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Abstract

The paper examines the classes JTX and I \ of Hausdorff uniform spaces which are Gj-closed
in their Samuel compactifications, or completions. It is shown that the classes are epi-reflective,
the reflections kx and yt are described, Xx and I \ are represented as epi-reflective hulls, member-
ship in the classes is described by fixation of certain zero-set ultrafilters, and it is shown that
^i = Y\ exactly on spaces without discrete sets of measurable power. The results include
familiar facts about realcompact and topologically complete topological spaces and are
closely connected with the theory of metric-fine uniform spaces.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 54 C 50, 54E15, 18 A 40;
secondary 54 B 05, 54 B 10, 54 C 10, 54 C 30.

Keywords: uniform space, metric-fine space, zero-set, ultrafilter, (7s-closure, realcompact,
topologically complete, Katetov-Shirota, epi-reflective.

This paper examines the classes $TX and I \ of Hausdorff uniform spaces which are
Gj-closed in their Samuel compactifications, or completions. It is shown that the
classes are epi-reflective, the reflections kx and y1 are described, Jfx and I \ are
represented as epi-reflective hulls, membership in the classes is characterized by
fixation of certain uniform z-ultrafilters, and it is shown that kx = yx exactly on
spaces without discrete sets of measurable power.

For a Tychonoff space equipped with its finest compatible uniformity, member-
ship in 3fx is equivalent to realcompactness, and in I \ to topological completeness
(but uniform spaces not in X[ (or F^ frequently have realcompact (or topologically
complete) topology), so the results here include results from topology (for the most
part, familiar ones). The analogy is quite faithful, as the results show.
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220 Howard Curzer and Anthony W. Hager [2]

Rather, though, than from this analogy, the classes CVX and I \ arose originally
and naturally in the studies of metric-fine uniform spaces of Hager (1974) and
M. D. Rice (1975a, b). The connection is explained in Section 5, and we shall
reprove here, more directly, some of the results from these papers.

1. Epi-reflections and (^-closures

'Space' means Hausdorff uniform space, and spaces will be denoted X, Y,....
Unif stands for the category with these objects, and maps are uniformly continuous
functions. Essentially, we shall assume that the notion of an epi-reflective sub-
category is a familiar one. For our purposes, Section 1 of Hager (1975) is a good
introduction.

Jf" is the subcategory of compact spaces. This is epi-reflective, and the reflection
kx: X-+kX is the Samuel compactification. Each reflection morphism kx is a
uniformly continuous homeomorphism with dense image (which is an embedding
if and only if X is precompact).

F is the subcategory of complete spaces. This is epi-reflective, and the reflection
yx: X-+yXis the completion. Each yx is a dense embedding.

Now let 0t be an epi-reflective subcategory of Unif for which each reflection
morphism rx is a homeomorphism (equivalently, 3$^>3T)—such as JT or F.
Given such 0t, let 0t^ be the class of spaces X for which rx(X) (or less precisely, X)
is Grclosed in rJST(that is, ifperX-rx(X), then there is a Gf-set G withpeG and
Gnrx(X) = 0).

1.1. PROPOSITION, (a) 8&x is productive and closed-hereditary, hence epi-reflective.
(b) The reflection rx X is, as a set, the Gs-closure of X in rX, and the uniformity is

the finest {that is, largest) one for which the relativization to X is coarser than the
uniformity of X.

Regarding the proof of 1.1: the verification that 9tx is productive and closed-
hereditary is routine; epi-reflectivity follows from Kennison (1965). For (b), the
uniformity described is realized as the supremum of the uniformities whose
relativizations to X are coarser than A"s; then the required universal mapping
property is verified.

1.l(b) does not convey much feeling for what the uniformity of rx X really is, but
we have not a more incisive description. The difficulties appear even for kx X, as
the following illustrates. (Ultimately, a good description of kx X will be obtained,
but this is involved.)
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[3] Zero-sets in uniform spaces 221

1.2. COROLLARY, (a) Ifrx: X-*rXis an embedding, then rxX is a subspace ofrX,
and X is a subspace of rx X.

(b) For any X, X<=YlX^yX.
(c) If Xisprecompact, then

1.3. PROPOSITION, (a) For any X, kx XnyX = yxX as sets.

PROOF. It is well known that if X is dense in Y, then kX = kY and yX = y Y.
It follows that if X is G,-dense in Y (that is, each nonvoid G^-set in Y meets X),
then kx X = kx Y and yx X = yx Y. From this, (a) follows, and (b) follows from (a).

