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Numerical analysis of a 3-D printed porous
trailing edge for broadband noise reduction
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Lattice Boltzmann simulations were carried out to investigate the noise mitigation
mechanisms of a 3-D printed porous trailing-edge insert, elucidating the link between
noise reduction and material permeability. The porous insert is based on a unit cell
resembling a lattice of diamond atoms. It replaces the last 20 % chord of a NACA
0018 at zero angle-of-attack. A partially blocked insert is considered by adding a solid
partition between 84 % and 96 % of the aerofoil chord. The regular porous insert achieves
a substantial noise reduction at low frequencies, although a slight noise increase is found
at high frequencies. The partially blocked porous insert exhibits a lower noise reduction
level, but the noise emission at mid-to-high frequency is slightly affected. The segment
of the porous insert near the tip plays a dominant role in promoting noise mitigation,
whereas the solid-porous junction contributes, in addition to the rough surface, towards the
high-frequency excess noise. The current study demonstrates the existence of an entrance
length associated with the porous material geometry, which is linked to the pressure release
process that is responsible for promoting noise mitigation. This process is characterised
by the aerodynamic interaction between pressure fluctuations across the porous medium,
which is found at locations where the porous insert thickness is less than twice the entrance
length. Present results also suggest that the noise attenuation level is related to both the
chordwise extent of the porous insert and the streamwise turbulent length scale. The porous
inserts also cause a slight drag increase compared to their solid counterpart.

Key words: aeroacoustics, noise control

1. Introduction

Turbulent boundary-layer trailing-edge (TBL-TE) noise (Brooks, Pope & Marcolini 1989)
is one of the main noise generation mechanisms of various aerodynamic bodies, including
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wind turbine blades (Oerlemans, Sijtsma & López 2007; Oerlemans et al. 2009) and
high-lift devices on aircraft (Revell et al. 1997; Howe 1982). It is produced by the
scattering of unsteady pressure fluctuations underneath a turbulent boundary layer when
a geometrical singularity, such as a TE (Howe 1978), is present. Nevertheless, as noise
regulations in both the aviation and wind turbine industries are becoming more strict,
it is of great interest in the aeroacoustic communities to obtain effective approaches for
attenuating TBL-TE noise. Some examples of passive noise mitigation techniques include
TE serrations (Oerlemans et al. 2009; Gruber, Joseph & Chong 2010; Jones & Sandberg
2012; Chong et al. 2013; León et al. 2016; Avallone et al. 2018) and permeable (porous)
TE (Hayden 1973; Geyer & Sarradj 2014; Herr et al. 2014; Vathylakis, Chong & Joseph
2015; Rubio Carpio et al. 2017; Ananthan et al. 2020). Unlike serrations, which are often
manufactured as TE add-ons (or TE extensions), porous materials are usually employed as
inserts that replace the aft section of aerofoils.

One of the earliest implementations of porosity for aerodynamic noise attenuation was
reported by Hayden (1973). They investigated a case of jet–flap interaction noise, in which
applying a porous flap edge was found to reduce noise by more than 10 dB. Many other
studies were aimed at determining the role of different porous material parameters, such
as permeability, porosity and form coefficient (Ingham & Pop 1998), in affecting the noise
reduction level. Porous TE inserts with higher permeability have been found to produce
better noise reduction in general (Geyer, Sarradj & Fritzsche 2010; Herr et al. 2014; Rubio
Carpio et al. 2017). However, a fully porous aerofoil was considered to be undesirable as
it results in substantial aerodynamic penalty (Sarradj & Geyer 2007). Although Geyer &
Sarradj (2014) found that a longer porous TE extent would improve noise reduction, they
suggested to limit the extent of the porosity treatment at the aft section of the aerofoil as
an acceptable trade-off against aerodynamic performance degradation.

Noise generation at a porous surface has also been examined analytically. The problem
of turbulence scattering on a perforated plate has been presented in Williams (1972), who
determined that, in the limit of low frequencies, a perforated plate with high porosity
would produce predominantly dipole-type sources whereas monopoles would become
more relevant for the low-porosity case. Howe (1979) studied the noise generation by a flat
plate with a porous edge extension and found that the porous edge emitted lower sound
amplitude, but noise was scattered at locations where surface impedance discontinuity
is found, e.g. at the location where the solid segment ends and the porous extension
begins, as well as at the downstream edge of the porous extension. This finding was later
confirmed in many other investigations (Delfs et al. 2014; Kisil & Ayton 2018; Rubio
Carpio et al. 2019a). Additionally, it can be argued that Howe was also the first to suggest
that implementing chordwise-varying porosity would further improve the noise attenuation
level. More recently, Jaworski & Peake (2013) employed the Wiener–Hopf technique to
obtain an analytical prediction on a semi-infinite poroelastic plate, where it was found that
the acoustic power scattered by a porous plate scales with the sixth power of the Mach
number, which implies less efficient scattering compared to that of a solid edge (Williams
& Hall 1970). Moreover, they predicted that the noise reduction of the porous plate would
be mainly found in the low frequency region. Cavalieri, Wolf & Jaworski (2016) later
extended this investigation to include the effect of a finite chord length, and the porous
plate was found to alter the noise directivity into a dipole-like shape, unlike for the solid
one, which exhibits cardioid-like directivity.

Other investigations were carried out to determine the noise mitigation mechanisms
of a porous TE. Herr et al. (2014) and Delfs et al. (2014) suggested that the interaction
between pressure fluctuations at the pressure and suction sides of the porous TE, referred
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to as the pressure release process, is responsible for promoting noise attenuation. They
arrived at this conclusion after observing that there was no noise reduction when one
side of the porous insert was covered with non-permeable tape. More recently, Rubio
Carpio, Avallone & Ragni (2018) took a different approach by applying a layer of adhesive
at the symmetry plane of a metal-foam insert, which was subsequently referred to as a
non-permeable porous insert. This approach was taken to preserve the surface roughness
of the porous insert. The non-permeable insert was no longer reducing noise at low
frequencies, but the high-frequency excess noise remained, confirming that the latter can
be associated with the surface roughness effect. In Rubio Carpio et al. (2019a), they also
observed that turbulent fluctuations in the boundary layers on both sides of the porous TE
remained correlated when the adhesive layer was absent, confirming the pressure release
process.

To obtain information on flow field details inside and surrounding a porous TE,
high-fidelity numerical simulations offer more flexibility, although such simulations can
be quite costly when involving porous materials with relatively small pore dimension
compared to the overall length scale of the body (Freed 1998). As a workaround, the
macroscopic effects of the porous TE on the flow field are taken into account using porous
medium models. Recently, Ananthan et al. (2020) applied a porous medium model in a
numerical investigation on a DLR F16 aerofoil. The porous insert was modelled as an
equivalent fluid region using volume-averaged Navier–Stokes equations where additional
flow resistance terms, based on Darcy’s law, were added (Ingham & Pop 1998). The
authors were able to observe the role of the porous medium in decreasing the spanwise
coherence of surface pressure fluctuations while also reducing the convection velocity,
both of which were linked to noise attenuation. Using an analogous approach, Teruna
et al. (2020) employed a porous medium model in a lattice Boltzmann (LB) solver to
replicate the experiments of Rubio Carpio et al. (2019a). The authors confirmed that
when the blocked porous TE was used, no noise reduction could be observed. They
also proposed two noise mitigation mechanisms of the metal-foam insert: (1) reduced
scattering efficiency at the actual TE due to the milder impedance jump; and (2) destructive
interference between sound sources that are distributed along the porous medium surface.

Nevertheless, the use of porous medium models introduces another layer of uncertainty
into the investigation, and it remains an open question whether the noise reduction
mechanisms discussed in Teruna et al. (2020) are still appropriate when permeability is
realised using a porous geometry instead of an equivalent fluid region. For this purpose, a
synthetic unit-cell geometry has been designed and utilised to construct a porous TE insert,
which is later manufactured and tested in experiments, allowing for direct comparison
with simulation results. This study also looks further into how the pressure release
process, which is realised by permeability, alters the noise source characteristics at the
TE. Additionally, a partially blocked porous insert has been considered to elucidate the
role of different segments of the porous TE in noise attenuation. Furthermore, this allows
a link between the permeable extent of the porous TE and the noise attenuation level to be
established.

