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ABSTRACT

In this paper we extend the work of Reinhard and Snoussi (2000) by develop-
ing a recursive system for finding the distribution of the surplus prior to ruin
in a discrete semi-Markov risk model.
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1. INTRODUCTION

In classical risk theory, various quantities for a classical surplus process have
been treated in the actuarial literature in various kinds of risk models. These
quantities are the probability of ultimate ruin, the distribution of the severity
of ruin, the distribution of the surplus immediately prior to ruin and the joint
distribution of the surplus immediately prior to ruin and the severity of ruin.
The study of these quantities has been extensively treated in recent years,
some key references being Bowers et al. (1987), Gerber (1979, 1988), Gerber
et al. (1997, 1998), Dickson (1992), Dickson et al. (1992), Dufresne and Ger-
ber (1988), Klugman et al. (1998), Reinhard (1984), Snoussi (1998).

In this paper we are interested in the distribution of the surplus prior to
ruin in a discrete semi Markov risk model. The classical results concerning
this distribution for the continuous time risk model were first discussed in
Dufresne (1989). This work was extended by several authors such as Gerber
and Dufresne (1988), Dickson (1992), Willmot and Lin (1998) and Gerber and
Shiu(1998).

Dickson (1992) and Dickson et al. (1995) study the distribution of the sur-
plus prior to ruin in a fully discrete claims model where time, claim amounts,
premium and initial surplus are assumed to be integer valued. Our purpose in
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this paper is to extend this work to a more general discrete model where we
assume that the claims are influenced by a Markov chain (see Reinhard and
Snoussi (2000)). Assumptions of this kind have been discovered in a Markov
modulated model where the intensity and the premium can fluctuate accord-
ing to a Markovian environment. References we may cite on this topic are
Asmussen (1989), Grandell (1991), Janssen and Reinhard (1985), Reinhard
(1984) and Snoussi (1998). This type of modelling motivates the present work.

2. THE DISCRETE SEMI-MARKOV RISK MODEL

In this section we are interested in a discrete time semi-Markov risk model
introduced by Reinhard and Snoussi (2000), and defined as follows: Denote
by (/„, « e N ) a homogeneous, irreducible and aperiodic Markov chain with
finite state space M= {1,..., m} (with 1 < m < °°) which influences the distri-
bution of the claims in each period. The variable Jn can be interpreted as the
type of economic environment for period n. Asmussen (1989) discusses car
insurance where the states of ( /„,«£ N) describe weather conditions. Denote
by P~ (j>ij)ij e{i,..., m> the transition probability matrix of (Jn):

Pij=P(Jn=j\Jn-\ = i,Jk k<n-\),

and by n = (nh ..., nm) its unique stationary probability distribution. The insurer's
surplus at the end of the ?-th period (? = 1, 2, ...), Z,, satisfies the following
relation:

Zt = Zt.x + c-Xt (t=l,2,...), (1)

where X, denotes the total amount of claims for the t-th period (t = 1,2, ...)
and c the total premium for each period. We suppose that the insurer's initial
surplus Z o e N = {0,1,2,.. .}, cGN and that the A?s are positive and integer-
valued random variables, conditionally independent given the Markov chain
(/„, n e N). Moreover we suppose that (/„ Xt) depends on {Jk, Xk; k < t-\)
only through / ,_ ] . Let

gij(k)=P(Xt=k,Jt=j\jt^=i,Jk,Xk k<t-\), (2)

and
m

T (3)
7 = 1

m m k

7 = 1 7 = 1 «=0

for / = 1, ..., m, k> 0. We suppose that there exists at least one pair {/,/} such
that pjj> 0 and the distribution of Xt given Jt_\ = i and J, =j is not degenerate.
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In this case the process {(/„ Z,-Zo), t &N} is not degenerate (see Newbould
(1973)).
Assume further that for all i and j

yiJ=E{Xt\Jr_n\jl.{= i) = ^kg(l(Jc)< oo, (5)
k = \

and define

y*=HniHyij- (6)
ieM jeM

If the distribution of J{) is n, we have

y=E{Xt) (W=l,2,...). (7)

It is well known that n~\c-y*) is the expected increase of the surplus process
{Zt, t = 0,1,2,...} between two successive visits of the Markov chain (/„, neN)
to state j (see for example theorem 2 in Reinhard, 1984).
Let T be the time of ruin:

r = i n f { / e N | Z ( < 0 } . (8)