2. Closed subspaces of products

This section concerns representing j£[ and I \ as epi-reflective hulls or something
similar.

The epi-reflective hull £%(sf) of the class s# of spaces consists of spaces isomorphic
to a closed subspace of a product of members of £0'. For example: J f = !%[0,1]
(suppressing some parentheses); with Jt the class of metric spaces and ^ the
complete metric spaces, 0l(JF) = F.

In what follows, (0,1] carries its usual uniformity: y(0,1] = k(0,1] = [0,1].

2.1. PROPOSITION, (a) (Rice (1975b)) I \ =
(b) These conditions on X are equivalent:

(1) Xejfx.
(2) The evaluation e: X^-U{(0, l],:fe U(X,(0,1])} has closed range.
(3) There is Ye 31(0,1] and a perfect map f: X-+ Y.

(c) Jl^n (Precompact spaces) = @(0,1].

We shall prove 2.1 by the technique of 'generalized perfect maps' developed in
Hager (1975): For epi-reflective 0t^>X, a (uniformly continuous) m a p / : X-> Y
is called ^-perfect if rf(rX-rx(X))<^rY-ry(Y). Given a class stf of spaces, the
class of all X for which there are Aes/ and ̂ -perfect/ : X^-A is denoted pm<o/
(and called the ^-perfect hull). A JT-perfect map is called just 'perfect', and Pjfjtf
is familiar as the 'left-fitting hull'.

2.2. LEMMA. Let 3t be epi-reflective with 0t^=>X, and suppose that r(0,1] = [0,1].
Then these conditions on X are equivalent:

(a) Xe3tv

(b) For each perX-rx(X), there is geU(rX, [0,1]) with g(p) = 0 and
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(c) For eachperX-rx(X), there isfe U(X,(0,1]) with rf(p) = 0.
(d) The evaluation e: X-*U{@, l],|/"e U(X,(0,1])} is ^-perfect.
(e)

PROOF. Sketch: (a)=>(b). If G is a Gs and psG, there is a zero-set Z(g) with

(b)=>(c). Since r(0,1] = [0,1], a g- as in (b) is an r/as in (c).
(c)=>(d). 2.10 of Hager (1975).
(d)=>(e). Obvious.
(e)=>(a). If/: Jf->- Y is ^-perfect, then whenever G is a G, in r F missing

f~\G) is a (?,$ in r Ar missing rx(X).

PROOF OF 2.1. (b) We take ^ = Jf in 2.3. Then, (1)=>(2) by 2.3 ((a)o(e)).
Assuming (1), 2.3(d) holds. But a JJT-perfect map has closed range (5.2 of Hager
(1975)), so (2) holds. If (2) holds, then e is Jf-perfect because e is a homeomorphism
(2.6 of Hager (1975)).

(c) From (b) and the fact that X is precompact if and only if e is an embedding.
(d) We shall show that 0t(JT)<^Y^pT0l{jr)^2&(jr). First, if Me^T, then

yM is metric with points G>sets. Thus, J(<=-Vx; so M(JT)<^T1 by 1.2(a). Next,
we have ri=pT$t(O,l]<=pT&(Jtr) (by 2.2; then (0,l]euT). Finally, if
XepT@(Ut), then there are AeT, Bs0t{JC), and a closed embedding of X in
A xB, by 4.4 of Hager (1975). Since T = 0t(Jt)<=-®(JC), we have
hence

2.3. REMARK. 2.1(b), read as a statement in Tychonoff spaces, is true, but the
more familiar version has the real line replacing (0,1] in (2) and (3). In Unif, this
replacement is not valid. Let X be the metric hedgehog with Ko spines. X is not
precompact, but each/e U(X,R) is bounded. Then the evaluation

e:

has precompact range which, if closed, would be compact; then X would be
compact. Likewise, if there were perfect / : X-*- Yeffl(R), again Y would be
compact, and X also.

3. Zero-set ultrafilters

For / a real-valued function, Z{f)={x\f{x) = 0}. For A'eUnif, a (uniform)
zero-set of A'is a member of &(X)={Z(f)\f bounded in U(X,R)}. A z-ultrafilter
on A" is a maximal filter in
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A z-ultrafilter J^ has the countable intersection property (cIP), if (J^cJ^,
Fa countable => ("I < ^ 0 ) - It is easy to see that if fF has cIP, then & is closed
under countable intersection (because 2£(X) is).

