Canad. Math. Bull. Vol. 23 (4), 1980

DERIVED SUBSPACES OF METRIC SPACES

BY HAROLD W. MARTIN

ABSTRACT. It is shown that the boundary of the set of accumulation points of a metrizable space X is compact iff X has a compatible metric d such that d(A, B) > 0 whenever A and B are disjoint closed subsets of X, each of which is disjoint from the set of accumulation points.

Let $\operatorname{acc}(X)$ denote the set of all accumulation points of a topological space X. Metrizable spaces X for which $\operatorname{acc}(X)$ is compact have quite interesting properties and have been studied in all the references at the end of the paper. For example, in [5] Nagata showed that the finest uniformity for a space X is metric iff X is metrizable and $\operatorname{acc}(X)$ is compact, and in [7] Willard showed that every Hausdorff quotient of X is metrizable iff X is metrizable and $\operatorname{acc}(X)$ is compact. Using Theorems 3 and 4 of [5], it is not difficult to show that for a metrizable space X, $\operatorname{acc}(X)$ is compact iff X has a compatible metric d such that d(F, H) > 0 whenever F and H are disjoint closed subsets of X. The purpose of this note is to establish a similar characterization of those metrizable spaces X for which the boundary of $\operatorname{acc}(X)$ is compact.

THEOREM. Let X be a metrizable space and let A = acc(X). The following are equivalent.

(i) Bd(A) is compact.

(ii) There exists a compatible metric d for X such that if F and H are disjoint closed subsets of X-int(A), then d(F, H) > 0.

(iii) There exists a compatible metric d for X such that if F and H are disjoint closed subsets of X, each of which are also disjoint from A, then d(F, H) > 0.

Proof. Let B = Bd(A) and assume that B is compact. We shall show that (ii) holds.

Suppose that $B = \emptyset$. Let s be any metric on A which is bounded by 1 and define a metric d for X by letting d(x, y) = 1 if either x or y belong to X - A and $x \neq y$ and letting d(x, y) = s(x, y) if x and y belong to A. It is easy to see that d is a compatible metric for X which satisfies condition (ii).

Now consider the case in which the boundary of A is not empty. Let t be any compatible metric for the space X. For each point x in X-A, choose a point

465

Received by the editors September 5, 1979.

H. W. MARTIN

[December

b(x) in B such that t(x, b(x)) < 2t(x, B). Define a metric d on X in the following way. If x and y are distinct points in X - A, let

$$d(x, y) = t(x, b(x)) + t(b(x), b(y)) + t(b(y), y).$$

If x is a point in X - A and y is a point in A, let

$$d(x, y) = t(x, b(x)) + t(b(x), y).$$

If x and y are both points in A, let d(x, y) = t(x, y). It is not difficult to show that d is a metric for the set X. We shall show that d is compatible with the topology for X by showing that d and t are equivalent metrics.

Since $t(x, y) \le d(x, y)$ for all x and y in X, if $d(y_n, y) \to 0$ for a point y and sequence $\{y_n\}$, then $t(y_n, y) \to 0$ also. Now assume that $\{x_n\}$ is a sequence in X and x a point such that $t(x_n, x) \to 0$. We shall show that $d(x_n, x) \to 0$.

If x is in X - A, then $\{x\}$ is open and since $x_n \to x$, necessarily $x_n = x$ for all sufficiently large values of n, so that $d(x_n, x) \to 0$.

Now suppose that x is in A. If x_n is in A for all n, then $d(x_n, x) \rightarrow 0$ since $d(x_n, x) = t(x_n, x)$ for all n.

