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On anticyclotomic µ-invariants of modular forms

Robert Pollack and Tom Weston

Abstract

We prove the µ-part of the main conjecture for modular forms along the anticyclotomic
Zp-extension of a quadratic imaginary field. Our proof consists of first giving an explicit
formula for the algebraic µ-invariant, and then using results of Ribet and Takahashi
showing that our formula agrees with Vatsal’s formula for the analytic µ-invariant.

1. Introduction

Let E/Q be an elliptic curve of squarefree level N . Fix a prime p> 5 of good reduction and an
imaginary quadratic field K of discriminant prime to pN . Write N =N+N− with N+ divisible
only by primes which are split in K/Q and N− divisible only by inert primes. If N− has an
even number of prime divisors, then it is known by work of Cornut [Cor02] and Vatsal [Vat03]
that E has infinitely many independent non-torsion points defined over ring class fields of K of
p-power conductor. In terms of Iwasawa theory, this implies that Selp(K∞, E), the p-adic Selmer
group of E over the anticyclotomic Zp-extension K∞ of K, has positive rank over the Iwasawa
algebra Λ; correspondingly, the anticyclotomic p-adic L-function Lp(K∞, E) vanishes.

When N− has an odd number of prime divisors, the situation is more analogous to the
cyclotomic Iwasawa theory of E. In this case, the signs of the functional equations of twists of E
suggest that E has finite rank over K∞: more precisely, one expects that Lp(K∞, E) is non-zero
and that Selp(K∞, E) is a cotorsion Λ-module. (When E is p-supersingular, one must replace
these objects by their ±-variants defined in [DI08, IP06, Kob03]. Our discussion below continues
to hold for these Selmer groups but for simplicity we will focus in the introduction on the ordinary
case.) Furthermore, the main conjecture of Iwasawa theory predicts that Lp(K∞, E) · Λ equals
the characteristic ideal of Selp(K∞, E)∨, the Pontryagin dual of Selp(K∞, E).

Many of these facts are now known in this setting: work of Vatsal [Vat02] establishes the non-
vanishing of Lp(K∞, E), while under the additional hypothesis that E is p-isolated, Bertolini–
Darmon [BD05] have established the cotorsionness of Selp(K∞, E). In fact, in this case [BD05]
shows one divisibility of the main conjecture: the characteristic ideal of Selp(K∞, E)∨ divides
Lp(K∞, E).

Remarkably, one can use the wealth of information provided by Heegner points in the
complementary indefinite case to prove results in the definite case whose cyclotomic analogues
remain unproven. Specifically, in the cyclotomic case, it is a long-standing conjecture of
Greenberg that the µ-invariant of E vanishes if the p-torsion of E is irreducible. The
anticyclotomic analogue of this statement can be deduced from the work of Vatsal and Bertolini–
Darmon. Precisely, [Vat03] establishes the vanishing of the analytic µ-invariant; the divisibility
of [BD05] then yields the vanishing of the algebraic µ-invariant as well. (See Theorem 5.3.)
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Vatsal’s work also indicates an unexpected divergence from the cyclotomic setting: there are in
fact two natural normalizations of the anticyclotomic p-adic L-function depending on whether one
uses Gross’ period [Gro87] or Hida’s canonical period [Hid88]. The p-adic L-function Lp(K∞, E)
discussed above corresponds to the first of these; we write Lp(K∞, E) for the second. There is
in fact a corresponding choice of Selmer groups: the usual elliptic Selmer group Selp(K∞, E)
and the Selmer group Selp(K∞, E) in the sense of Greenberg. (These Selmer groups differ only
in the defining local conditions at primes dividing N−: the former uses a locally trivial condition
while the latter uses only a locally unramified condition.)

One goal of this paper is to illuminate the difference between these two choices. Specifically,
both algebraically and analytically they differ only in the µ-invariant. Vatsal has in fact also
given a precise formula for µ(Lp(K∞, E)) in terms of congruence numbers:

µ(Lp(K∞, E)) = ordp

(
ηf (N)

ξf (N+, N−)

)
.

We define the quantities in this formula precisely in § 2. For now, let us comment that ηf (N)
measures congruences between the newform f corresponding to E and other eigenforms of weight
two and level N . The term ξf (N+, N−) is closely related to congruences with such eigenforms
that are also new at all primes dividing N−. (We remark that this formula differs slightly from
the formula stated in [Vat03]. We will elaborate on this difference in § 2.)

In this paper, we obtain a very different-looking formula for µ(Selp(K∞, E)). We state this
formula here in general for weight two modular forms. Let f be a newform of weight two and
squarefree levelN =N+N− such that the number of prime divisors ofN− is odd. Throughout the
paper, we will be imposing the following hypotheses on N− and ρ̄f , the residual representation
attached to f .