A family 3l of subsets of X is called discrete if there is a uniformly continuous
pseudometric p and e>0 such that p{A,E)^e for different A,B&@). If Sl 5S2,. . .
are discrete, then U 3in is called cr-discrete.

If 38 is a family of subsets of X, then co38={X-B\Be38). A z-ultrafilter <F is
said to have the co(cr-discrete) intersection property, or co(cr-disc) IP, if
coJ^ cj-discrete=>n^b^0)- Equivalently, if ( § c c o ^ , ^ <r-discrete
Evidently, this property entails cIP. (See 3.3 regarding closure under such inter-
sections.)

ForpekX, let J*, = {Z(f)\kf(p) = 0,/bounded in U(X,R)}. (Note thatp^X
if and only if 0 6 ^ ; so J^ is not always a filter.) A z-ultrafilter is called fixed if
& = &p for some peX.

3.1. PROPOSITION. Let & be a z-ultrafilter on X.
(a) IF has cIP if and only if there is {unique) pek^X with 3F = !Fp.
(b) These are equivalent:

(1) & has co(a-disc) IP;
(2) & has cIP and is Cauchy;
(3) there is (unique, p^yxX with fF = fFp.

3.2. COROLLARY. Xe Jft (resp., I\) if and only if each z-ultrafilter with cIP
(resp., co(a-disc IP), is fixed.

Prior to the proof, a few remarks are in order. A topological zero-set (that is,
of a continuous function) need not be a uniform zero-set. Let Xbe an uncountable
set with the uniformity inherited from the one-point compactification of discrete X.
Then 3?(X) consists of finite and co-countable sets, but, topologically, every subset
is zero. (Note that Chapter 15 of Gillman and Jerison (1960) speaks of topological
zero sets.)

In Tychonoff spaces, the compact reflection Q9) is the space of all topological
z-ultrafilters, but not so in Unif. For A'eUnif, the space of all z-ultrafilters is a
generally much larger 'compactification' than kX, called H(A*(kX)) and pretty
thoroughly analysed in Hager (1969); 3.1(a) above more or less follows from 4.2
and 5.3 there. (The space is also called an 'Alexandroff compactification'; see 7.5
and Section 9 of Hager (1974).)

PROOF OF 3.1. (a) ixXpek^X. We show that J^, is a z-ultrafilter with cIP. First,
^ is a z-filter: If Z(J) and Z(g) e&j,, then Z(f) n Z(g) = ... = Z( | kf\+1 kg \) n X,
which is nonvoid because pek^X; If Z(g)^Z(f)e!Fv, we can arrange it that
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f, hence O^kg^kf, so kg(p) = 0 and Z(g)e^r
p. Next, J^ is maximal: If

^, then p$Z(kf) and there is (by complete regularity of kX) Z(kg) con-
taining p and missing Z(kf); then Z(g)e^p, while Z(f)nZ(g) = 0. Finally, J^
has cIP. Let Z(f^,Z<J£,... e&'p, and suppose (as we may) that 0^fn^2~n; now
peeach Z(A/J, h e n c e / > e r U W J = Z(Skfj = Z(k£/„); so

f| Z(/n) = XnZ(A: 2 / n ) = Z(Zfn)eFp.

Conversely, suppose <F has cIP. Then there ispe f\{Z\Ze^} (closures in kX),
because the family has the finite IP and kXis compact. Let G be a Gs containing/?.
We may suppose that G = f\nZn, where each Zn is a zero-set of kX with p in its
interior. Clearly then, Z m n Z ^ 0 for each Ze ,F . Thus each ZnnXe^ (since &
is maximal), and therefore GnX = f]n(ZnnX)^0, by cIP. So / je^X. Thus,
by the other half of this proof above, !Fp is a z-ultrafilter. Since clearly, fF<^!Fp,
equality follows.

(b) (1)=>(2). Suppose J5" has co(a-disc) IP, and let % be a uniform cover of X.
Choose a metric space M and uniformly continuous/: X^- M such that / - 1 (^) < ^ ,
where ^ is the collection of 1-spheres in M (see Isbell (1964)). Now choose a
a-discrete open cover "T refining S?, by Stone (1948). It suffices to show that some
member of SP is contained in a member of / ^ C O - If not, then given Ve'f,
/ - i (F)*Ffor each Fe &; that is, ( ^ - / " K H ) D ^ 0. In M, each closed set is a
zero-set, so X-f-\V)e^. But flrC^-Z'H^)) = 0, a contradiction.