We are interested in the ruin probabilities

ri(u)=P(T<oo\Z0=u,J0=i) (uGN;i=l,...,m). (9)

y/j{u) represents the ultimate ruin probability given that the initial surplus is
u and that the Markov chain (/„) starts in state i. Let cP,(w) = 1 - y/j(u) be the
corresponding survival probability. It follows easily from Janssen (1970, theo-
rem 3A) or Newbould (1973, theorem 1) that

• If y*< c then limZ,,= oo a.s. and ̂ ,-(co) = lim^1-(w)= 0, Vz'e {\,...,m},
I7 — OO U—>CG>

• If y*> c then \imZn = -oo a.s. and (//,(«)= l,Vf G {\,...,m} and Vw > 0,

• If y*= c then limn ooZn = oo a.s., hjn^^-Z^-oo a.s. and ^,(w) = 1, Vz'e
V M > 0 .

We suppose therefore that y*< c.
We will also consider the quantity ZT_X which is the surplus prior to ruin.
We define therefore

?l(u,x)=P(T<™,ZT_l<x\Z0=u,J0=i). (10)

If the values of Jt (u, x) are known, we can use them to calculate the probabil-
ities of ruin V, (u) as

(M,x) (U<EN,IGM). (11)
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We shall use the following notation throughout this paper. Let y4 = (ay)IJ G{1? _ m}
be a matrix in Rmxm, then we denote by A.x the vector (a2i,...,ami)' in Um~\
A.i will denote the vector (a12,...,aim) in 1R . The matrix (fl/,Jye{2,...,m} m

R,(m-i)x(m-i) is denoted by A^\ Finally, we denote by N the set of the non-neg-
ative integers, and by No the set of the non-null integers.

3. RECURSIVE FORMULA IN A PARTICULAR CASE WITH C = 1

In this section we assume that the annual premium c = 1 and the annual result
c~Xt (t= 1,2,...) may be positive only in periods starting in state 1. There-
fore, we will assume in the sequel of this paper the following condition:

Note that the assumption c = 1 could be motivated with the argument that
one is free to choose the unit time interval. The restriction on the total claim
sizes (12) is essential to derive an explicit formula for ^(0 ,x) One possible
application could be an insurance contract where, when the insured is in
state 1 (e.g. healthy) he pays a premium c, and when the insured is in state 2
(e.g. sickness), the payment of the premium is interrupted and the insured
receives the contract benefits.

In Subsections 3.1 and 3.2, we give an explicit formula for ^(0,x)(with
x e No) in the m states model and we show how to calculate J, (u, x) for u e No,
by a stable recursive system. In Subsection 3.3, we give a recursive stable algo-
rithm to compute the joint distribution of surplus prior to ruin and the sever-
ity of ruin. Finally, in Subsection 3.4, some numerical examples are presented
to illustrate our results in the two-state model (the case m = 2, i.e. the envi-
ronment process has only two states).

3.1. Model with m states

By conditioning with respect to the first period's result, it is easily seen that
the probability that ruin occurs from initial surplus (u e N) in state / and that
the surplus prior to ruin is less than x (with x G No), satisfies the following
equations:

i(u,x)=%Uflgijik)Tj(u + \-k,x)+ ^gi(k), ifu<x
j=\ lc=0 k=u+2

(13)
m u+l

i(u,x) = J] YigiA^Tj (u + l-k,x), if u > x,(i= l,...,m).
y=l k=0
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In order to solve the above system under condition (12), we introduce the fol-
lowing probabilities:

where

ii(u,v)=P(ZT=v\Z0=u,J0=i) (i

= inf{nGN\Jn=l}.

(14)

As pointed out by Reinhard and Snoussi (2000), Kt{u, v) depends only on the
difference u-v. Therefore, we define for dGM: Kj(d) = Kj(u,u-d).
Let

(15)

(16)

It can be shown (see Reinhard and Snoussi (2000), equation (29)) that Kj(d),
de.N,ie. {2,...,m}} may be calculated through the following stable recursive
system:

(17)

Note that (Jn,n £ N) is ergodic. Therefore lm-\-g (1) is invertible, where Im-\
is the unit matrix in u(m'l)x<m~l}.
Next, we define for u = 0,1,2,... and /G {2,...,m}

!F'(u,x)=P(T<T,ZT-l<x\Zo=u,Jo=i) (18)

to be the probability that, starting with surplus u in state /, i e{2, ...,m}, ruin
occurs before or at the first visit to state 1 and that the surplus prior to ruin is
less than x, where x > 0. Hence, by the law of total probability, we get for u > 0
and x eN0

m u+l

7 = 2 / = 1

m «+l

l=u+2
), ifu<x,

if u > x.
7=2 /=!
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l^m-l

g(u)=(g2(u),...,gm(u))' Gf"'.