Let k be a finite field. A continuous Galois representation ρ̄ :GQ→GL2(k) and a
squarefree product N− of an odd number of primes, each inert in K/Q, including all
such primes at which ρ̄ is ramified, satisfy hypothesis CR if:

(1) ρ̄ is surjective;
(2) if q|N− and q ≡±1 (mod p), then ρ̄ is ramified at q.

We will use both conditions above repeatedly in our arguments; it is not clear to the authors
the extent to which these hypotheses can be relaxed.

In the theorem below, the Tamagawa exponent tf (q) is a purely local invariant, which for an
elliptic curve is simply the p-adic valuation of the Tamagawa factor at q. See Definition 3.3 for
a precise description of this quantity in general.

Theorem 1.1. Assume that (ρ̄f , N−) satisfies CR.

(1) If f is p-ordinary, then

µ(Sel(K∞, f)) = 0 and µ(Sel(K∞, f)) =
∑
q|N−

tf (q).

(2) If f is p-supersingular, ap = 0, p is split in K/Q, and each prime above p is totally ramified
in K∞/K, then

µ(Sel±(K∞, f)) = 0 and µ(Sel±(K∞, f)) =
∑
q|N−

tf (q).
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We remark that these results are strikingly similar to results of Finis [Fin06] on analytic
µ-invariants of anticyclotomic Hecke characters.

Note that the formula of Vatsal gives the analytic µ-invariant as a difference of global terms,
while the algebraic formulae above are purely local. The main conjecture, however, predicts
that these formulae should agree. Using results of Ribet–Takahashi [RT97, Tak01] on degrees of
modular parameterizations arising from Shimura curves, we establish that

ordp

(
ηf (N)

ξf (N+, N−)

)
=
∑
q|N−

tf (q) (1)

and thus deduce the µ-part of the main conjecture in both the ordinary and supersingular case.

Theorem 1.2. Assume that (ρ̄f , N−) satisfies CR.

(1) If f is p-ordinary, then

µ(Sel(K∞, f)) = µ(Lp(K∞, f)) = 0

and

µ(Sel(K∞, f)) = µ(Lp(K∞, f)).
(2) If f is p-supersingular, ap = 0, p is split in K/Q and each prime above p is totally ramified

in K∞/K, then

µ(Sel±(K∞, f)) = µ(L±p (K∞, f)) = 0
and

µ(Sel±(K∞, f)) = µ(L±p (K∞, f)).

It is perhaps worth commenting on the relationships between these two choices of Selmer
groups and p-adic L-functions. Theorem 3.7 shows that the minimal Selmer group Sel(K∞, f)
loses information at the primes dividing N−, while Sel(K∞, f) retains that information. (This
is to be expected, as the local condition at such primes in the minimal case is much stronger.)
Correspondingly, the periods used in the definitions of Lp(K∞, f) and Lp(K∞, f) differ by a
factor essentially measuring congruences with eigenforms which are old at primes dividing N−.
In other words, while Sel(K∞, f) and Lp(K∞, f) have trivial µ-invariants (and thus are perhaps
easier to work with), they lose information at ramified primes which are infinitely split in the
Zp-extension; the same information is retained by Sel(K∞, f) and Lp(K∞, f).

Another goal of this paper is to weaken the hypotheses of the results of Bertolini–
Darmon [BD05] on the cotorsionness of Sel(K∞, f) and on the divisibility of Lp(K∞, f) by the
characteristic power series of Sel(K∞, f)∨. In [BD05], it is assumed that f has Fourier coefficients
in Zp and that f is not congruent to any eigenform of level N that is old at any prime dividing
N−. These hypotheses are not stable under congruences and so are unfavorable for studying
congruence questions in the spirit of [EPW06, GV00]. We thus prove the following result.

Theorem 1.3. Assume that p> 5 and that (ρ̄f , N−) satisfies CR. If f is p-ordinary, then
Sel(K∞, f) is a cotorsion Λ-module and

charΛ(Sel(K∞, f)) divides Lp(K∞, f) in Λ.

If f is p-supersingular, ap = 0, p is split in K/Q and each prime above p is totally ramified in
K∞/K, then Sel±(K∞, f) is a cotorsion Λ-module and

charΛ(Sel±(K∞, f)) divides L±p (K∞, f) in Λ.
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To remove the assumption on the Fourier coefficients, more care is needed in studying the
Galois representations that arise; this is dealt with in Proposition 4.4. The second assumption
is used in two serious ways in [BD05]. It is used to (trivially) deduce the freeness of a certain
character group attached to a Shimura variety. This freeness is used to carry out mod pn level-
raising to produce a mod pn modular form congruent to f with certain desirable properties. It
is then used again to lift this mod pn modular form to a true modular form.