(2)=>(3). Let & be Cauchy, with CIP. Then & = ̂  for />e£1A', by (a). If
^"* is the filter in the power set of yX generated by J*", then #"* is Cauchy on yX,
and converges to some qeyX. liq^p, then choose a zero-set neighbourhood Zg of
^ in kX not containing />, then a zero-set Zp of ArX containing p and missing Z r

Then ZpnX and Z ? n l are disjoint members of &'v, a contradiction. Thus p = q,
and p e yXn kxX =yxX (using 1.3).

(3)=>(1). Let peyxX and let 2s<^co& be a-discrete. So S = U ^ « ' w h e r e f o r

each n there is a uniformly continuous pseudometric pn and em > 0 such that 3>n

is en-discrete for pn. Each />„ has an extension to a uniformly continuous pseudo-
metric ypn on yX. Let Zre = {x£A'|ypn(/?,x) = 0}. Clearly, ZneJ*p . Then

Now suppose X= \J{D\De\J^n). Set Zre = \J{D\De^^, so Ar=(J^n-
Fixing «, if Z n Z B # 0 then there is a single D%e3in with Z n I n c / ) « (For,
choose/>0eZnIn, then unique £>£e^m withpoeD$. Then />„(/><>> Z)) ̂  en > 0 for any
D<=2)n with i)^Z»ff. Thus 0 = Z)nZB = DnZ.) Thus, A = U M ( ^ n ^ J c U n ^ o -
But UB D$ e co&p so X - \Jn Df and Z are disjoint members of J^, a contradiction.

It is frequently convenient to know that a z-ultrafilter with cIP is closed under
countable intersection (as in the proof of 3.1), and so one naturally wonders about
closure conditions for z-ultrafilters with co(a-disc) IP. The difficulty is that a
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union of a discrete family of uniform cozero sets need not be cozero. Indeed, if X
has such a discrete family 2, then for any p e X— \J 9), «Fp has co(a-disc) IP of
course, ^<=co^ but U ^ ^ c o ^ p . However:

3.3. PROPOSITION. In a uniform space X
(a) These properties of a discrete family 9) are equivalent.

(1) U 3l is cozero.
(2) For each 9'^Si,\J & is cozero.
(3) 2 = {cozg\g e Sf} for some equiuniformly continuous family £f <= U(X, R).

(b) A z-ultrafilter & has co(o-disc) IP if and only if 3F has cIP, and \JSieco^
whenever 9> is as in (a).

PROOF, (a) (2)=>(1) is obvious. (1)=K3). Let 2 be e-discrete for p, let |J Q = cozf
with 0 < / < l , and for DeS>, let fD = ((e-pO>,£>))v2e. Then Sf = {ffo\De2>}
works. (3)=>(2). For & = {coz^e,?"}, \}2' = cozS te l^e^ ' } .

(b) If J*" has co(a-disc) IP, then SF has cIP of course. Suppose 3) is discrete,
S<=coJs', U ^ is cozero, but U ^ ^ c o ^ . Then Z = Ar-(J^^-^ r , so there is
ZoeJf with ZnZ0 = 0. Then {{Z-Zo^u^ccoJ5 ' is o-discrete, but

Conversely, if & has the stated properties, then condition (2) in 3.1 can be
derived exactly as (1) => (2) there.

4. jrx versus I \

The main result here is a uniform version of the Katetov-Shirota Theorem.
It is almost exactly analogous to the (topological) version presented in Curzer and
Hager (1976); so we can be brief.

Recall that a set S has measurable power if there is a countably additive
{0, l}-valued measure /A on the power set of 5, with ni{p}) = 0 for each peS and
fi(S) = 1; equivalently, if each ultrafilter in the power set with cIP is fixed (12.2
of Gillman and Jerison (I960)).

Let JV be the class of spaces which have no discrete set of measurable power;
equivalently, each uniform cover has a uniform refinement of nonmeasurable
power. It is not hard to see that JV is productive and hereditary, hence epi-reflective
in Unif; let n: Unif->^" denote the reflecting functor. It can be shown that a base
for nX is the set of all uniform coverings of X of nonmeasurable power. (See
Isbell (1964), p. 52.)
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4.1. PROPOSITION, J ^ = T-^nJT andkx = y1on.

