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Abstract

For two given projections p and q in a C∗-algebra, we investigate how to express the Drazin inverses of
the product pq and the difference p − q , and give applications. As a special case, we obtain the results of
[C. Y. Deng, ‘The Drazin inverses of products and differences of orthogonal projections’, J. Math. Anal.
Appl. 335 (2007) 64–71], with considerably simpler proofs.
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1. Introduction

Let H be a Hilbert space and B(H) be the set of all bounded linear operators on H.
Let A be a unital C∗-algebra with unit e. An element a ∈A is said to be normal (self-
adjoint) if aa∗ = a∗a (a = a∗) (see [17]). An element p ∈A is said to be a projection
if p2
= p = p∗. We use the notation

P(H)= {P ∈ B(H) : P2
= P = P∗}, P(A)= {p ∈A : p2

= p = p∗}.

If a ∈A, then σ(a) and acc σ(a) denote the spectrum and the set of all accumulation
points of σ(a), respectively; a is quasipolar if 0 /∈ acc σ(a), and polar if it is
quasipolar and 0 is at most a pole of the resolvent R(λ; a)= (λe − a)−1 of a. In
particular, a is simply polar if 0 is at most a simple pole of the resolvent R(λ; a).

In 1958, Drazin (see [8]) introduced a different kind of a generalized inverse in
associative rings and semigroups, one which does not have the reflexivity property, but
commutes with the element. Let a, b be elements of a semigroup. An element b is the
Drazin inverse of a, written b = aD , if

ab = ba, b = b2a, ak
= bak+1, (1)
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for some nonnegative integer k. It is well known that if a is Drazin invertible, then the
Drazin inverse is unique.

In 1996, Koliha (see [12]) introduced the generalized Drazin inverse in a ring. An
element a of a unital ring R (with unit e′) is quasinilpotent if e′ − xa ∈ Inv(R) for
every x commuting with a, where Inv(R) is the set of all invertible elements of R. Let
a ∈ R. Then an element b ∈ R is the generalized Drazin inverse of a if

ab = ba, b = b2a, a − ba2 is quasinilpotent. (2)

It is shown that a is quasipolar if and only if a is generalized Drazin invertible
(see [12]). An element a ∈A is Moore–Penrose invertible if there exists x ∈A such
that

axa = a, xax = x, (ax)∗ = ax (xa)∗ = xa. (3)

There is at most one element x satisfying Equation (3); if a ∈A is Moore–Penrose
invertible, then the unique solution of Equation (3) is called the Moore–Penrose
inverse of a and is denoted by a+. In recent years, a number of researchers have
given much attention to the Drazin inverse and Moore–Penrose inverse in C∗-algebras
(see [9, 10, 12–15]). In particular, Koliha (see [13]) found that a ∈A is Moore–
Penrose invertible if and only if a∗a (or aa∗) is Moore–Penrose invertible if and only if
a∗a (or aa∗) is quasipolar if and only if a∗a (or aa∗) is simply polar. Then a∗a (or aa∗)
is generalized Drazin invertible if and only if a∗a (or aa∗) is Drazin invertible.

In this note, the Drazin inverses of products and differences of projections in a
C∗-algebra are considered. The problem of the Drazin invertibility of the sum was
first considered by Drazin in his celebrated paper [8]. Some additive perturbation
results for Drazin inverses are given in [1, 4, 7, 11]. In particular, the Drazin and
Moore–Penrose inverses of products and differences of orthogonal projections on a
Hilbert space are obtained in [2, 6].

The aim of this note is to present some formulae for the Drazin inverses of products
and differences of projections in a C∗-algebra. As a special case, we recover theorems
and corollaries of [6] which consider similar questions on a Hilbert space. The
techniques used by Deng in [6] are based on complicated space decompositions and
on operator matrix representations which require pages of calculations. In contrast,
the methods of the present paper, based on algebraic and spectral techniques in
C∗-algebras, lead to a significant simplification of arguments.

2. Main results

To prove the main results, we shall begin with some lemmas.
If A and B are n × n complex matrices, Cline’s formula (see [3]) is

(AB)D
= A[(B A)D

]
2 B.