Thus, we have that W*(u,x),u e l \ J , i e No, / e {2,...,m}} may be calculated
by the following stable recursive system

/=w+2 /=0

/=0

09)

i f « > x

We have for u > 0 and x € No:

7i (u, x) = 2 D<« (M - v) J , (v, x) + j ; (u, x). (20)
v=0

If starting with surplus u in a state / (/' e {2, ..., m}), ruin occurs with a surplus
prior to ruin is less than x, then

• either, ruin occurs before or at the first visit to state 1 and the surplus before
ruin is less than x;

• or, the first visit to state 1 occurs with a positive surplus v and thereafter
ruin occurs from this new surplus with surplus before ruin is less than x.

The probability of the first event is J*(u,x) and the probability of the second
event is the first term in the right-hand side of (20).
Now it remains to calculate f\(',x). Introducing (20) into (13) with / = 1, we
obtain: for u < x

/=0
(21)

7=2 /=0

and, for u > x:

m u+\
7,(u,x) = 2 / © J i ( u +1 -/,x) + 2 2gxj(I)7*(u + l-l,x), (22)

1=0 7=2 /=0
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where
m 1

7 = 2 v=0

Rearranging (21) and (22) yields for u e No, if u < x:

1
T\(u,x) =/(0) /=0

- 2 2 gij (I) 7* (u-!,x)-l + Gl (u)
7=2 /=0

and, if u>x

M /=0

/=2 /=0

(23)

(24)

(25)

Formulae (24) and (25) can be used to calculate J\(u, x) recursively provided
that the value of f{{0, x) is known. Using an approach similar to that used by
Reinhard and Snoussi (1998), for a fixed value x, we define

(26)

J
\d(u)= J\(u,x)-fx(u-\,x\

It is straightforward to show that:

7=2

Then, for 0 < u < x,

1=2

d(u) = 2 /(/)̂ (w + 1 - 0 + 2 2 gy (0/; (« +1 - 0 - gi (« +1).
/=() y=2 /=0
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For u = x

For M >

/=0

/=o

J.M. REINHARD AND M. SNOUSSI

m u+\

7=2 /=0

m w+1

y=2 l=o

m w+1

y2 lo

We also define these generating functions

and

So we can write

r=\

r+1

/=0

r=0

7=2

l=x+l

7=2

Then, by interchanging the order of summation, it follows

d(s) = S-
] <p(s)d(s)

7=2

r=0 /=

Finally, we obtain

_
(7 (^) —

[f(Q)d(0)+2;=2 giy (Q)/; (0)
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Since d(l)=7i(oo,x)=0,<p(\)=l,forie{2,...,m},wu(l) = pu and S*(l) =
J*{co,x)= 0, both the numerator and denominator go to zero when s—> 1.
Using ^>'(1)/1 [see Reinhard and Snoussi (1998)] and applying l'Hospital's
rule when s —> 1, we get:

0 =/(0)d(0)+
,=2 - 0

JC — 1
V '

r=0

Then, we have

/(O) r=0

i

/=2 .x=0

(28)

Formula (28) allows us to calculate iTi (0, x) provided that the value of 2 _0 xf* (x)
for jG {2,...,m} and 2^d''g'i('' + l) + -x;2"v+1gi(r) a r e known. It is easy to
obtain,

f = 0 r=.v+l

x-l

2
c=0

We note that

x-1 /

/=1 r=l

r=0

r=0

(29)

Therefore, if we let
G IRml we can write

— 1

2*(«,X),...,S"=0F*m(u,x)j and e = (l,..., 1)',

2 2
«=0/=M+2
x - l

«=0

H=l/=0

»=2

where
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Hence,
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-1 x-l

(31)

Consequently, the value of f\ (0, x), for x G No, is explicitly given by

1=2 u=0

(32)

Although we experienced that this algorithm provides very good approxima-
tions for moderate values of u, unfortunately we have some doubts about
stability (see Panjer and Wang (1993)) of the recursive scheme based on for-
mulae (24) and (25). Therefore we may not exclude that in some particular
cases, the rounding errors could blow up, producing meaningless results. For
example the algorithm could produce computed values of J\ (u, x) (for « £ N
and xG No) outside the interval [0,1]. An alternative stable recursive method
to calculate fi(u,x) is proposed in the following subsection.