The rest of this paper is organised as follows. The numerical procedure is briefly
reported in § 2. A description of the simulation set-up is presented in § 3. Validation and
verification of the simulation results will be shown in § 4, followed by in-depth analyses
of the far-field noise results in § 5. Afterwards, the effects of the porous insert on the
flow field are discussed in § 6. Then § 7 briefly discusses the link between the present
observations with the authors’ past work. The paper is concluded in § 8, where an outlook
is also provided.
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2. Methodology

2.1. Flow solver
The present work employs a commercial LB solver, SIMULIA PowerFLOW 5.4b, to solve
the flow field in the simulation domain. This solver has been previously used for TBL-TE
noise investigations (Moreau et al. 2011; Sanjosé et al. 2014; Avallone et al. 2018). The
LB method describes fluid phenomena at mesoscopic scale in a statistical sense. It solves
the discrete Boltzmann equation for particle distribution functions in a predefined number
of velocity directions. In the LB method, fluid phenomena are governed by two processes,
namely advection and collision, which are mathematically described as follows:

∂F
∂t

+ V · ∇F = C, (2.1)

where F (x, t) is the particle distribution function in space (x) and time (t), V is the
particle velocity and C is the collision operator. The employed implementation of the
discrete LB equation uses 19 velocity directions in three dimensions (i.e. D3Q19) with
a third-order truncation of the Chapman–Enskog expansion, which has been shown to
accurately approximate the Navier–Stokes equations for perfect gas flow at low Mach
number and isothermal conditions (Chen, Chen & Matthaeus 1992). The discretised form
of the LB is written as

F n(x + V nΔt, t + Δt) − F n(x, t) = Cn(x, t), (2.2)

and it is solved on a Cartesian grid that is referred to as a lattice. In (2.2), F n is the particle
distribution function along the nth direction with respect to the lattice orientation and
V n is the discrete particle velocity vector. The collision term Cn is represented using the
Bhatnagar–Gross–Krook model (Bhatnagar, Gross & Krook 1954):

Cn = −Δt
τ

[F n(x, t) − F eq
n (x, t)]. (2.3)

Here τ is the relaxation time, which is a function of fluid viscosity and temperature; and
F eq

n is the equilibrium Maxwell–Boltzmann distribution function, which is approximated
by a second-order expansion (Chen et al. 1992) as

F eq
n = ρωn

[
1 + V nu

a2
s

+ (V nu)2

2a4
s

− |u|2
2a2

s

]
, (2.4)

where ωn are fixed weight functions based on the D3Q19 model (Chen et al. 1992) and
as = 1/

√
3 is the non-dimensional speed of sound in lattice units. After solving (2.2)

to obtain the distribution functions, macroscopic flow variables, such as density ρ and
velocity u, are computed by taking the appropriate moment of the distribution function as
follows:

ρ(x, t) =
∑

n

Fn(x, t), (2.5)

ρu(x, t) =
∑

n

V nFn(x, t). (2.6)

Turbulence in the flow is resolved using a very large eddy simulation (VLES) approach.
In this implementation, an eddy viscosity model is introduced into the collision term of
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the LB equation (Teixeira 1998). The solver employs a modified k–ε two-equation model
based on the renormalisation group (RNG) formulation, which is used to compute an
effective relaxation time τeff as follows:

τeff = τ + Cμ

k2/ε√
1 + η2

. (2.7)

Here Cμ = 0.09 and η are a combination of the local strain k|S/ε|, local vorticity k|ω/ε|
and local helicity parameters. The effective relaxation time τeff replaces the original
relaxation time in (2.2), which in turn calibrates the LB solver to the characteristic
time scales of the turbulence in the flow field. Hence, the two-equation turbulence
model effectively modifies the relaxation properties of the system, which enables the
development of large turbulent eddies in the simulation domain. Moreover, it can be
shown using the Chapman–Enskog expansion that the nonlinearity of Reynolds stresses is
captured (Teixeira 1998; Chen et al. 2004). Hence the present application of the k–ε model
is different from that in Reynolds-averaged Navier–Stokes, where, in the latter, quantities
derived from the turbulence model are not used to define Reynolds stresses explicitly.

The simulation domain is discretised into cubic volume elements referred to as ‘voxels’
(i.e. volumetric pixels). Refinement regions are applied to the simulation domain based
on the desired spatial resolution such that the voxel size between two adjacent regions
varies by a factor of 2. Solid bodies are facetised using ‘surfels’ (i.e. surface pixels) at
locations where they intersect with voxels. The process of generating voxels and surfels
is fully automated, allowing for complex geometrical details, such as that of the porous
material, to be discretised with relative ease. The boundary condition at a solid wall
is realised by applying appropriate particle interactions in the collision term of the LB
scheme, such as a particle bounce-back process for a no-slip wall and specular reflection
for a slip wall, respectively (Chen, Teixeira & Molvig 1998). A wall model is applied at
the first wall-adjacent grid (Teixeira 1998; Wilcox 1998). It is based on the generalised
law-of-the-wall model (Launder & Spalding 1983), which has been extended to consider
the effects of pressure gradient.

2.2. Far-field noise computations
The solution of the LB scheme is suitable for resolving acoustic perturbations in the
simulation domain since it is inherently compressible and unsteady, combined with low
dissipation and dispersion characteristics. For far-field noise prediction, however, direct
acoustic computation is often impracticable, especially as a minimum of approximately
15 voxels is required to resolve the acoustic wavelength corresponding to the frequency
of interest (Casalino, Hazir & Mann 2018). Instead, employing an acoustic analogy is
more often the feasible approach. In the present study, far-field noise is computed using
the Ffowcs Williams & Hawkings (1969) (FW-H) analogy based on the formulation 1A
of Farassat & Succi (1980) extended to a convective wave equation (Brès, Pérot & Freed
2009). The formulation has been implemented in the time domain with an advanced-time
approach (Casalino 2003). The integration surface can be determined to be on a solid
surface or on a permeable one, and the formulation of the acoustic analogy is adjusted
accordingly. The input for the acoustic analogy is recorded at the finest voxel resolution
level (cutoff frequency ≈ 250 kHz) on the aerofoil surface and at the third finest resolution
level (cutoff frequency ≈ 31 kHz, or Stc ≈ 310, where c is the aerofoil chord length) on a
permeable surface enclosing the aerofoil. The former approach supposes a distribution of
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(a) (b) (c)Solid TE Diamond TE

y

x

0.4c = 8 cm

0.2c = 4 cm0.8c = 16 cm

Solid–porous junction

6.36 mm

Unit–cell

Zig-zag trip

12D = 7.63 cm

Blocked TE

Solid partition

Figure 1. A drawing of the NACA 0018 with solid (a), porous (b) and blocked (c) TE configurations. A lateral
view of the aerofoil with blocked TE is shown at bottom left, besides which is an inset depicting the unit-cell
geometry.

acoustic dipoles on the aerofoil surface (Curle 1955), while, for the latter, the contribution
of the volumetric source terms (i.e. quadrupoles) is also included. The permeable surface
is extended by twice the aerofoil chord length downstream of the trailing edge to capture
the contribution of the aerofoil wake, but its downstream face is removed to exclude the
contribution of pseudo-noise (i.e. non-radiating flow perturbations) (Casper et al. 2004;
Lockard & Casper 2005).

3. Simulation set-up

The present study employs a similar simulation set-up to that used previously by the
authors (Teruna et al. 2020), which is based on the experiment of Rubio Carpio et al.
(2018). A NACA 0018 aerofoil is set at zero angle of attack and it has a chord of
c = 200 mm. Three TE configurations are investigated, as shown in figure 1: the baseline
model with solid TE (a), and two others equipped with permeable inserts (b) and (c) that
replace the solid material in the last 20 % of the aerofoil chord, referred to as porous and
blocked TE, respectively. The blocked TE has a thin solid partition installed along the
aerofoil chord line, in between 20 % and 80 % of the porous TE extent (i.e. the last 16 % to
4 % of the aerofoil chord). Hence, this is a different treatment compared to the full-length
partition previously employed in Teruna et al. (2020), but the purpose of the solid partition
remains the same: it prevents the boundary layers on both sides of the TE from interacting
with each other across the porous medium. The chordwise extent of the solid partition in
the blocked TE has been chosen to assess the role of the pressure release process near the
solid–porous junction and the actual TE.

The porous material used in the present study has a unit-cell geometry that is based on
the diamond lattice structure. The unit cell consists of a network of cylindrical struts whose
dimensions are reported in table 1. The unit-cell dimension is scaled to D = 6.36 mm, such
that the resulting porous insert produces comparable noise reduction level and spectral
features as those of the metal-foam insert previously tested in Rubio Carpio et al. (2018)
and Teruna et al. (2020). Note that the unit-cell size is different from the mean pore
diameter, the latter of which is dp = 1.2 mm. The aerofoil span for the solid TE case
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Unit-cell size, D Mean pore size, dp Strut thickness Strut length

DMND 6.36 mm 1.20 mm 1.05 mm 2.60 mm

Table 1. The geometrical properties of the diamond lattice unit cell.

dp (μm) φ K (m2) C (m−1)

1200 0.615 2.38 × 10−8 2923

Table 2. The transport characteristics of the porous material.

equals one-fifth of that in the experiment (Teruna et al. 2020), i.e. b = 0.4c = 8 cm.
However, the spanwise extent of the aerofoils with the permeable TE are slightly reduced
to 76.32 mm = 12D to ensure spanwise periodicity of the unit cell. To obtain a fair
comparison with the simulation results, the geometry of the porous insert is manufactured
using 3-D printing for the experiment. The surface outline of the porous insert follows the
solid one. This implies that some unit cells that are located near the surface are partially
cut, and the resulting surface pore diameter varies between 0.45 mm and 5.3 mm. The
unit-cell arrangement is also not completely symmetrical along the aerofoil chord line due
to manufacturing constraints; it will be shown that this does not significantly affect the
overall aerodynamic and acoustic characteristics of the porous TE.

The characterisation of the porous material has been carried out using a permeability test
rig (Rubio Carpio et al. 2017). Both mean pore size dp and porosity φ can be measured
from the unit-cell geometry. Differently, the permeability K and form coefficient C are
calculated by performing a curve fit of the experimental pressure-drop test data with the
Hazen–Dupuit–Darcy equation (Rubio Carpio et al. 2017; Teruna et al. 2019). It is found
in the experiment that both the permeability and form coefficient of the porous material
converge once the sample is more than seven unit cells thick (i.e. the critical thickness
(Dukhan & Minjeur 2010)). These values are reported in table 2.