For a, b in an associative semigroup, if ba is Drazin invertible, then it is easy to verify
that the element c = a((ba)D)2b (see [5]) satisfies the definition of the Drazin inverse
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of ab, so ab is Drazin invertible. Similarly, if ab is Drazin invertible, then ba is Drazin
invertible. Therefore, we have the following lemma.

LEMMA 1. Let a, b ∈A. Then ab is Drazin invertible if and only if ba is Drazin
invertible.

LEMMA 2 (see [17, Remark 1.2.1]). Let a, b ∈A. Then σ(ab)\{0} = σ(ba)\{0}.

REMARK. From Lemma 2, it is clear that ab is generalized Drazin invertible if and
only if ba is generalized Drazin invertible.

LEMMA 3. Let p, q ∈ P(A). Then e − p − q is Drazin invertible if and only if pq is
Drazin invertible.

PROOF. For p, q ∈ P(H),

(λ− 1+ p) (λ− p − q) (λ− 1+ q)= λ((λ− 1)2 − pq) (4)

[16, Equation 2.5]. It is easy to verify that the equation holds for p, q ∈ P(A). Then
for λ ∈ C \ {0, 1}, it is clear that λ ∈ σ(p + q) if and only if (λ− 1)2 ∈ σ(pq).

By Lemma 1, pq is Drazin invertible if and only if pqp is Drazin invertible.
It follows from [13, Theorem 2.4] that pqp is Drazin invertible if and only if
0 /∈ acc σ(pqp). From Lemma 2 and Equation (4), we know that 0 /∈ acc σ(pqp) if
and only if 0 /∈ acc σ(pq) if and only if 1 /∈ acc σ(e − p − q) if and only if e − p − q
is Drazin invertible. 2

In the following, some equivalent conditions for pq to be Drazin invertible are
given. As a corollary, we obtain [6, Theorem 2.1].

PROPOSITION 4. Let p, q ∈ P(A). Then the following statements are equivalent:
(a) pq is Drazin invertible;
(b) qp is Drazin invertible;
(c) (e − p) (e − q) is Drazin invertible;
(d) (e − q) (e − p) is Drazin invertible;
(e) pq is quasipolar (or generalized Drazin invertible);
(f) pqp is Drazin invertible.

PROOF. (b) if and only if (c). It follows from Lemma 3 that pq is Drazin invertible
if and only if e − p − q is Drazin invertible if and only if e − (e − p)− (e − q) is
Drazin invertible if and only if (e − p) (e − q) is Drazin invertible. The proof of the
rest follows from Lemmas 1 and 2. 2

For P, Q ∈ P(H), [6, Theorem 2.4] has shown the equivalences of the following
Proposition 5, by space decompositions and operator block techniques. The proof
of [6, Theorem 2.4] is long and complicated. However, our proof of Proposition 5 is
simple and algebraic.
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PROPOSITION 5. Let p, q ∈ P(A). Then the following statements are equivalent:
(a) p − q is Drazin invertible;
(b) p + q is Drazin invertible;
(c) p − qp is Drazin invertible;
(d) q − qp is Drazin invertible.

PROOF. For p, q ∈ P(H),

(λ− 1+ p) (λ− p + q) (λ− 1+ q)= λ(λ2
− 1+ pq) (5)

[16, Equation 2.4]. It is also easy to verify that the equation holds for p, q ∈ P(A).
From Equations (4) and (5), it is easy to see that 0 ∈ acc σ(p − q) if and only if
0 ∈ acc σ(p + q). Thus p − q is Drazin invertible if and only if p + q is Drazin
invertible.

It follows from Lemma 3 that q(e − p) is Drazin invertible if and only if p − q is
Drazin invertible if and only if p(e − q) is Drazin invertible. 2

Let a, b ∈A be Drazin invertible. It has been shown that if ab = ba = 0, then
(a + b)D

= aD
+ bD (see [8, 12]). This leads to the following lemma.

LEMMA 6. Let p ∈ P(A) and a ∈A be self-adjoint and Drazin invertible. If pa(e −
p)= 0 then paD(e − p)= 0.