3.2. Stable Algorithm

Starting from

^_ 1
/(0)

x-l

1=2 J H=0

We can calculate J\{u,x) for x £ No from the following formula:
For u < x

X-U — l oo

(33)
7 = 1 y=\ v=() y=u+\

where in the right member of the last equality we define

(Vu>0,i(E{l,...,m}),

to be the joint density of the surplus prior to ruin and the severity of ruin.

(34)
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For u > x, we have

7i(u,x) = 2 2>I/(O,J07) (u-y,x). (35)

Formula (35) follows by considering the first time on which the surplus
falls below its initial level. The first term of (33) follows from the similar
argument. The second term in (33) comes from considering the situation
when ruin occurs on the first time that the surplus falls below its initial
level.

Note that, i//y(0,y) for y > 1 and j G {1,..., m}, are calculated explicitly from
Reinhard and Snoussi (1998), that is:

( 3 6 )

and

which appears as (equation (45), (46)).

Finally ^,-(M,X),/G {2,...,m}, can be calculated from

71 (u, x) = 2 K (u - v) 71 (v, x) + 7* (u, x). (38)
v=0

Following Theorem 7 of Panjer and Wang (1993), this is a stable recursive algo-
rithm. Next we show how to calculate explicitly fi(0,x,y).

3.3. The joint distribution of the surplus prior to ruin and the severity of ruin

We define

7i(u,x,y)=P(T<o0,ZT>-y,ZT-l<x\Z0=u,J0=i), (39)

to be the joint distribution of the surplus prior to ruin and the severity of
ruin.

https://doi.org/10.2143/AST.31.2.1005 Published online by Cambridge University Press

https://doi.org/10.2143/AST.31.2.1005


266 J.M. REINHARD AND M. SNOUSSI

By conditioning with respect to the first period's result, the distribution (39)
may be calculated from the following equations

fi(u,x,y)= if u<x2 Ti
je{l,m}k=0

k=u+2
(40)

if u> x(i= l,...,m).

Next, we define

7*(u,x,y)=P(T<T,ZT>-y,ZT-1<x\Z0=u,J0=i)(i=2,...,m), (41)

to be the probability that, starting with surplus u in state /(/ e {2,..., m}), ruin
occurs before or at the first visit to state 1 and the surplus before ruin is less
than x (where x > 0) and the deficit is great or equal to y (where y > 0). Hence,
by the law of total probability, we get for u > 0 and x j e N o

(u, x,y) =

;=11=0 /=«+2

i f u

if u > x.

(42)

y=l1=0

We define

It is easy to show thati!F*(pi,x,y), uE.N,x,y GN0,iE. {2,...,m}|may be cal-
culated by the following stable recursive system

-1

l=u+2 1=0
(43)

2
1=0

if u> x.

https://doi.org/10.2143/AST.31.2.1005 Published online by Cambridge University Press

https://doi.org/10.2143/AST.31.2.1005


A DISCRETE SEMI-MARKOV RISK MODEL

We clearly have for u > 0 and X J G N O :

?,(u,x,y)=j]K(u-v)Tl(v,x,y)+!F*(u,x,y) (/e{2 m}).

By substitution of (44) into (40) with i = 1, we obtain:
for u < x,

u+\

Ti(u,x,y)=Yif(l)?l
1=0

in u+\

-l, x,y)

j=2 1=0

u+y+\

V = U + 2

and, for u > x, we have

1=0
m u+\

+ 2E^
7=2 /=0

Rearranging (45) and (46) yields for u e No, if u < x:

2 r u-\

/(0) /=0

y=2/=0 v=w+l

and if M > x

l,x,y)=-f,
/(0) /=0

-2 2
7=2 /=0

267

(44)

(45)

(46)

(47)

(48)

Then, following the same steps as for the proof of (32), the required explicit
value for J|(0,x,y) can be obtained by

1
/(0)

x-\ r+y+\

'2 2
r=0 w=/- + 2

'=2

«=0 l=u+2

(49)

(x,y
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Now, the desired values for fl(0,x,y) are obtained by the following equations

(50)
\

and

fi(O,x,y)

1
/(0)

(51)
(x,yeNo).

