULTS

(i) N. glutinosa (n = 12) x N. sylvestris (n = 12)
In 848 PMC's out of a total of 1337, examined for bivalent frequency by Sficas &

Gerstel (1962), the chromosome distribution to the poles was clear and could be
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Statistical analysis of chromosome distribution 271

recorded; the remaining cells had a number of univalents lying at the metaphase
plate and could, therefore, not be scored. These 848 PMC's came from four samples,
namely, from two plants and two dates of sampling for each plant. The observed
data are given in Table 2 together with their statistical analysis. The expectations

Table 2. Chromosome distribution to the poles in the N. glutinosa x N. sylvestris
hybrids

Distribution

Source

Plant E1 ; Oct. 6
Exp. (adj.)t

Plant E1( Oct. 11

Exp. (adj.)

Plant E2, Oct. 6
Exp. (adj.)

Plant E2> Oct. 11
Exp. (adj.)

12-12

59
51

8

13

58
49

33
29

11-13

114
94

39

24

88
90

53
54

10-14

70
72

16

18

78
69

32
41

9-15

32
46

6

12

38
45

19
27

8-16

19
25

6

17
24

24
14

Lower*

10
16

2
—w '

10

14
16

13
9

Total
PMC's

304
304

77

77

293
293

174
174

MeanJ
II

0-97

116

0-76

1-07

15-61**

14-99***

6-40 n.s.
P = 0-30-0-50

13-56**

* The classes 7-17, 6-18, etc., were pooled.
t Expected distribution adjusted for the effect of bivalent frequency.
J Mean number of bivalent.
§ ** Significant at the 5% probability level (also in following tables). *** Significant at the 1%

probability level (also in following tables), n.s. Non-significant (also in following tables).

were adjusted for the effect of the bivalents by the method described in the previous
section. In three out of the four samples the more equal distributions were more
frequent than expected and the unequal ones rarer however, in plant E2 sampled on
October 6 the x2 test was not significant. No definite trend was observed for the
plant E2 at the October 11 sampling.

(ii) N. glutinosa (n = 12) x N. otophora (n = 12)

In 630 out of 721 PMC's, examined for bivalent frequency by Sficas & Gerstel
(1962), the distribution of chromosomes to the poles was recorded and is given in
Table 3. In the remaining 91 cells some univalents were lying at the metaphase
plate and these were therefore excluded. The expected numbers were adjusted for
the number of bivalents.

The observed distribution deviated significantly from expectation at the 1%
level in plant D9, and was not significant but close to the 5% level of significance
in plant D7. A tendency was observed for equal numbers of chromosomes to go to
opposite poles.

Further analysis was possible because N. otophora possesses five distinctly larger
chromosomes. In 134 out of the 193 cells, in which these large N. otophora chromo-
somes were identified, their distribution to the poles was recorded as presented in
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272 A. G. SFICAS

Table 4. Because no large chromosome was observed to pair with another large one,
their distribution to the poles was not affected by the bivalent frequency, and no
adjustment was needed in the expectations. The x2 test shows no evidence against
the hypothesis that the large chromosomes of N. otophora move at random to either
pole.

Table 3. Chromosome distribution to the poles in the N. glutinosa x N. otophora
hybrids

Distribution
, " , Total Mean

Source 12-12 11-13 10-14 9-15 8-16 Lower* PMC's II{
Plant D7 68 124 91 39 7 4 333 3-57
Exp. (adj.)f

Plant D9
Exp. (adj.)

65

73
57

115

108
101

80

76
71

45

25
40

19

10
18

9

5
10

333

297
297

3-23

P
9-30 n.s.

= 0-05-0-10

17-00***

* The classes 7-17, 6-18, etc., were pooled.
f Expected distribution adjusted for the effect of bivalent frequency.
} Mean number of bivalents.

Table 4. Distribution of the large N. otophora chromosomes to the poles
in the N. glutinosa x N. otophora hybrids

Distribution

Source

Plant D7

Exp.*

Plant D9
Exp.