A sketch of the computational domain is shown in figure 2. The origin of the coordinate
system is defined at the midspan of the trailing edge, with the x axis aligned with the
aerofoil chord, the z axis with the aerofoil span and the y axis perpendicular to both the
x and z axes. Note that x and y can also be designated as wall-parallel and wall-normal
directions when indicated as such. Hence, the aerofoil leading edge is located at x/c = −1,
and the trailing edge at x/c = 0. The x, y and z axes will be referred to as streamwise,
vertical and spanwise directions, respectively. The computational domain is a rectangular
box that is 100c long in both x and y directions, while its length in the z direction
equals b. To prevent acoustic field contamination due to reflection from the domain
boundaries, an acoustic sponge region is applied starting from a radius of 36c from the
origin. Static pressure p∞ = 101 325 Pa and free-stream velocity U∞ = 20 m s−1 are
specified at the upstream, downstream, top and bottom boundaries. These flow parameters
correspond to a chord-based Reynolds number of Rec = 2.7 × 105 and a free-stream
Mach number of M∞ = 0.06. The lateral boundaries are defined with periodic boundary
conditions. The entire aerofoil surface, including the porous medium, is specified as
no-slip walls. Laminar–turbulent transition on the aerofoil is enforced using zig-zag trips
(Elsinga & Westerweel 2012) installed at x/c = −0.8 (i.e. 20 % of the chord length).
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Figure 2. A sketch of the computational domain. Note that dimensions are not to scale.

The zig-zag trip height is ttrip = 0.003c = 0.6 mm, while the amplitude is ctrip =
0.015c = 3 mm and the wavelength is λtrip = 0.015c = 3 mm. The tripping elements are
the same as those in the authors’ previous study (Teruna et al. 2020).

The simulation domain is subdivided into 10 grid refinement regions with a resolution
factor of 2 between adjacent regions. This allows for an efficient use of computational
resources while retaining sufficient spatial resolution. The finest grid resolution is
specified at a region surrounding the aerofoil surface where the voxel size is equal to
3.9 × 10−4c. As such, the height of the turbulent boundary layer near the TE (x/c =
−0.01) is resolved by approximately 128 voxels, and the first wall-adjacent voxel height
at this location corresponds to y+ = 3 for the solid TE case. This discretisation strategy
produces a total of 218 × 106 and 293 × 106 voxels inside the simulation domain for the
solid and porous TE cases, respectively. The simulations are carried out for 20 flow passes,
excluding the initial transient, on the servers of Delft University of Technology and the
National Supercomputing Center (IT4Innovations) of the Czech Republic. For reference,
the porous TE case requires a total of 114.400 CPU hours on a 480-core Xeon Gold 6130
platform, which is approximately three times that required for the solid TE case.

4. Grid independence study and simulation validation

In this section, the numerical solutions are assessed. The grid independence study
is performed using four resolution levels that correspond to y+ values of the first
wall-adjacent voxel height: coarse (y+ = 12), medium (y+ = 6), fine (y+ = 3) and very
fine (y+ = 2.1 for solid TE and y+ = 1.5 for porous TE). Note that these reference y+
values are sampled at x/c = −0.01 for the solid TE case; the y+ value for the porous
TE case is slightly lower although the same grid resolution is applied in both cases. At
each resolution level, grid refinement is applied uniformly across the simulation domain,
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Tripping device(a) (b) (c)Solid–porous junction Trailing edge

Figure 3. A lateral view of the aerofoil with porous TE, illustrating the voxel distribution with the fine grid
setting.

0.054

(a) Solid (b) Porous

0.052

0.050

δ 9
9
/c

0.048

0.046

12 6 3 1.5

y+|x/c = –0.01 y+|x/c = –0.01

0.75 12 6 3 1.5 0.75

0.054

0.052

Simulation

Extrapolation

0.050

0.048

0.046

Figure 4. The comparison of boundary-layer thickness at x/c = −0.002 for the different grid resolutions. The
Richardson extrapolation of the boundary-layer thickness is plotted as empty square. The thick line at y+ = 3
denotes the adopted grid resolution for the rest of the paper. Data for the solid TE case have been extracted
from Teruna et al. (2020).

identical to the procedure reported in Teruna et al. (2020). For the very fine setting,
however, the porous TE case has a higher grid resolution than the solid TE one in order
to maintain spanwise periodicity of the porous insert. A lateral view showing the grid
arrangement surrounding the aerofoil with a porous insert is provided in figure 3.

Figure 4 illustrates the convergence trend of the boundary-layer thickness δ99 near the
TE (x/c = −0.002). This thickness δ99 is defined as the distance from the wall where
the mean wall-parallel velocity is 99 % of the boundary-layer edge velocity Ue, which
is the mean velocity in the boundary layer where the integral of the spanwise vorticity
along the wall-normal direction (i.e.

∫
ωz dy) becomes asymptotic (Spalart & Watmuff

1993). Figure 4 also shows the Richardson extrapolation as empty square markers up to
y+ = 0.75 using the refinement ratio M = 2 and the order of convergence N = 3. The
convergence trend of the δ99 is evaluated using the grid convergence index (GCI) (Roache
1998; Slater 2018). The GCI allows one to estimate the deviation, as a percentage, of the
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Figure 5. The comparison of mean wall-friction coefficient along the aerofoil midspan at −0.5 < x/c < 0
for the different grid resolutions.

numerical solution at a given grid refinement setting from that of an asymptotic solution.
For the fine grid resolution (y+ = 3), the solid TE has GCImedium,fine = 0.288 % and
GCIfine,very fine = 0.0385 %; these are 0.183 % and 0.0258 %, respectively, for the porous
TE. Moreover, the GCI ratio is also computed as in (4.1), after which GCI ratios of 0.935
and 0.875 are obtained for solid and porous TE cases, respectively. Since the GCI values
next to the fine grid resolution are relatively small, and the corresponding GCI ratios are
close to unity, it can be concluded that the numerical results obtained using the fine grid
resolution are already within the asymptotic range of convergence (Roache 1998):

GCIratio
∣∣
fine,very fine = GCIfine,very fine

MNGCImedium,fine
. (4.1)

Additionally, the mean wall-friction coefficient (Cf ) is also used for evaluating grid
convergence, since this quantity depends on the velocity gradient next to the wall. The
Cf distributions for the aforementioned grid resolution levels are illustrated in figure 5.
The Cf distribution for the porous TE contains interpolated data points where open pores
are located. For both solid and porous TE cases, the Cf variations are larger between the
y+ = 6 (medium) and y+ = 3 (fine) simulations. This is particularly noticeable where the
porous TE is located (i.e. −0.2 < x/c < 0), since the voxels at lower resolution level are
incapable of resolving the intricate details of the struts in the porous TE. However, the Cf
distributions are similar when comparing the fine and very fine plots. Thus, it is possible
to conclude that a voxel resolution corresponding to y+ = 3 is sufficient, and subsequently
this resolution level is employed for the rest of this paper.

In the following, flow field and acoustic predictions from the simulation are validated
against experimental results. In figure 6, the mean streamwise velocity profiles are plotted
at three different locations in (a), while the velocity fluctuation profiles near the TE are
shown in (b). It is worth mentioning that the boundary-layer profiles from the experiment
have been obtained using particle image velocimetry (PIV), and, as a consequence,
near-wall measurements are limited due to the presence of light reflections from the
aerofoil surface (Rubio Carpio et al. 2019b). Nevertheless, figure 6 shows good agreement
between the numerical results and the experimental ones. The differences between the flow
field in the solid and porous TE cases will be discussed in detail in § 6.

The power spectral density of far-field acoustic pressure Φn computed in the simulations
is provided in figure 7, where the frequency is expressed in Strouhal number based on the
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Figure 6. Comparisons of flow statistics in the turbulent boundary layer. All data points have been extracted
at the aerofoil midspan. Mean wall-parallel velocity (U) profiles at several chordwise locations are shown in
(a); and profiles of root mean square (r.m.s.) of velocity fluctuations in the wall-parallel (urms) and wall-normal
(vrms) directions are shown in (b). Note that ‘experiment’ is abbreviated as (exp.); and SLD is short for solid.

aerofoil chord, Stc = fc/U∞. The observer location for this comparison is directly above
the TE (x/c = 0, y/c = 5). Since the aerofoil span in the simulation is smaller than in
the experiment, the raw noise spectra from the simulation Φo has been scaled as in (4.2)
(Avallone et al. 2018). This scaling would also allow for direct comparison with the noise
spectra from the experiment:

Φn = Φo + 10 log10

(
bexperiment

bsimulation

)
. (4.2)

Figure 7 compares the spectra calculated using the flow field information sampled at the
aerofoil surface and at a permeable surface that encloses the near-field region. The noise
spectra obtained from the surface FW-H formulation are in good agreement with those
from the permeable FW-H approach. This implies that the noise sources on the aerofoil
are predominantly of dipole type, and thus quadrupole noise sources, such as those in the
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Figure 7. Comparisons of far-field noise spectra obtained using the FW-H acoustic analogy using the flow
information at the aerofoil surface (surface FW-H), and at a permeable surface that encloses the aerofoil
(permeable FW-H). Observer location is x/c = 0, y/c = 5.
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Figure 8. A comparison of far-field noise results between those from experiment and simulation. Panel (a)
shows the power spectral density of acoustic pressure (Φn) and panel (b) shows the difference in Φn values
between solid and porous TE cases.

turbulent aerofoil wake, do not make a substantial contribution towards noise generation,
which is typically the case for low-Mach-number flows.