An alternative stable recursive method to calculate J\{u,x,y) is proposed below.
We use the same arguments as in the previous subsection. We can write, for
u<x,

T1(u,x,y) = f]Yly/y(O,k)fj(u-k,x,y)+XYl 2/,(O,v,Ar), (52)
7=1 k = \ v=0 k = u+l

and for u > x,
m u

•(u-k,x,y). (53)
7=1 k=\

Using the formulae (52), (53) and starting from the following value

),v,k), (54)
v=0 k = \

allows us to calculate J\(u,x,y) recursively by a stable algorithm.

Finally, yr
1(u,x,y),iG {2,...,m}, can be calculated from

u,x,y). (55)
v=0

We can summarize the recursive scheme to calculate iF, (u, x) for uGN,x£f*!Jc
and / E M, as follows:

• Step 1: Calculate the distribution {K/(d),dG N,/E {2,...,m}} by the recur-
sive formula (17).

• Step 2: Calculate the probabilities \¥*(u,k),u = 0,1,2,...,k= 1,2,...} by the
recursive formula (19).
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Step 3: for u = 0,1,2,..., calculate

- the probabilities Jx(u,k) by the recursive formulae (33) and (35) initial-
ized by (32). Using the values obtained for f\(0,x,y) by formulae (50)
and (51), the values obtained for y/u(0,v) with / e {[,..., m}, 1 < v < u by
formulae (36) and (37) and also the previous values obtained for J](v,k)
and fi(v,k),i<E {2,...,m}, with 0 < v< w-1.

- the probabilities Ji(u,k),i^ {2,...,m}, by formula (38) using the values
obtained for

3.4. Application: the two-state model

In this subsection we consider the results obtained in subsections 3.1 and 3.2,
in the case m = 2, i.e. the environment process has only two states: state 1 and
state 2. Therefore, equations (13) become

U + \ OQ

7i(u,x)= 2 ^igij(k)7j(u + \-k,x)+^1gi(k) ifw<x
}/t=0 k=u+2

J,(u,x)= 2 *Zg,j{k)!Fj(u + \-k,x) if «>*(/= 1,2).

It follows from (17) that {K2(d),de. M} may be calculated by the following
stable recursive system

(57)

and from (19) we get the following recursive stable system for 72(u,k):

*, _ 2jl=2g2(l) _ _

2 ^ 2 (58)
/=0 /=H+2 J

ifM> X

Equation (20) is here equivalent to

72 (u, x) = 2 0<2 (M - v) 71 (v, x) + 7 2 (u, x). (59)
v=0
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Then, the required stable recursive system is based on the following formula,
for u < x

(60)
y=u+\

and, for u > x

7i(u,x)= (u-y,x). (61)
7 = 1 y=\

To start the recursive scheme (60) and (61), we use formula (32) which is here
equivalent to

where

1
/(O)

x-l V o.(v

2(l-gi(/+D)-gi2(P)frg
2 m'

/=0 1 522 W;

x-l

r=0

2(0)IK2(0).

(62)

The joint density of the surplus prior to ruin and the severity of ruin with no
initial surplus is given by

and

Example 1. We will use the same example as in Reinhard and Snoussi (2000).
Let m— 2, c — 1 and the distribution of the claim given by

k

0
1
2

3
>4

5/8
1/8
1/8
0
0

gn(k)

0
1/8
0
0
0

ft,W

0
0
1/2
1/6
0

0
1/6
1/6
0
0
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Reinhard and Snoussi (2000) give an explicit value for the survival probabilities
as follows:

(63)

and

(64)

Table 1 shows some values obtained through formulae (60), (61) and (62).