PROOF. Since pa(e − p)= 0, then (e − p)ap = 0, so a = pap + (e − p)a(e − p),
hence σ(pap) \ {0} ⊆ σ(a) \ {0}. It follows from 0 /∈ acc σ(a) that 0 /∈ acc σ(pap),
so pap is Drazin invertible. By a similar argument, (e − p)a(e − p) is Drazin
invertible. Thus aD

= (pap)D
+ [(e − p)a(e − p)]D . Since (e − p)pap = 0

and (pap)D
= (pap) [(pap)D

]
2, then (e − p) (pap)D

= 0, so p(pap)D
= (pap)D .

Similarly, (pap)D p = (pap)D and

[(e − p)a(e − p)]D = (e − p) [(e − p)a(e − p)]D = [(e − p)a(e − p)]D(e − p).

Thus aD
= (pap)D p + (e − p) [(e − p)a(e − p)]D , so paD(e − p)= 0. 2

In the following, we present some formulae for (pq)D , where p, q ∈ P(A). The
results of [6, Theorem 2.2(1) and (2)] follow as special cases of (a) and (e). The
result of (c) is an improvement of [6, Theorem 2.2(3)] which obtains (P Q P)D P Q =
(P Q)D P Q for P, Q ∈ P(H).

PROPOSITION 7. Let p, q ∈ P(A). If pq is Drazin invertible, then the following
statements hold:
(a) (pq)D

= qp if and only if pq = qp;
(b) p(pq)D

= (pq)D;
(c) (pqp)D

= (pq)D p;

https://doi.org/10.1017/S1446788708000451 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000451


[5] The Drazin inverses of products and differences of projections in a C∗-algebra 193

(d) p[(e − q) (e − p)]D =−(pq)D(e − p);
(e) (pq)D

= (pqp)D
− p[(e − q) (e − p)]D .

PROOF.
(a) Sufficiency is clear.

Necessity. If (pq)D
= qp, then qp(pq)qp = qp, so (qp)2 = qp. Hence pq =

(pq)2, so (pq)D
= pq, then pq = qp, by the uniqueness of the Drazin inverse.

(b) Since (e − p)pq = 0 and (pq)D
= (pq) (pq)D(pq)D , then (e − p) (pq)D

= 0. Hence p(pq)D
= (pq)D .

(c) Using Cline’s formula (ab)D
= a[(ba)D

]
2b, and letting a = pq and b = p, then

(pqp)D
= pq[(pq)D

]
2 p = (pq)D p.

(d) By Proposition 4, (e − q) (e − p) is Drazin invertible. It follows from (b)
that p[(e − q) (e − p)]D = p[(e − q) (e − p)]D(e − p) and−(pq)D(e − p)=
−p(pq)D(e − p), then

p[(e − q) (e −p)]D+ (pq)D(e −p) = p{[(e − q) (e −p)]D+ (pq)D
} (e −p)

= p[(e − q) (e −p)+ pq]D(e −p)

= p[e − (p − q)2]D(e −p).

It is easy to see that p[e − (p − q)2] (e − p)= 0. Using Lemma 6, we have
p[e − (p − q)2]D(e − p)= 0.

(e) From (c) and (d), (e) is clear. 2

For P, Q ∈ P(H), the sufficiency of the following statements is given in [6,
Remark]. By simpler algebraic and spectral techniques, we obtain the equivalence
of the following statements, for p, q ∈ P(A).

THEOREM 8. Let p, q ∈ P(A). If p − q is Drazin invertible, then the following
statements hold:
(a) (p − q)D

= p − q if and only if pq = qp;
(b) (p + q)D

= p + q if and only if pq = qp = 0;
(c) (p + q)D

= p + q − 3
2 pq if and only if pq = qp;

(d) (p + q)D
=−

1
2 p + q if and only if pq = p;

(e) (p + q)D
= p − 1

2q if and only if pq = q.