2-3
43

36

50
47

1-4
11
* v—

22

22
24

0-5
4

4
5

Total
PMC's
58

58

76
76

3-59 n.s.,

0-57 n.s.,

X2

P = 0-05-0-10

p = 0-70-0-80

* Expected distribution.

In the total distribution of chromosomes to the poles there was evidence against
the hypothesis of random movement at least in plant D9, but one cannot reach the
conclusion that non-random movement is restricted only to the small chromosomes
because the data in Table 4 were obtained from a smaller sample (about six times
smaller) than was used in the test of the total distribution. However, here is a point
for further investigation.

(iii) N. tabacum (n = 24) x N. glutinosa (n = 12)

A large number of univalents was lying on or near the metaphase plate in most
of the cells. For this reason only in 399 out of 874 cells analysed for bivalent fre-
quency by Sficas & Gerstel (1962), could the chromosome distribution to the poles
be scored. From the plant C6 at June 18 only nine cells were recorded out of 194
and will not be used for statistical analysis. Hence, the remainder of 390 cells
represents the plant C2 at two dates and the plant C6 at one date of sampling. The
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approximate method of testing the randomness of the distribution of the univalents
to the poles is used, since the number of chromosomes is large and pairing frequency
is relatively small. In Table 5 the experimental data are given together with the
mean number of bivalents (m), and the expected distribution considering that a
number of chromosomes, equal to 36 minus twice the mean number of bivalents,
move at random.

Table 5. Chromosome distribution to the poles in the N. tabacum x N. glutinosa
hybrid

Distribution

Source
C2, May 28

Exp. (u% = 30)

C2, July 11
Exp. (u = 30)

C6, Apr. 29

Exp. (u - 28)

18-18
9

8

30
33

18

14

17-19
21

18

86
64

26

23

16-20
13

15

56
55

20

19

15-21
9

11

31
40

6

14

14-22
11

7

23
26

7

9

13-23
1

7

7
14

5

7

Lower*
2

5
6

4

lutai

PMC's
66

66

238
238

86

86

IVlCfctll

II
2-54

2-94

3-87

x2

5-83 n.s.

13-56**

306 n.s.

* Lower classes were pooled for presentation but they were used separately in calculating the second
moments.

f Mean number of bivalents.
% u = univalents.

The analysis was performed separately for the various dates and plants because
the mean number of bivalents was different. In all cases a tendency was towards an
equal distribution of chromosomes to the poles. Only one of the three cases was
statistically significant.

(iv) Haploid N. tabacum (n = 24)

Two tobacco haploids were studied for bivalent frequency by Sficas & Gerstel
(1962). In one of the haploids most of the chromosomes were scattered throughout
the cytoplasm, hence very few cells could be analysed for chromosome distribution
to the poles. The other haploid was of the 402 variety but it possessed a substituted
chromosome from N. plumbaginifolia carrying resistance to the black shank disease.
This haploid had, therefore, 23 tobacco and one N. plumbaginifolia chromosomes.
In this last haploid 450 out of the total of 500 PMC's were recorded for chromosome
distribution to the poles and are given in Table 6 together with the expected one

Table 6. Chromosome distribution to the poles in haploid N. tabacum (23t + lpb)
Distribution

'— ' , Total Mean
Source 12-12 11-13 10-14 9-15 8-16 7-17 6-18 Lower PMC's II x

2

Plant 23t+ lpb 56 122 82 70 51 40 19 10 450 0-35

Exp. (adj.)* 73 136 106 70 38 18 9 450 83-98***

* Expected distribution adjusted for the effect of bivalent frequency.
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274 A. G. SFICAS

assuming random movement of univalents, the adjustment being made by the exact
method presented in this paper. It is observed that a significant deviation from
randomness occurred in the distribution, with a tendency towards a more unequal
distribution.