TABLE 1. (y* = 0.7368)

II

0
1
2
3
4
5
6
7
8
9
10
20
30

u

0
1
2
3
4
5
6
7
8
9
10
20
30

0.45
0.23
0.138
0.0828
0.04968
0.029808
0.0178848
0.01073088
0.006438528
0.003863117
0.00231787
0.000014015
0.000000085

7i(u,\)

1
0.47
0.322
0.1932
0.11592
0.069552
0.0417312
0.02503872
0.015023232
0.009013939
0.005408364
0.000032702
0.000000198

state 1

Tx(u, 2)

0.5
0.3
0.18
0.108
0.0648
0.03888
0.023328
0.0139968
0.00839808
0.005038848
0.003023309
0.000018281
0.000000111

state 2

Ti(u, 2)

1
0.7
0.42
0.252
0.1512
0.09072
0.054432
0.0326592
0.01959552
0.0011757312
0.007054387
0.000042655
0.000000258

V\(«)

0.5
0.3
0.18
0.108
0.0648
0.03888
0.023328
0.0139968
0.00839808
0.005038848
0.003023309
0.000018281
0.000000111

Vi(u)

1
0.7
0.42
0.252
0.1512
0.09072
0.054432
0.0326592
0.01959552
0.0011757312
0.007054387
0.000042655
0.000000258

Exact value of y/x(u)

0.5
0.3
0.18
0.108
0.0648
0.03888
0.023328
0.0139968
0.00839808
0.005038848
0.003023309
0.000018281
0.000000111

Exact value of i//2(
u)

1
0.7
0.42
0.252
0.1512
0.09072
0.054432
0.0326592
0.01959552
0.0011757312
0.007054387
0.000042655
0.000000258
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The last column in Table 1 presents the exact probabilities of ruin obtained
by (63) and (64). It may be checked that the algorithm produced the same fig-
ures as those produced by (63) and (64).

Example 2. We consider the case when m—2, c — 1 and the individual claim
amount distribution is given by

k

Sn(*)
Sn(k)

&.(*)
giiik)

0

0,725

0,15

0

0

/

0,025

0,025

0,75

0,15

2

0,025

0

0

0,025

3

0

0

0,025

0,025

4

0,025

0

0,025

0

5

0

0,025

0

0

The numerical illustrations of this example are presented in Table 2.

TABLE 2. (y* = 0.5)

state

i— 1

i = 2

/=1

i = 2

(=1

i = 2

z"=l

( = 2

i=\

i = 2

i=\

i = 2

i=\

i = 2

i-\

i = 2

i— 1

i = 2

z=l
i-2
i-\
( = 2

i=\

i = 2

i=l

i = 2

u

0

1

2

3

4

5

6

7

8

9

10

15

20

0,096054889

0,202401372

0,014813660

0,019023858

0,011857080

0,019799780

0,011704526

0,014730234

0,009419522

0,010111365

0,003492980

0,004505665

0,002481850

0,003241076

' 0,001601092

0,002020353

0,000927499

0,001148860

0,000540570

0,000690272

0,000341347

0,000429651

0,000027071

0,000034076

0,000002176

0,000002741

0,176243568

0,273156089

0,088141276

0,174041010

0,028494864

0,043479017

0,026087196

0,037191787

0,021597044

0,024859361

0,011939612

0,013965340

0,006189992

0,008006138

0,004143631

0,005288737

0,002501553

0,003131502

0,001463136

0,001842587

0,000889726

0,001126796

0,000072069

0,000090703

0,000005782

0,000007283

0,241852487

0,331046312

0,160767192

0,239825355

0,101135424

0,142552555

0,043810219

0,061744240

0,035621150

0,045142174

0,022278398

0,027064235

0,012785043

0,015740855

0,007478344

0,009560440

0,004703196

0,005925312

0,002807821

0,003528934

0,001679750

0,002118479

0,000136002

0,000171269

0,000010917

0,000013749

0,271012007

0,356775300

0,193045377

0,269062841

0,135707139

0,175531303

0,080586749

0,097831000

0,044674645

0,057128063

0,028846359

0,036371874

0,017512815

0,021886641

0,010290206

0,012955462

0,006240559

0,007894649

0,003809303

0,004792124

0,002288714

0,002878793

0,000183783

0,000231503

0,000014768

0,000018598

Vi(")

0,271012

0,356775

0,193045

0,269063

0,135707

0,175531

0,080587

0,097831

0.044675

0,057128

0,028846

0,036372

0,017513

0,021887

0,01029

0,012955

0,006241

0,007895

0,003809

0,004792

0,002289

0,002879

0,000184

0,000232

0,000015

0,000019

The value of ^,(«) is obtained by the stable recursive method presented by
Reinhard and Snoussi (2000).
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