The validation of the far-field acoustic spectra for both TE types is provided in figure 8.
Figure 8(a) shows that the noise prediction from the simulation generally agrees well with
the experimental measurements, except for the solid TE case at Stc > 16. It has been
previously reported in Teruna et al. (2020) that the overestimated high-frequency noise
of the solid TE originates from the zig-zag trip, whereas the experiment employs a strip
of carborundum particles for triggering laminar–turbulent transition (Rubio Carpio et al.
2019a). Such discrepancy is less apparent in the porous TE case, because the self-noise
of the zig-zag trip has a lower intensity compared to the excess noise from the porous
material itself. The noise reduction spectra are plotted in figure 8(b), where positive values
refer to noise attenuation, and negative ones to noise increase. The noise reduction at low
frequency reaches up to 11 dB near Stc = 6, with the average of 10 dB in the range 4 <

Stc < 8. In the mid frequency range, the noise reduction gradually decreases from Stc = 8
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Figure 9. Panel (a) compares the Φn spectrum for the different TE types and panel (b) shows the difference
ΔΦn relative to the solid TE. The observer location is x/c = 0, y/c = 5.

and it eventually vanishes at around Stc = 16. At higher frequencies, noise increases by
around 2 dB can be found in certain frequency bands. Following this, the spectra can
be divided into three frequency regions: (1) a region where large noise attenuation exists
(4 < Stc < 8); (2) a transition region where the noise attenuation level gradually decreases
(8 < Stc < 16); and (3) a region where excess noise is observed (16 < Stc < 32). This
trend is in line with past analytical studies (Jaworski & Peake 2013; Cavalieri et al. 2016),
where the noise reduction of a perforated plate has been predicted to become smaller as
frequency increases.

This section has shown that the simulation results can be utilised for analysing the
aeroacoustic characteristics of the porous TE inserts, which will be reported in subsequent
sections. Note that, from here on, the far-field noise results presented are obtained using
the surface FW-H approach.

5. Aeroacoustic characteristics of the porous trailing edge

5.1. Far-field noise intensity and directivity
The comparison of far-field noise spectra between the three cases is depicted in figure 9(a),
and the noise reduction spectra are shown in figure 9(b). It is evident that the solid partition
added in the blocked TE case leads to smaller noise reduction, particularly at Stc < 6; the
noise attenuation level of the blocked TE remains similar to that of the porous TE at higher
frequencies. This is in line with other experimental observations (Delfs et al. 2014; Carpio
et al. 2020) that the noise reduction of the porous TE is directly linked to the permeable
extent of the porous TE. Considering that the solid partition does not cover the full extent
of the blocked TE, this suggests that altering the permeable extent of the TE mainly affects
the frequency range where noise reduction can be achieved, as hinted previously in Kisil
& Ayton (2018). Figure 9(b) also shows the presence of high-frequency excess noise (16 <

Stc < 32) in the blocked TE case, but the average intensity is lower than that of the porous
TE case. Since the surface roughness characteristics for both types of permeable TE are
identical, it is possible to consider that the permeable extent of the porous insert is also
related to the excess noise production. It is worth mentioning that the diamond unit-cell
geometry might be unfavourable in terms of surface roughness noise, since the unit-cell
struts are oblique relative to the incoming flow direction (Clark et al. 2016). Moreover,
the partially cut unit cells at the surface also behave as additional roughness elements
(Devenport et al. 2018).
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Figure 10. Far-field noise directivity of solid, porous and blocked TE, plotted in terms of overall sound
pressure level (OSPL) integrated over three different frequency ranges: (a) 4 < Stc < 8, (b) 8 < Stc < 16 and
(c) 16 < Stc < 32. The OSPL difference between the solid and the porous and blocked TE cases is plotted in
panels (d) and (e); the grey circle at the centre of the polar plot indicates regions of noise increase. The aerofoil
leading edge is facing towards 0◦.

Far-field noise directivity patterns for the different TE types are illustrated in figure 10.
The sound pressure spectrum Φn has been integrated in the three frequency ranges
previously defined in figure 8, and these are shown in figure 10(a–c). The frequency ranges
are also expressed in terms of chord-based Helmholtz number kc = 2πM∞Stc to identify
the acoustic compactness of the aerofoil chord. To better illustrate the noise reduction
and excess noise level difference between the porous and blocked TE cases, ΔOSPL
values are plotted in figure 10(d,e). Note that, throughout figure 10, the aerofoil leading
edge is oriented towards 0◦. In figure 10(a), the directivity of the solid TE resembles
that of a compact dipole considering that kc is still close to unity in this frequency
range. Both types of porous TE exhibit similar directivity, albeit with lower intensity.
The porous TE achieves a noise reduction level of up to 11 dB along the main lobes. On
the other hand, the blocked TE shows lower noise attenuation with an average of 4 dB.
Nevertheless, the noise reduction becomes smaller at shallower observer angles, and this
is more noticeable towards the downstream direction. Non-compactness behaviour starts
to appear at higher Helmholtz number ranges. At Stc = [8, 16], the directivity patterns for
all TE configurations are tilted towards the upstream direction, resembling the cardioid
pattern (Williams & Hall 1970). For the porous TE, the noise reduction in this frequency
range is smaller than at the lower frequencies, with a maximum of 5 dB. In contrast,
the noise attenuation level of the blocked TE matches that of the porous TE. In the high
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Figure 11. The segmentation of the aerofoil planform for analysis of the far-field noise contributions.

frequency region, which is shown in figure 10(c), the porous TE clearly shows the presence
of excess noise, but the noise increase produced by the blocked TE is slightly lower except
at shallow angles.

The aerofoils with porous and blocked TE exhibit a minor change in noise directivity
pattern, indicated by the slightly higher noise reduction level towards the upstream
direction as shown in figure 10(d,e). As a result, the main directivity lobes of these
modified aerofoils resemble a more dipole-like shape, particularly in the low to mid
frequency ranges (Stc = [4, 16]). Such directivity shift has also been reported in the
analytical study of Cavalieri et al. (2016). The porous inserts also produce excess noise at
shallow angles (i.e. within ±30◦ with respect to the streamwise direction), which becomes
more prominent at higher frequencies. It is possible to conjecture that the porous inserts,
or at least a small extent of their surfaces, scatter noise with different directivity compared
to the solid TE, which could contribute to noise reduction (Kisil & Ayton 2018). Hence, to
better understand the noise source behaviours on different parts of the TE region, further
analyses are presented in the next subsection.

5.2. Noise source analysis
To investigate noise generation characteristics in the vicinity of the aerofoil TE, the TE
region is subdivided into 11 strips as shown in figure 11, each with a chordwise length
of 0.02c. For both porous and blocked TE, strip 1 includes the solid–porous junction.
The solid partition in the blocked TE extends from strips 4 to 9 (−0.16 < x/c < −0.04).
Within the frequency range of interest, the chordwise extent of each strip is smaller
compared to the streamwise integral length scale of the surface pressure fluctuations
such that each strip can be considered as a unique scattering surface. This procedure
is carried out using the same observer location as in figure 8 (x/c = 0, y/c = 5). For
this analysis, pm(t) refers to the acoustic pressure time series produced by strip m,
and p1 + p2 + · · · + p11 = p0 is the total acoustic pressure produced by the 11 strips.
Moreover, the cumulative acoustic pressure pc,m is defined in descending order (i.e.
starting from strip 11 at x/c = 0), such that pc,m = p11 + · · · + pm. The power spectral
density from these time series are subsequently computed, integrated over different
frequency bands, and expressed as sound pressure level (SPL).
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Figure 12. The sound pressure level (SPL) produced by each strip and its cumulative value, integrated over
three different frequency bands. Note that the cumulative SPL is computed following a descending order (i.e.
starting from strip 11).

Figure 12 depicts the SPL of individual strips and the corresponding cumulative values
at different frequency bands. The slope of the cumulative SPL is linked to the phase
relation between a particular strip and the previous ones. For instance, an upward slope
indicates an in-phase relation, whereas a downward slope indicates the opposite. The
scattering on the solid TE is the strongest near the edge itself, since large cumulative SPL
gradients can be found between strips 11 and 9; this is also reflected by the strip SPL of
these strips being significantly higher than the rest. Further upstream, the gradient becomes
less steep, but it remains positive. Differently, the SPL of strips 11 and 10 for the porous
and blocked TE cases are noticeably lower compared to the solid ones. The cumulative
SPL of porous TE levels off starting from strip 8, but in the case of blocked TE it climbs
further before flattening at strip 7. This discrepancy can be attributed to the individual strip
SPL of the blocked TE; those near the downstream edge of the solid partition (i.e. strips 8
and 9) show higher SPL compared to their counterpart on the porous TE. Thus, figure 12
implies that the smaller low-frequency noise reduction of the blocked TE can be attributed
to the additional noise scattered by the solid partition. Towards the solid porous junction,
the slope of the cumulative SPL of the blocked TE becomes almost zero, similar to the
porous TE, which indicates that the strips in the middle section of both types of permeable
TE are weakly in-phase with respect to each other. The cumulative SPL slope increases
again in between strips 1 and 2, implying that the scattering at the solid–porous junction
also makes a substantial contribution to far-field noise (Delfs et al. 2014; Rubio Carpio
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Figure 13. Noise directivity pattern, plotted in terms of the difference between the SPL of permeable (porous
and blocked TE) and solid TE cases, i.e. ΔSPL = SPLsolid − SPLpermeable, for groups of strips at different
frequency bands. The grey circle at the centre of the polar plot indicates regions of noise increase.

et al. 2017; Kisil & Ayton 2018). The difference in cumulative SPL between porous and
blocked TE is relatively constant between strips 7 and 3. Hence, it is possible to deduce that
the solid partition at the centreline of the blocked TE has smaller influence on the noise
generation at strips near the solid–porous junction. This observation will be investigated
further in § 6.