Suppose x is in A and that x_n is in X - A for all n. Then

$$d(x, x_n) = t(x, b(x_n)) + t(b(x_n), x_n).$$

Since $t(x_n, x) \to 0$, the point x must belong to B in this case. Given any point x_n , the point $b(x_n)$ was chosen so that $t(x_n, b(x_n)) < 2t(x_n, B)$. In particular, $t(x_n, b(x_n)) < 2t(x_n, x)$ since $x \in B$. Since $t(x_n, x) \to 0$, this implies that $t(x_n, b(x_n)) \to 0$ as $n \to \infty$. Since $t(x, b(x_n)) \le t(x, x_n) + t(x_n, b(x_n))$ and since both $t(x, x_n) \to 0$ and $t(x_n, b(x_n)) \to 0$, we also have $t(x, b(x_n)) \to 0$. It follows that $d(x, x_n) \to 0$ as $n \to \infty$.

Now in the general case in which $x \in A$ and $t(x_n, x) \to 0$, the sequence $\{x_n\}$ splits into the subsequence $\{y_n\}$ of those terms which are in A and $\{z_n\}$ of those terms which are in X - A. By the arguments given above, we have $d(y_n, x) \to 0$ and $d(z_n, x) \to 0$, so that $d(x_n, x) \to 0$, completing the proof that d and t are equivalent metrics for X.

Now let F and H be disjoint closed subsets of X with F and H both disjoint from int(A). Assume that d(F, H) = 0. Since B is compact, $d(F \cap B, H \cap B) > 0$, so there exists a sequence $\{x_n\}$ in F - A and a sequence $\{y_n\}$ in H - A such that $d(x_n, y_n) \to 0$. By the definition of the metric d it follows that $t(x_n, b(x_n)) \to 0$, $t(b(x_n), b(y_n)) \to 0$ and $t(b(y_n), y_n) \to 0$. Since B is compact and $b(x_n)$ and $b(y_n)$ belong to B for all n, the sequences $\{b(x_n)\}$ and $\{b(y_n)\}$ must have a common cluster point, say b. But $t(x_n, b(x_n)) \to 0$ then implies that b is also a cluster point of $\{x_n\}$, that is, that $b \in F$. Similarly, $t(y_n, b(y_n)) \to 0$ implies that $b \in H$. This contradicts the fact that F and H are disjoint and completes the proof that (i) implies (ii).

That (ii) implies (iii) is immediate.

1980]

To show that (iii) implies (i), assume that B is not compact. Choose a discrete sequence $\{b_n\}$ in B such that $b_n \neq b_m$ when $n \neq m$; the set $B' = \{b_n : n = 1, 2, ...\}$ is closed in X. Let d be any compatible metric for X. Choose sequences $\{x_n\}$ and $\{y_n\}$ in X - A such that $d(x_n, b_n) \rightarrow 0$, $d(y_n, b_n) \rightarrow 0$ and such that $x_i \neq y_i$ for all natural numbers i and j. Let $F = \{x_n : n = 1, 2, ...\}$ and $H = \{y_n : n = 1, 2, ...\}$. The sets F and H are disjoint closed subsets of X which are also disjoint from A, and d(F, H) = 0, so that (iii) does not hold, completing the proof.

REFERENCES

1. K. Alster, Metric spaces all of whose decompositions are metric, *Bul. Polon. Sci.*, 20 (1972), 395-400.

2. M. Atsuji, Uniform continuity of continuous functions of metric spaces, Pacific J. Math., 8 (1958), 11-16.

3. C. E. Aull, Closed set countability axioms, Indag. Math., 28 (1966), 311-316.

4. J. Ginsburg, The metrizability of spaces whose diagonals have a countable base, Canad. Math. Bull., 20 (1977), 513-514.

5. J. Nagata, On the uniform topology of bicompactifications, J. Inst. Polytech. Osaka City Univ., 1 (1950), 28-39.

6. J. Rainwater, Spaces whose finest uniformity is metric, Pacific J. Math., 9 (1959), 567-570.

7. S. Willard, Metric spaces all of whose decompositions are metric, Proc. Amer. Math. Soc., 21 (1969), 126-128.

Department of Mathematics University of Wisconsin-Milwaukee Milwaukee, Wisconsin 53201