PROOF. (a) If pq = qp, then obviously (p − q)3 = p − q , so it is easy to verify that
(p − q)D

= p − q .
Conversely, if (p − q)D

= p − q , then (p − q)3 = p − q , so pqp = qpq . Hence
(pq) (pq)∗ = pqp = qpq = (pq)∗(pq), so pq is normal. Since σ(pq)⊆ [0, 1], then
by the Gelfand representation theorem [17, Theorem 2.1.10], pq is self-adjoint. Hence
pq = qp.

(b) Sufficiency is clear.
Necessity. If (p + q)D

= (p + q), then (p + q)3 = (p + q). By a direct
calculation, pqp + qpq =−2(pq + qp), so pq + qp ≤ 0. Then p(pq + qp)p ≤ 0,
hence pqp ≤ 0, so pqp = 0. Then pq = 0, so pq = qp = 0.

https://doi.org/10.1017/S1446788708000451 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000451


194 Y. Li [6]

(c) If pq = qp, then it is easy to verify that (p + q)D
= p + q − (3/2)pq .

If (p + q)D
= p + q − (3/2)pq, then

(p + q) (p + q − 3
2 pq)= (p + q − 3

2 pq) (p + q)

and, by a direct calculation, pqp = qpq . It follows from the proof of (a) that pq = qp.
(d) Sufficiency is clear, by (c).
If (p + q)D

=−
1
2 p + q , then

(p + q) (− 1
2 p + q)= (− 1

2 p + q) (p + q)

and, by a direct calculation, pq = qp. Since p + q is self-adjoint, then (p + q)D
=

−
1
2 p + q implies that

(p + q) (− 1
2 p + q) (p + q)= p + q.

It follows that 2pqp + qp + pq − qpq = 3p, then pqp = p, since pq = qp. Hence
pq = pqp = p. The proof of (e) is similar to that of (d). 2

Let p, q ∈A be projections. We denote by S(m,p) and S(n,q) an m-factor product
of p and q with first factor p and an n-factor product of p and q with first factor q;
in both cases p and q occur alternately. The result of [6, Corollary 2.3] follows as a
special case of the following result.

COROLLARY 9. Let p, q ∈ P(A). Then the following statements are equivalent:
(a) SD

(m,p) = SD
(n,q) for some m, n ≥ 1;

(b) pq = qp;
(c) SD

(m,p) = SD
(n,q) for every m, n ≥ 1.

PROOF. (a) implies (b). Without loss of generality, we assume that m 6 n.
Obviously, SD

(m,p) = SD
(n,q) implies that [(pq)D

]
m
= [(qp)D

]
n . Since p(pq)D

=

(pq)D
= (pq)Dq , we have

[(pq)D
]
m
= (pq)D p(pq)D . . . p(pq)D

= [(qp)D
]
n,

so

[(pq)D
]
m p = (pq)D p(pq)D . . . p(pq)D p = [(qp)D

]
n p = [(qp)D

]
n.

It follows from (pq)D p = (pqp)D that [(pq)D
]
m
= [(pqp)D

]
m , so [(pq)D

]
m is self-

adjoint, then [(pq)D
]
m
= [(qp)D

]
m . Similarly,

[(pqp)D
]
m
= [(pq)D

]
m
= [(qp)D

]
m
= [(qpq)D

]
m,

then (pqp)D
= (qpq)D . Therefore,

pqp = [(pqp)D
]

D
= [(qpq)D

]
D
= qpq.

As in the proof of Theorem 8(a), pq = qp.
(b) implies (c) and (c) implies (a) are clear. 2
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In the following, we present two formulae for (p − q)D and (p + q)D where
p, q ∈ P(A). As a corollary of formula (a), we obtain [6, Theorem 2.5(3)]. Formula
(b) is an improvement of [6, Theorem 2.5(4)] which leads to

P[(P + Q)D
− (P − Q)D

] (P − Q)2 = 0,

for P, Q ∈ P(H).

THEOREM 10. Let p, q ∈ P(A). If p − q is Drazin invertible, then the following
statements hold:
(a) (p − q)D

= (p − q)2[(p − qp)D
− (q − qp)D

];
(b) p[(p + q)D

− (p − q)D
] (p − q)= 0.