In the mid to high frequency ranges (8 < Stc < 32), noise generation at the solid–porous
junction becomes more significant, given that the SPL at strip 1 of the porous and blocked
TE is higher compared to those of the strips downstream. However, unlike at lower
frequencies, they exhibit relatively similar trends, and consequently noise attenuation level
as depicted in figure 9. Thus, the influence of the solid partition on the acoustic scattering
at the blocked TE appears to diminish as frequency increases. In this frequency range, the
cumulative SPL values of both porous and blocked TE also exhibit upward trends, similar
to the solid TE. This indicates that the noise reduction mechanisms of the permeable TE
become less effective at higher frequencies. Moreover, it is worth mentioning that the
excess noise from surface roughness effects is also present for Stc > 16. Nevertheless,
figure 12 corroborates the two separate noise mitigation mechanisms of the porous TE
that have been proposed in Teruna et al. (2020): (1) the reduction of scattering intensity
at the tip of the TE; and (2) partial interference between noise sources that are distributed
across the surface of the porous TE.

In the previous subsection, far-field noise directivity patterns of the porous TE exhibit
slight discrepancies compared to that of the solid TE, particularly in the high frequency
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range. It is conjectured that this is due to the variation in directivity pattern emitted by
different parts of the porous and blocked TE. To verify this hypothesis, the noise directivity
pattern has been plotted for different strips, as shown in figure 13. The strips are combined
into three groups, namely: (1) TE-junction (strips 1 to 3), (2) mid-TE (strips 4 to 9), and
(3) TE-tip (strips 10 and 11). The groups are based on the slope of the cumulative SPL
plots in figure 12. The directivity of the sum of all strips, as in figure 10, is also shown in
figure 13. The directivity plots are provided in terms of ΔSPL = SPLsolid − SPLpermeable
to emphasise noise reduction/increase generated by specific parts of the permeable
TE.

In the lowest frequency range, i.e. the leftmost plot in figure 13(a), noise reduction is
observed for all strip groups, with the highest level (≈ 12 dB) found for the TE-tip group,
although it represents less than one-fifth of the TE planform area. This indicates that the
intense scattering at the TE of the solid aerofoil has been substantially suppressed in the
porous TE case. For the blocked TE, the noise reduction level at both TE-junction and
TE-tip groups is similar to that of the porous TE, but the mid-TE group has significantly
smaller value, which leads to a lower total noise reduction level. In the frequency range of
8 < Stc < 16, the OSPL values for both porous and blocked TE are almost identical. The
noise reduction for the TE-tip group remains the highest, although the maximum ΔSPL is
2.5 dB lower than in the previous frequency range. Nevertheless, the decrease in ΔSPL is
more noticeable for mid-TE and TE-junction groups. This implies that the thicker segment
of the porous insert (near the solid–porous junction) is not as effective as the thinner one
(near the actual TE) in promoting noise reduction. In the highest Strouhal-number range,
the mid-TE group of the porous TE is shown to generate substantial excess noise. However,
the excess noise level is lower for the blocked TE case, which implies that material
permeability also plays a role in causing the noise increase. On the other hand, the TE-tip
groups for both types of permeable TE still produce slight noise reduction. It is also evident
that the TE-junction group also contributes to the noise increase, particularly towards the
downstream direction. This seems to agree with the findings of Kisil & Ayton (2018), in
which the actual TE scatters sound predominantly towards the upstream direction, similar
to that of the solid TE. However, the noise radiation at the solid–porous junction tends to
be towards the opposite direction, and this discrepancy becomes more prominent at higher
frequencies.

6. Flow field analyses

The analyses in the previous section elucidate the differences between the aeroacoustic
characteristics of the solid and porous TE, and these might be attributed to flow field
modifications caused by the porous inserts (Ali, Azarpeyvand & da Silva 2018; Rubio
Carpio et al. 2019b; Ananthan et al. 2020). It is also intriguing to determine how the
solid partition in the blocked TE alters the flow field inside the porous medium, which
eventually leads to a lower noise attenuation level with respect to porous TE. These aspects
are discussed in this section.

6.1. Turbulent boundary-layer organisation
Vortical structures in the turbulent boundary layer can be assessed qualitatively using the
isosurface of λ2 (Jeong & Hussain 1995), as shown in figure 14. Near the leading edge, the
boundary layer remains laminar until it reaches the zig-zag trip at x/c = −0.8. Streamwise
vortex pairs can be observed induced by the zig-zag trip, and they break down into smaller
flow structures that resemble streamwise streaks. The tripping process does not appear to
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Solid

Porous

Porous

Blocked

Blocked

0 0.25 0.50

||U ||/U∞

0.75 1.00

Figure 14. Instantaneous isosurface of λ2 = −2 × 107 s−2 coloured with non-dimensional velocity magnitude
‖U‖/U∞. Insets at the bottom of the image show the lateral view of the porous and blocked TE, where the
estimated entrance length is outlined with red lines.

be affected by the presence of the porous TE, although turbulence production appears to
be enhanced near the porous medium surface, indicated by the increased number of flow
structures with relatively low velocity. In the earlier section, this has been indicated in
figure 6 with the higher velocity fluctuations level in the boundary layer for the porous TE
with respect to the solid TE case. Qualitatively, the flow organisation on the blocked TE
appears similar to the porous TE one, which suggests that the solid partition has a limited
effect on the flow field outside of the porous medium.

Figure 14 also features insets showing the lateral view of the porous TE, where
transparency has been applied on the struts to reveal vortical structures inside the porous
medium with similar strength to those in the boundary layer. Strong vortices can be found
inside the porous cells that are directly exposed to the external flow (roughly one pore
diameter away from the porous medium surface). The extent of these regions can be
designated as the entrance length (Naaktgeboren, Krueger & Lage 2004; Baril et al. 2008),
where local flow fluctuation intensity is still comparable to those in the external flow.
Along the last 4 % of the aerofoil chord (i.e. near the actual TE), where the local thickness
is less than half of the unit-cell dimension, turbulent structures are present throughout the
porous medium. It is likely that pressure fluctuations from the boundary layer on opposite
sides of the TE are interacting with each other at these locations, resulting in the pressure
release process that promotes noise attenuation (Delfs et al. 2014; Rubio Carpio et al.
2019a).

6.2. Flow field in the porous trailing edge
The flow field inside the porous TE is further investigated using contours sampled at
the aerofoil midspan in figures 15 and 16. A comparison of the time-averaged flow field

926 A17-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

70
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.704


C. Teruna and others

0 0.25 0.50 0.75 1.00

||U ||/U∞

–0.10 0 0.10

U/U∞
–0.10 0 0.10

U/U∞

–0.10 0 0.10

V/U∞
–0.10 0 0.10

V/U∞

0 0.25 0.50 0.75 1.00

||U ||/U∞
0 0.25 0.50 0.75 1.00

||U ||/U∞
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(a3)

Figure 15. Contours of (a) velocity magnitude ‖U‖, and mean velocity components in the (b) streamwise U
and (c) vertical V directions for the porous and blocked TE cases. The estimated entrance length is outlined
with red lines. Streaklines have been added in panels (b1) and (b2).

between the different cases is shown in figure 15(a). Both permeable TE configurations
are found to promote faster boundary-layer growth, resulting in a wider wake compared
to the solid TE case. The velocity magnitude inside the porous medium is relatively
small compared to that of the free stream (i.e. ‖U‖ < 0.1U∞), which is also evidenced
by the contours of streamwise and vertical velocity components in figure 15(b) and
(c), respectively. Contours (b1) and (b2) display recirculation regions inside the porous
medium where U values tend to be negative. Streaklines in the contours clearly depict the
external flow entering the porous medium through open pores at both sides of the porous
insert. Some streaklines in the porous TE can be observed to flow past the chord line, but
this not the case in the blocked TE due to the solid partition.

More notable differences between the solid and permeable TE can be found in
the contours of r.m.s. of the velocity and pressure fluctuations in. In the contours,
velocity quantities are normalised with free-stream velocity U∞, and the pressure ones
with free-stream dynamic pressure q∞ = 0.5ρ∞U2∞. Comparing urms and vrms contours
between the three cases, it is clear that both types of porous TE cause stronger velocity
fluctuations throughout the boundary layer, which also indicates an enhanced turbulence
production near the porous medium surface. As previously implied in figure 14, large
velocity fluctuations can be found inside the porous medium, but they are limited within
the entrance length (i.e. the region that is delimited with red lines in the contours). Inside
the porous TE, the intensity of velocity fluctuations along the chord line tends to increase
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Figure 16. Contours of r.m.s. of velocity fluctuations in the (a) streamwise urms and (b) vertical directions
vrms, and (c) r.m.s. of pressure fluctuations prms. The estimated entrance length is outlined with red lines. Solid
TE is shown at the left column, porous TE at the middle, and blocked TE at the right one.

in the downstream direction where the porous material thickness is smaller. However, it
decreases to zero near the chord line of the blocked TE due to the solid partition.