3. DISCUSSION

Pairing of chromosomes assures their distribution to the poles in equal numbers
which is necessary for viable gamete production and fertility. In species hybrids,
haploids and asynaptic organisms where a variable number of chromosomes remain
unpaired at the metaphase stage, their distribution to the poles is variably unequal.
The chromosomes that remain univalents may move independently and at random
to either pole. Such a random distribution was indicated in an investigation con-
ducted by Riley & Chapman (1957) in some haploids and polyhaploids oiAegilops
and Triticum. In T. timopheevii, on the other hand, the distribution was not random.
Person (1955) concluded that non-random distribution was due to 1:1 disjunction
of associated chromosomes not joined by chiasmata.

Table 7. Summary tabulation and comparison of criteria for testing randomness of
distribution of chromosomes to the poles

Plant*
Ex Oct. 6
BiOct. 11
E2 Oct. 6
E2 Oct. 11
D7
D9
C2 May 28
C2 Jul. 11
C6 Apr. 29
23t+lpb

Distribution
compared with

expected
Peaked
Peaked
Peaked
No pattern
Peaked
Peaked
Peaked
Peaked
Peaked
Flattened

X2for
distribution

15-61**
14-99***
640 n.s.

13-56**
9-30 n.s.

17-00***
5-83 n.s.

13-56**
3-06 n.s.

83-98***

Moment about D1 —. — 1

Observed

4-53
4-45
4-95
6-40
3-36
3-15
6-77
5-59
6-52
9-10

\2 2/
Expected

5-51
5-42
5-62
5-46
4-21
4-38
7-75
7-50
7-05
5-82

F test for
moments
1-22**
1-21 n.s.
113 n.s.
1-17 n.s.
1-25***
1-39***
115 n.s.
1-34***
1-08 n.s.
1-56***

* E = N. glutinosa x N. sylvestris; H = N. glutinosa x N. otophora; C = N. tabacum x N.
glutinosa; 23t + lpb= haploid N. tabacum (with a foreign substitution chromosome).

Two cases of non-random distribution were observed in the present work:
(1) deviation from randomness towards a more nearly equal distribution (peaked
curve) (2) deviation giving a flattened curve. A summary of the results is given in
Table 7 where the second moments about D(Nj2,Nj2) were also calculated and
compared with the expected ones as described in the present paper. Both criteria
(distribution fitness and second moments) are in agreement but they do not coincide
in the significance level in all cases.

The first kind of non-randomness was noticed in all three interspecific hybrids
which were tested. Of the nine distributions, eight were peaked (four of which sig-
nificant) and one without a definite pattern. (This last case might be attributed to a
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chance effect.) An explanation, similar to that given by Person (1955), may be
offered: it is possible that some chromosomes pair and without forming a chiasma
start moving to opposite poles. This type of pairing may be similar to that observed
in certain insects by Wilson (1925) and Schrader (1940), who used the term of
'touch and go pairing'.

The second type was found in the haploid of allopolyploid tobacco with the sub-
stituted N. plumbaginifolia chromosome. I t constitutes a tendency of the whole
complement to go to one of the poles leaving a varying smaller portion to move to
the other pole. This might be related to Goodspeed's (1952) observation that hap-
loid tobacco gives a higher than expected number of restitution nuclei, which can
result either from failure of cell wall formation or movement of all the chromosome
to one of the poles.

4. SUMMARY

A probability distribution of chromosome separation to the poles was developed
to test the randomness of movement of univalents in asynaptic material where a
variable amount of meiotic pairing occurs. Two tables were calculated, one for
24 chromosomes which can be used for any even number equal or less than 24, and
the other for 19 chromosomes which can be used for any odd number equal or less
than 19.

Three Nicotiana hybrids, namely N. glutinosa x N. otophora, N. glutinosa, N.
sylvestris, and N. tabacum x N. glutinosa, and one polyhaploid were investigated.
All hybrids had a tendency towards an equal distribution of unpaired chromosomes
to the poles. The polyhaploid N. tabacum (with a substituted iV. plumbaginifolia
chromosome) had an opposite tendency, i.e. towards a flatter distribution than
expected from random distribution of univalents. A short discussion of the problem
is given.

The author is indebted to Drs D. U. Gerstel and C. C. Cockerham for review and suggestions
and the National Tobacco Board of Greece for a scholarship which enabled him to work in
North Carolina.
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