4.2. LEMMA. For any X, if & is a z-ultrafilter with cIP, then whenever ®
is discrete of nonmeasurable power, and (J S>' is cozero for each S>' <= S>, then

Hence, if XEJV, then each z-ultrafilter with cIP has co{a-disc) IP.

PROOF. For the first part, the proof of 7 of Curzer and Hager (1976) can be
copied. (The reference is to the corresponding statement for Tychonoff spaces.
There, the hypothesis that the sets U &" be cozero is unnecessary.)

The second part follows using 3.3.

PROOF OF 4.1. Let Xe Y^Jf, and let 3F be a z-ultrafilter with cIP. By 4.2, &
has co(a-disc) IP. Since XeYx, & is fixed, and thus XejTx (using 3.2 twice).

Now, J^<= ri5 by 1.3. Let Xe tfx and let D be discrete in X. Then D is closed,
so by 1.1 DeX[. The relative uniformity on D is discrete, so 2t{D~) is the power
set ^(D). So saying that De J^[ is saying that D has nonmeasurable power.
Thus J^c^T.

We show that kx = yxo«. Given X, y^nXsYx since yx operates last. It is trivial
to check that y^V^^V; thus ynXe^V. Since JV is hereditary and yxnX<^ynX
(\.2),y1nXeJr as well. Thus yxnXetfx. Now let YeJif[, and \<slfeU{X, Y).
Then nfeU(nX, Y) (since YeJT), and y1«/e[/(y1nAr, 7) (since YeT^. Unique-
ness of y!«/(as a 'lift' of/over JST->«Z-^y1«A') is easy. Thus, kxX = yxnX for
every X.

4.3. COROLLARY. JTX =

PROOF. First note that 3i{Jf)n@(jV)=z T1n^V = Jfx by 2.1 and 4.1. Now
@(~rfn^'V)<=3?(<jr)n&(Jr) is obvious. If Xs^{Jf), there is a closed embedding
e: X^\\oLMa(Mae-^)- Then e: X^Y[aTTa(e(X)) is also a closed embedding, and
each 7Ta(e(X))e<jr. But for XeJ/~, each 7ra(e(JO)e./r. (^" is closed under
uniformly continuous images: a discrete set in the image induces one in the domain.)
Thus, ^{JT) nJs'c M(^K n Jf).

4.4. REMARK. For more general 0t^>^T, we have this: If ̂ => F, then each rx is
an embedding, so X <= rx J c r x, by 1.2. If ̂  e r n Jf, then / 1 c J 1 c r i n / = / ] ;
that is, £%x = J^. Thus, knowledge of 8&x (and rx) is complete except when
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5. Metric-fine spaces

We shall discuss briefly the theory of these spaces, and what it has to do with
JJ^ and I\.

A space X is called metric-fine if each uniformly continuous map of X to any
metric space M remains uniformly continuous when M is re-equipped with its
finest compatible uniformity. These spaces were introduced in Hager (1971),
and systematically examined in Hager (1974), Frolik (1974), Rice (1975a), which
see.

The property is coreflective in Unif; the metric-fine coreflection of X is denoted
mX. The space meX (eX having base of countable uniform covers of X) has base
of all countable cozX-covers, and mX has base of all cozA'-covers which are
o-discrete with respect to X. It follows that &(mX) = 2£{meX) = 2£{eX) = 2£{X)
and so the z-ultrafilters of X, eX, meX and mX are all the same. (The space of all
z-ultrafilters of X is kmX, by the way (Hager (1974).)

It follows relatively easily that for a z-ultrafilter ^ o n l (a) !F has cIP if and
only if & is Cauchy for meX, (b) & has co(o--disc) IP if and only if & is Cauchy for
mX. ((a) is implicit in 8.4 of Hager (1974), (b) is closely related to 3.5 of Rice
(1975b)—using (2) of 3.1.) Thus, from 3.2 here, (a) XeJfx if and only ifmeXeT
(which is almost in 8.1 of Hager (1974)), (b) XeT-^ if and only if mXeT (in
Rice (1975b)).

That Jf1=T1 nyT can thus be put: meXe T if and only if mXe T and XeJ^.
This is almost 8.1 of Hager (1974), and is in 2.2 and 2.3 of Rice (1975b). (Each of
these results uses Katetov-Shirota Theorem in its proof, of course.)

Rice (1975b) also has results related to 2.1(b) and (c).
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