In figure 16(c1–c3), pressure fluctuations in the boundary layer are shown to be more
intense for both porous and blocked cases compared to the solid one due to the enhanced
turbulence intensity. The contours also reveal that higher prms level at the porous medium
surface tends to be concentrated at the downstream edge of the open pores. As described
in Devenport et al. (2018), this mechanism could be responsible for generating excess
high-frequency noise. Such behaviour also resembles that of cavity flow although a
resonance phenomenon appears to be absent based on the acoustic analyses earlier.
Compared to the porous TE, pressure fluctuations near the chord line of the blocked TE
are more intense, which can be attributed to the higher velocity gradient (Blake 1970) from
the blockage introduced by the solid partition.

Based on the observations in this subsection, the solid partition of the blocked TE
has been confirmed to have a relatively small influence on the flow field outside of
the porous medium. However, it clearly alters the pressure and velocity fluctuations inside
the porous medium, and consequently the pressure release process. The link between these
observations and the results from acoustic analyses in § 5 will be elucidated further in the
following subsection.

6.3. Pressure fluctuations statistics
Pressure fluctuations on an aerodynamic body can be considered as equivalent noise
sources (Curle 1955; Amiet 1976). Consequently, any modifications in the surface pressure
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Figure 17. Contours of power spectral density of spanwise-averaged pressure fluctuations Spp along the last
20 % of the aerofoil chord; Spp is normalised with the reference pressure of 1 Pa. For porous TE, the contours
are plotted at different depth ratios y/d.

field caused by porous inserts might be related to the noise mitigation mechanisms.
Thus this subsection takes a closer look at various surface pressure fluctuation statistics,
including autospectra, and correlation lengths. Unless specified otherwise, these quantities
are evaluated at different spanwise locations, and they are averaged afterwards. This is
performed to take into account the spanwise variation of the porous TE geometry.

The pressure fluctuation contours presented in figure 16(c1–c3) are extended in
figure 17, where the corresponding autospectra Spp are plotted. For porous and blocked
TE cases, the plots are presented at different depth ratios y/d, where d equals half of the
local TE thickness, i.e. y/d = 1 is located at the porous medium surface, while y/d = 0
coincides with the chord line for porous TE, or the surface of the solid partition for blocked
TE. For solid TE, surface pressure fluctuations become more intense, particularly at low
frequencies, towards the TE-tip as the boundary layer becomes thicker due to the adverse
pressure gradient on the aerofoil (Rozenberg, Robert & Moreau 2012). In comparison,
both types of permeable TE generate higher Spp level throughout the TE region, where an
average difference of 4 dB can be found in the low frequency region (i.e. 4 < Stc < 8).

Going deeper into the porous medium, it is evident that the Spp values become
noticeably lower, especially near the solid–porous junction. This is expected since the flow
resistance encountered by the pressure fluctuations is proportional to the distance away
from the porous medium surface (Ingham & Pop 1998). For instance, the Spp level in the
blocked TE drops by an average (along −0.2 < x/c < 0) of 3 dB between y/d = 1 and
y/d = 0.8. However, in the last 4 % of the aerofoil chord (x/c > −0.04), the Spp level
remains comparable to that at the surface (< 2.5 dB difference). As shown in figure 18,
the local TE thickness within this chordwise extent becomes less than half of the unit-cell
dimension. Based on this, the entrance length of the porous material is determined to be
1.5dp, which is larger than the one-pore-diameter estimate that is typically applicable for
metal foams (Naaktgeboren et al. 2004; Kaviany 2012). It is also worth mentioning that the
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Figure 18. The aerofoil thickness variation along the chord (2d) normalised by the unit-cell dimension (D)
and the mean pore size (dp). The estimated two-sided entrance length extent is shown as the shaded region.
The dashed line marks LE , the chordwise extent of the porous insert where the local thickness is equal to the
two-sided entrance length extent.

pressure fluctuation spectra in the blocked TE case are very similar to those in the porous
TE case, except along the solid partition (y/d = 0), where the pressure fluctuation level is
slightly enhanced.

From figure 17, it is possible to deduce that the acoustic scattering is the most intense
at the surface of the porous medium where the pressure fluctuations are the strongest.
Figure 17 also clearly shows that, near the actual TE, pressure fluctuations from the
boundary layer still have a relatively strong influence inside the porous medium. It is
likely that these locations are where the pressure release process is the most efficient.
To confirm this, coherence analyses of pressure fluctuations on both sides of the porous
TE are presented in figure 19. The magnitude-squared coherence of the surface pressure
fluctuations γ 2

pp is defined as follows:

γ 2
pp( f , x) = |Cpp( f , x, yss, yps)|2

|Cpp( f , x, yss, yss)||Cpp( f , x, yps, yps)| , (6.1)

with

Cpp( f , x, yss, yps) =
∫ T

0
R(x, yss, yps, t) e−i2πft dt

= |C( f , x, yss, yps)|[cos(App( f , x, yss, yps)) + i sin(App( f , x, yss, yps))].
(6.2)

Here Cpp( f , x, yss, yps) is the cross-power spectral density, at a given chordwise position
x, of pressure fluctuations between the suction side yss and the pressure side yps of the
aerofoil. The cross-spectral phase angle is subsequently denoted as App( f , x). The γ 2

pp
value is computed using a periodogram method with Hanning window and 50 % overlap,
resulting in a frequency resolution of Δf = 100 Hz (i.e. ΔStc = 1).

It is evident in figure 19 that the porous TE allows pressure fluctuations on both sides
of the aerofoil to be correlated, although substantial coherence levels are found only in the
last 4 % of the chord; this is identical to the blocked TE case, since the solid partition only
covers −0.16 < x/c < −0.04, while for solid TE the coherence level remains low in the
entire region. Consistently, the App contours show that the pressure fluctuations near the
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Figure 19. Contours of (top) the magnitude-squared coherence of surface pressure fluctuations γ 2
pp and

(bottom) the corresponding phase angle App between the suction and pressure sides of the aerofoil.

actual TE location (x/c = 0) are strongly in-phase for the porous and blocked TE cases.
Looking back at figure 18, this particular segment of the porous insert is almost entirely
within the extent of the entrance length. Interestingly, the strip analysis in figure 12 has
shown that the cumulative SPL values at strips 10 and 11 (−0.04 < x/c < 0) of porous
and blocked TE are substantially lower compared to the solid ones. This suggests that
the attenuation of noise source intensity is strongly present in regions of the porous TE
where the local thickness is small enough to be dominated by the entrance effect. The
coherence and phase angle values for both types of porous insert are very similar between
−0.2 < x/c < −0.08, suggesting that, once the porous medium becomes sufficiently
thick, the interaction between the pressure fluctuations across the porous medium vanishes
completely. At such locations, e.g. near the solid–porous junction, the solid partition also
has a limited effect on the local noise source intensity, as demonstrated in figure 12.
This analysis also corroborates the argument that the pressure release process is the most
effective at locations where the porous medium is dominated by the entrance effect, i.e.
the local thickness is approximately equal to twice the entrance length.

The results in figure 19 are also in agreement with Chase (1975); the intensity of noise
radiated from the TE is proportional to the pressure jump across the aerofoil at the TE,
which would become smaller if the incoming pressure fluctuations were well correlated
and strongly in-phase. This can be demonstrated by computing the surface pressure jump
spectra as

Sp+,p−( f , x) =
∫ T

0
[p(x, yss, t) − p(x, yps, t)] e−i2πft dt, (6.3)
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Figure 20. The power spectral density of the surface pressure jump Sp+,p− at different streamwise locations
of the three TE types.

where p+ and p− are pressure fluctuations at the suction and pressure sides, respectively.
The surface pressure jump spectra are presented in figure 20 at three different locations
on the TE region. Upstream of the solid porous junction (x/c = −0.21), the pressure jump
level is relatively similar for the three TE configurations. At x/c = −0.11, the Sp+,p− of
the porous and blocked TE remain comparable but the values are significantly higher than
those of the solid TE. This is related to the enhanced surface pressure fluctuation level
caused by the permeable surface as shown in figure 17. However at x/c = −0.01, that
is, near the TE-tip, the pressure jump intensity has decreased substantially owing to the
pressure release process, which is evidence of reduced scattering intensity at the TE-tip of
the porous and blocked TE.