PROOF. (a) By Proposition 5, p − qp and q − qp are Drazin invertible. It is clear
that

(p − q)2[(p − qp)D
− (q − qp)D

]

= (p − q) (p − pq + pq − q) [(p − qp)D
− (q − qp)D

]

= (p − q) [p(e − q)− (e − p)q] {[(e − q)p]D − [q(e − p)]D}.

It follows from Proposition 7(b) that p(e − q) [q(e − p)]D = 0 and (e − p)q[(e −
q)p]D = 0, hence

(p − q)2[(p − qp)D
− (q − qp)D

] = (p − q) {p(e − q) [(e − q)p]D

+ (e − p)q[q(e − p)]D}.

Using Proposition 7(c) again,

(p − q)2[(p − qp)D
− (q − qp)D

]

= (p − q) {[p(e − q)p]D + [(e − p)q(e − p)]D}

= (p − q) {[p(e − q)p + (e − p)q(e − p)]D}

= (p − q) [(p − q)2]D

= (p − q) (p − q)D(p − q)D

= (p − q)D.

(b) To show this, we need the following lemmas.

LEMMA 11. Let p, q, w ∈ P(A). If (p + q)w = 0, then pqw = 0.

PROOF. (p + q)w = 0 implies that pwp + qwp = 0 and (e − p)qw = 0. Thus qw =
pqw and qwp is self-adjoint. Since

σ(qwp) \ {0} = σ(pqw) \ {0} = σ(qw) \ {0} = σ(qwq) \ {0} ⊆ [0, 1],

then σ(qwp)⊆ [0, 1], so qwp ≥ 0. Hence pwp = 0, then pw = 0, so qw = 0. It
follows that pqw = 0.
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LEMMA 12 (see [13]). Let a ∈A be self-adjoint. Then:
(a) a is Moore–Penrose invertible if and only if a is Drazin invertible;
(b) if a is Drazin invertible, then a+ = aD , and a2aD

= a.

The following identity was first obtained by Wedin (see [18]) for matrices and by
Harte and Mbekhta (see [10, Theorem 5]) for C∗-algebras.

LEMMA 13. Let a, b ∈A be Moore–Penrose invertible. Then

b+ − a+ = −b+(b − a)a+ + (e − b+b) (b∗ − a∗) (a+)∗a+

+ b+(b+)∗(b∗ − a∗) (e − aa+).

PROOF OF (b) OF THEOREM 10. By Proposition 5, p + q is Drazin invertible. For
convenience, let b = p + q and a = p − q . Then by Lemmas 12 and 13,

bD
− aD

= b+ − a+

= −bD(2q)aD
+ (e − bDb) (2q) (aD)2 + (bD)2(2q) (e − aaD),

so

(bD
− aD)a =−bD(2q)aDa + (e − bDb) (2q)aD,

and hence

p[(p + q)D
− (p − q)D

] (p − q)

= p[2q(p − q)D
− 2(p + q)Dq(p − q)D(p − q)

− 2(p + q)D(p + q)q(p − q)D
].

Since

(p + q) (qp + pq)= (qp + pq) (p + q),

it follows from [12, Theorem 4.4] that

(p + q)D(qp + pq)= (qp + pq) (p + q)D.

Therefore,

p[(p + q)D
− (p − q)D

] (p − q)

= 2p{q(p − q)D
− (p + q)D

[q(p − q)+ (p + q)q] (p − q)D
}

= 2p[q(p − q)D
− (p + q)D(qp + pq) (p − q)D

]

= 2[pq(p − q)D
− p(qp + pq) (p + q)D(p − q)D

]

= 2[pq(p − q)D
− p(qp + pq) (p + q)D(p − q)D

]

= 2[pq(p − q)D
− pq(p + q) (p + q)D(p − q)D

]

= 2{pq[e − (p + q) (p + q)D
] (p − q)D

}.
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Note that

e − (p + q) (p + q)D
∈ P(A)

and

(p + q) [e − (p + q) (p + q)D
] = 0;

then, by Lemma 11,

pq[e − (p + q) (p + q)D
] = 0,

so

p[(p + q)D
− (p − q)D

] (p − q)= 0. 2
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