Based on the acoustic spectra in § 5, it appears that the permeable extent of the porous
TE determines the frequency range where noise attenuation can be obtained. It has been
suggested in the past (Hayden 1973; Howe 1979) that the porous TE extent should be
comparable with respect to the characteristic aerodynamic length scale at the TE region in
order to achieve noise attenuation. To confirm this hypothesis for the different TE types, the
streamwise correlation length of surface pressure fluctuations Lx

pp is computed as follows:

Lx
pp( f ) = lim

Δx→∞

∫ Δx

0

√
γ 2

pp( f , Δx) dx. (6.4)

Here γ 2
pp( f , Δx) is the magnitude-squared coherence of surface pressure fluctuations

between a reference coordinate and a location further downstream along the streamwise
(x) direction, separated by Δx. This γ 2

pp is defined as

γ 2
pp( f , Δx) = |Cpp( f , x1, x2)|2

|Cpp( f , x1, x1)||Cpp( f , x2, x2)| , (6.5)

where Cpp( f , x1, x2) is the cross-power spectral density between the surface pressure
fluctuations at two streamwise locations, x1 and x2. The γ 2

pp value here is computed using
the same method as in (6.2). Nevertheless, the relatively short simulation time often results
in poor correlation decay even at large Δx. This can be treated by employing a curve-fitting
approach based on an exponential function (Palumbo 2012; Van der Velden et al. 2014)
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Figure 21. Streamwise correlation length of surface pressure fluctuations Lx
pp at x/c = −0.05. A comparison

with the Corcos (1964) and Efimtsov (1982) models is also provided.

such that γ 2
pp tends to zero at large Δx, as shown below:

γpp( f , Δx) = e−|Δx|/Lx
pp( f ). (6.6)

The outcome of (6.6) is plotted in figure 21 with the reference location at x/c = −0.05.
Predictions based on the Corcos (1964) and Efimtsov (1982) models are also shown,
in which the Corcos parameter of 0.1 has been applied (Palumbo 2012). Note that the
streamwise correlation length is normalised against the chordwise extent of the porous
insert, where the sum of the entrance length from both sides of the aerofoil is equal to
the local thickness (see figure 18), LE = 0.038c. Figure 21 shows that a permeable surface
decreases the streamwise correlation length with respect to the solid one, especially at
low frequencies (Stc < 12). However, the Lx

pp values of both porous TE and blocked TE
are relatively similar throughout the entire frequency range. The plot for the blocked TE
shows that the correlation length becomes smaller than LE at around Stc = 8, which is the
Strouhal number below which the blocked TE begins to lose its noise reduction capability
in comparison to the porous TE (see figure 9). Simultaneously, the aerofoil with blocked
TE has the last 4 % of its chord being fully permeable, which is almost equal to LE where
the pressure release process is the most effective for noise mitigation. This observation
supports the argument that the permeable TE extent needs to be sufficiently long compared
to the characteristic length of aerodynamic fluctuations in the boundary layer to enable
noise reduction. This also justifies the noise reduction level of both porous TE and blocked
TE being very similar at Stc > 8; the aerodynamic length scale at these frequencies is
smaller compared to the fully permeable extent of the blocked TE.

Jaworski & Peake (2013) have pointed out a similar trend for owls, whose wings are
covered in a permeable velvety structure. Those whose wings have longer chord are
generally more silent in flight. This was suggested to be due to the modification of the
scattering condition on a porous edge when the owl’s wings are non-compact relative
to a certain acoustic wavelength. However, noise attenuation cannot be observed at high
frequencies in the present case, as it is likely to be masked by the excess noise from the
surface roughness effect. It is also worth mentioning that in a simulation on a porous
metal-foam trailing edge that utilises a porous medium model, which neglects the surface
roughness, noise attenuation is still present in the high frequency range (Teruna et al.
2020).

The acoustic scattering intensity at the TE is also proportional to the spanwise coherence
of the pressure fluctuations along the TE (Amiet 1976), which might be different between
the solid and porous TE. To investigate whether this aspect plays any role in noise
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Figure 22. Comparison of the streamwise distribution of the spanwise correlation length of surface pressure
fluctuations Lz

pp between the solid and porous TE cases.

mitigation, the spanwise correlation length of the surface pressure fluctuations Lz
pp( f )

is computed and shown in figure 22. The computational procedure is the same as that
for obtaining the streamwise correlation length except that, in this case, spatial coherence
is computed along the spanwise direction. The values are subsequently averaged across
frequency bands corresponding to the noise reduction level previously shown in figure 8.
Note that Lz

pp is normalised against the boundary-layer thickness near the TE (x/c =
−0.01) of the solid aerofoil, i.e. 9.31 mm (Teruna et al. 2020).

Figure 22 again confirms that the porous TE has a limited effect on the flow field
upstream of the solid–porous junction since the Lz

pp values for all aerofoil variants are
similar for the different frequency bands. However, there are noticeable discrepancies
downstream of the solid–porous junction; the spanwise correlation lengths of both
permeable TE are smaller on average compared to that of the solid one, particularly in
the low to mid frequency ranges. Averaged along the streamwise direction, the Lz

pp of
the porous TE is 35 % lower than that of the solid TE at Stc = [4, 8] and 17 % lower at
Stc = [8, 16], while the difference at the highest frequency band (Stc = [16, 32]) is much
smaller. Similar trends have been described in Ali et al. (2018), Koh, Meinke & Schröder
(2018) and Ananthan et al. (2020) for a turbulent boundary layer on a porous surface.
It is worth mentioning that the spanwise correlation length on the blocked TE is almost
identical to that on the porous TE, which further corroborates the argument that the solid
partition has a relatively small influence on the flow field outside of the porous medium.

By incorporating the information in figures 17 and 22 into Amiet’s trailing-edge noise
model (Amiet 1976), it can be expected that the porous TE would produce a net noise
increase relative to solid TE, since the enhancement of the surface pressure fluctuations
(up to 4 dB) is greater than the reduction in the spanwise correlation length (up to 2.5 dB).
Thus, it is insufficient to predict the noise reduction of the permeable TE by considering
only the changes in flow statistics at the aerofoil surface, unlike for a solid TE. The noise
prediction model for a porous TE should take into account the fact that a porous TE can
have multiple scattering locations (Kisil & Ayton 2018) as well as reduced scattering
efficiency due to the pressure release process (Herr et al. 2014). Both mechanisms are
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Solid Porous Blocked

Cd , present 0.0240 0.0262 0.0259
Difference from solid TE — +8.9 % +7.9 %

Table 3. Comparison of time-averaged drag coefficient between aerofoils with different TE types.

expected to be dependent on the permeability distribution of the porous TE along its
chordwise extent.

6.4. Aerodynamic performance
In the literature, the application of a permeable trailing edge has been associated with the
decrease in aerodynamic performance (Iosilevskii 2013; Geyer & Sarradj 2014, 2019), and
this might also apply for the current porous TE. Considering that the NACA 0018 in the
present study is installed at zero angle of attack, only the drag values would be relevant.
The time-averaged drag coefficient is computed using the wake survey method outlined in
Faleiros, Tuinstra & Hoeijmakers (2016):

Cd = 2
∫ ∞

−∞

(
1 − U( y)

U∞

) (
U( y)
U∞

)
dy. (6.7)

Here U( y) is the distribution of time-averaged streamwise velocity component along the
vertical (y) direction; U( y) is sampled along −2.5 < y/c < 2.5 over a period of 10 flow
passes. Spanwise averaging has also been performed to improve the statistical convergence
of the results. In addition, the drag coefficient is evaluated based on U( y) at different
positions (i.e. x/c > 1) downstream of the aerofoil to ensure that changing the wake survey
position does not significantly affect the result.

The Cd for each aerofoil is summarised in table 3. Aerofoils equipped with the
permeable TE produce higher drag than the solid one. Nevertheless, the drag increase
in the case of blocked TE is slightly smaller than that of porous TE, which suggests that
the aerodynamic penalty is linked to the permeability of the TE region. A similar trend was
observed in Teruna et al. (2020), in which the blocked porous TE also produced smaller
aerodynamic penalty than the fully permeable one. The cause for the drag increase can
be attributed to the following aspects: (1) rough surface of the porous material (Flack
& Schultz 2014); and (2) unsteady flow transpiration at the porous medium surface that
enhances wall shear stress and turbulent fluctuations in the boundary layer (Kuwata &
Suga 2017). However, based on previous study by the authors (Teruna et al. 2020), as well
as other numerical studies (Jimenez et al. 2001; Ananthan et al. 2020), the latter appears
to be more influential considering that the drag increase caused by a porous medium is
still present despite having neglected the surface roughness effect.

The increase of wall shear stress due to the porous TE is evident in figure 23.
Interestingly, a slight Cf decrease can be observed around the solid–porous junction
(−0.22 < x/c < 0.18), which was also present in simulations using porous medium
models (Koh et al. 2018; Teruna et al. 2020). Following Kametani & Fukagata (2011)
and Atzori et al. (2020), the Cf reduction suggests that flow ejection from the porous
medium is more evident near the solid–porous junction, which can be linked to the flow
recirculation pattern near the solid–porous junction in figure 15. Further downstream, the
flow suction and ejection processes become more balanced, and the increased wall shear

926 A17-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

70
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.704


A 3-D printed porous trailing edge for noise reduction

–0.4

0

0.002

0.004

0.006

0.008

–0.3 –0.2 –0.1 0

x/c

Cf Solid

Porous

Blocked

Figure 23. Chordwise distribution of time-averaged wall-friction coefficient Cf for the different TE types.
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Figure 24. Chordwise distribution of time-averaged surface pressure Cp for the entire aerofoil (a) and near
the TE region (b).

is mainly caused by the stronger velocity gradient near the porous medium surface (Koh
et al. 2018).

The time-averaged surface pressure distributions for both TE types are plotted in
figure 24. The figure shows that the Cp distribution upstream of the solid–porous junction
is relatively unaffected by the presence of a porous TE, consistent with the observation of
Rubio Carpio et al. (2017). As the turbulent boundary layer approaches the solid–porous
junction, however, it can be observed in figure 24(b) that the adverse pressure gradient is
slightly enhanced. The pressure gradient decreases at locations further downstream up to
x/c = −0.15, before recovering to a similar level as that on the solid TE. This leads to an
overall lower Cp on the porous TE that can also be linked to an increase in pressure drag.

7. Discussions on porous material modelling approach in simulations

As mentioned in § 3, the authors (Teruna et al. 2020) have previously investigated the
application of a permeable TE insert using a volume-averaging technique that imposed
additional forcing terms based on Darcy’s law within the porous medium region. Although
the porous material used in Teruna et al. (2020) was a metal foam that has different internal
topology compared to the unit-cell-based porous material, an interesting discussion could
still be had on the differences between a simulation that employs a fully resolved geometry
and a porous medium model. The present porous insert produces slightly higher noise
reduction level in the low frequency range, since its resistivity is lower compared to
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the metal-foam one. One noticeable difference is the inclusion of the surface roughness
effect in the fully resolved case, which is responsible for generating excess noise at high
frequencies. Whether this information is worth the additional computational cost and
geometrical complexity remains debatable. Regardless, there are already several studies
demonstrating that the volume-averaging approach for modelling porous materials is
sufficient to predict the general acoustic trends (Bernicke et al. 2018; Rossian, Ewert &
Delfs 2018; Ananthan et al. 2020; Teruna et al. 2020), implying that permeability is the
relevant aspect that determines noise attenuation.

This idea is further reinforced in the present study, where it is possible to conclude that
the changes in the flow field are mainly caused by permeability, such as the increase in
surface pressure fluctuation intensity, skin friction and drag, as well as the reduction in
turbulence length scales. Consequently, the agreement between a simulation that utilises a
porous medium model and those from the experiments would depend on how the porous
material resistivity is defined. One particular obstacle is the thickness dependence of
the resistivity (Naaktgeboren et al. 2004), which has been addressed in Teruna et al.
(2020) using the multilayer modelling approach. Nevertheless, further investigations are
still needed to assess its applicability for other types of porous materials.

8. Conclusion and outlook

Numerical simulations using the transient, explicit and compressible LB solver, SIMULIA
PowerFLOW, have been carried out to investigate the TBL-TE noise generated by a NACA
0018 aerofoil. For the purpose of noise attenuation, the last 20 % of the aerofoil chord can
be replaced by a porous insert. The porous insert is based on a lattice of diamond atoms.
The geometrical details of the porous material are fully resolved in the simulation, and
thus a porous medium model is not utilised. A third configuration, referred to as blocked
TE, has been included where a thin solid partition is added inside the porous material at
20 % and 80 % of the porous TE extent. The rest of the simulation set-up is identical to
that of the authors’ previous work (Teruna et al. 2020).

The porous TE is found to produce a significant noise reduction at low frequencies
(≈ 10 dB), although a slight noise increase is present in the high frequency range. The
blocked TE performs similarly as the fully permeable one at mid to high frequencies, but
the low-frequency noise reduction is noticeably lower (≈ 5 dB). It is found that the porous
TE promotes two different noise reduction mechanisms: (1) suppression of noise source
intensity at the actual trailing edge location; and (2) partial interference of noise generated
by distributed sources along the porous medium surface. Both mechanisms are also present
in the case of blocked TE, although the additional scattering at the downstream edge of
the solid partition results in a lower noise reduction. The sound directivity from different
segments of the porous TE is also evaluated. The solid–porous junction tends to scatter
towards the downstream direction, which is the opposite with respect to the actual trailing
edge. Moreover, the noise sources at the solid–porous junction become more dominant
towards the high frequency range, which is partly responsible for the noise increase.

Compared to the solid TE, the permeable inserts enhance boundary-layer growth,
resulting in a wider wake region. The porous inserts also increase flow shear in the
boundary layer due to the combination of surface roughness and permeability effects,
resulting in more intense velocity and pressure fluctuations near the porous medium
surface. While these flow behaviours are expected to cause a stronger acoustic scattering
on the porous TE, this is not the case due to the pressure release process, which refers to
the interaction between pressure fluctuations on the opposite sides of the TE through the
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porous medium. The pressure release process is prominently observed in the last 4 % of
the aerofoil chord, where the local thickness is less than half of the unit-cell dimension
or twice the entrance length. These locations are also where the sound source intensity is
found to be substantially lower compared to that of the solid TE. Hence, it is concluded
that the pressure release process is concentrated mainly at the porous TE extent where the
entrance effect dominates.

The present investigation also corroborates the argument that the noise reduction of
a porous TE cannot be fully justified by considering only the modification of flow field
statistics at the porous TE surface. Instead, several aeroacoustic aspects of the porous
TE have to be considered in TE noise prediction models, including: (1) the presence of
multiple scattering locations at the porous medium surface; and (2) the lower TE scattering
efficiency due to the pressure release process. While acoustic scattering models for a
thin perforated plate have been developed before, further investigations are warranted
to include the effect of a finite porous medium thickness in which both static pressure
drop and mass flow rate across the porous insert are governed by Darcy’s law. This study
has also hinted at the possibility of optimising the trade-off between noise reduction and
aerodynamic performance by adjusting the permeable extent of the trailing edge, which is
in line with past suggestions in the literature (Hajian & Jaworski 2017; Jaworski & Peake
2020).
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Appendix A. Description of experimental technique

A.1. Acoustic beam-forming
Acoustic data are recorded with a phased microphone array composed of 64 GRAS 40PH
free-field microphones. The microphones, with a flat frequency response (±1 dB) within
10 Hz to 20 kHz, allow for a maximum input of 135 dB (with reference pressure 20 μPa).
The microphone distribution is optimised to measure frequencies up to 10 kHz with
minimum main-lobe width and side-lobe level (Luesutthiviboon et al. 2018). To improve
the resolution of the antenna in the streamwise direction, microphones are distributed over
an ellipse with major-to-minor axis ratio of 2, and a streamwise effective diameter of 2 m.
The distance from the antenna plane to the aerofoil trailing edge is 1 m. The centre of the
array is 3 cm upstream of the aerofoil trailing edge for the 40 cm × 70 cm nozzle, and
10 cm downstream for the smaller one.
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Figure 25. Sketch detailing the hot-wire anemometry measurement position and the resulting PIV field of
view. Hot-wire anemometry measurements are indicated by circles. The PIV field of view is delimited by the
green shaded area.

Data are recorded for 20 s at a sampling rate of 51.2 kHz. The cross-spectral matrix of
the measured acoustic pressure is computed by averaging sample blocks (8192 samples
per block; 50 % overlap; Hann windowing function) of the signals in the frequency
domain. The refraction of sound waves within the shear layer of the jet is corrected
using the method proposed by Sijtsma (2010). Beam-forming is applied on a grid ranging
between −2 < X/c < 2 and −2 < Z/c < 2 with a spacing of 5 mm in both directions.
Conventional frequency-domain beam-forming (Chiariotti, Martarelli & Castellini 2019;
Merino-Martínez et al. 2019) is employed to obtain acoustic source maps. Acoustic spectra
are computed by integrating source maps (Sijtsma 2010) within −0.3 < Z/c < 0.3 and
−0.6 < X/c < 0.4; this technique allows broadband trailing-edge noise to be isolated
from other undesired acoustic sources, such as noise generated by the turbulent boundary
layer over the side plates or leading-edge noise. The chosen integration area comprises
noise scattered at the solid edge and the solid–permeable junction. Similar acoustic data
processing has been successfully employed in previous low-noise trailing-edge research
(Oerlemans et al. 2007). With the current experimental set-up and data post-processing,
the uncertainty on the reported noise levels is estimated to be ±1 dB, based on the
comparison with synthetic data (Sarradj et al. 2017).

A.2. Planar particle image velocimetry
Time-resolved planar PIV measurements are performed on the midspan x–y plane of the
aerofoil. The flow is seeded with a SAFEX fog generator employing a vaporised mixture of
water and glycol with mean droplet diameter of 1 μm. The region of interest is illuminated
with a Continuum MESA PIV (wavelength, 532 nm; energy, 18 mJ pulse−1). The laser
beam is turned into a 1 mm thick sheet with a series of cylindrical and spherical lenses.
Images are recorded at a frame rate of 20 kHz with two Photron Fastcam SA1 cameras
(12 bit; pixel size, 20 μm) with the sensor cropped to 512 × 512 pixels. A total of 21 829
single images are recorded during 1.1 s. Both cameras are equipped with 105 mm macro
lenses using an aperture of f /4. Image acquisition and processing are carried out by
employing LaVision DaVis 8.4. The resolution is 15 pixel mm−1 and the magnification
factor is equal to 0.3. Particle displacement is computed employing a multistep
iterative algorithm (Scarano & Riethmuller 2000) with initial and final window sizes of
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64 × 64 pixels and 12 × 12 pixels, respectively, and 75 % overlapping. The particle
displacement in the free stream is approximately 15 pixels. A universal outlier detector
(Westerweel & Scarano 2005) removes spurious vectors and replaces them via linear
interpolation based on adjacent data. These settings result in a final spatial resolution of
0.8 mm and a vector spacing of 0.2 mm. Vector fields resulting from different cameras are
cropped and stitched together to yield a final field of view of 31 mm × 51 mm (156 × 251
vectors). The schematic showing the field of view is provided in figure 25. Uncertainty
quantification is computed by employing the correlation statistics method described by
Wieneke (2015); upper-bound estimates on mean and r.m.s. quantities are 0.3 % and 0.6 %
of the free-stream velocity, respectively, with maximum values being found in the vicinity
of the trailing edge.
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