We address the character group via hypothesis CR for (ρ̄f , N−) (which is weaker than the
hypotheses of [BD05]), showing that it is enough to force the freeness of the character group (see
Theorem 6.2). Thus, the mod pn level-raising arguments can still be made to work. As for the
second issue, it is not possible in general to lift mod pn modular forms to true modular forms. We
circumvent this problem by working directly with mod pn modular forms, their Selmer groups
and their p-adic L-functions. One then verifies that the arguments of [BD05] go through in this
more general setting.

We close this introduction by proposing a formula on congruence numbers that is purely
a statement about modular forms, but arises naturally from the study of anticyclotomic
µ-invariants, especially (1).

Conjecture 1.4. Let f be a newform of level N and weight two. If N = a`b is a factorization
of the level of f with ` a prime, then

ordp(ηf (a`, b)) = tf (`) + ordp(ηf (a, `b)). (2)

Here, for a factorization N =N1N2, the quantity ηf (N1, N2) measures congruences between
f and forms of level N that are new at all primes dividing N2. See § 6.6 for a precise statement.

This conjecture immediately implies level-lowering in the sense of [Rib90]; it perhaps should
be regarded as a quantitative version of level-lowering, much as Wiles’ numerical criterion [Wil95]
is a quantitative version of level-raising. The formula of Ribet–Takahashi referred to above is an
analogue of this formula in terms of degrees of modular parameterizations arising from Shimura
curves. Similar formulae appear in Khare’s work [Kha03] on establishing isomorphisms between
deformation rings and Hecke rings via level-lowering. We prove (2) in § 6.6 assuming CR. Not
coincidentally, this hypothesis puts us in the case in which level-lowering can be established by
Mazur’s principle.

Theorem 1.5. Conjecture 1.4 holds if (ρ̄f , b`) satisfy CR and ρ̄f is ramified at at least two
primes.

The structure of the paper is as follows. In § 2, we define the two normalizations of p-adic
L-functions and recall the results of Vatsal. In § 3, we define our two normalizations of Selmer
groups and compare them. In § 4, we generalize the results of [BD05] as described above. In § 5,
we combine the results of the previous two sections to produce a local formula for the algebraic
µ-invariants. In § 6, we prove the µ-part of the main conjecture and discuss quantitative level-
lowering. Finally, in § 7, we discuss some anticyclotomic analogues of the congruence results
of [EPW06, GV00]. We also include an appendix giving a general criterion for surjectivity of
global-to-local maps in Iwasawa theory.

Notation

Fix an odd prime p and embeddings Q̄ ↪→ Q̄p and Q̄ ↪→C. Let K/Q be an imaginary quadratic
field with discriminant D prime to p. Let K∞ denote the anticyclotomic Zp-extension of K.
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Thus, Γ := Gal(K∞/K) is non-canonically isomorphic to the additive group Zp and the non-
trivial element of Gal(K/Q) acts on Γ by inversion. We write Kn for the unique subfield of
K∞ such that Gal(Kn/K)∼= Z/pnZ. If N is an integer relatively prime to D, we write N+

(respectively N−) for the largest divisor of N divisible only by primes split (respectively inert)
in K/Q.

Let f =
∑
anq

n denote a normalized newform of weight two, squarefree level N =N+N−

prime to pD, and trivial nebentypus. We assume throughout this paper that N− has an odd
number of prime factors. We regard f as a p-adic modular form via our fixed embedding Q̄ ↪→ Q̄p;
let O0 denote the Zp-subalgebra of Q̄p generated by the images of the Fourier coefficients of f
and let O denote the integral closure of O0 in its fraction field F . We write p for the maximal
ideal of O and for n> 1 set pn := pn ∩ O0. Let k0 =O0/p1 and k =O/p denote the residue fields.
Let Λ0 :=O0[[Γ]] and Λ :=O[[Γ]] denote the Iwasawa algebras over O0 and O, respectively.

2. p-adic L-functions and analytic µ-invariants

2.1 The complex period Ω

When f is p-ordinary, in the sense that ap is a p-adic unit, there is an anticyclotomic p-adic
L-function

Lp(K∞, f) ∈ Λ

interpolating the algebraic special values of the L-series of anticyclotomic twists of f over K. In
particular, for a character χ of Γ of order pn, we have

χ(Lp(K∞, f)) =
1
α2n
· L(f, χ, 1)

Ω
· Cχ · u2, (3)

where α is the unit root of x2 − apx+ p, Cχ =
√
Dpn, Ω := Ωf,K is a certain complex period that

depends upon f and K as in [BD96, BD98, BD05, Vat03], and u is half of the order of O×K . We
recall now the definition of Ω. (We should note that Lp(K∞, f) and Ω are both really defined
only up to p-adic units; however, we will construct them based on the same choices so that (3)
holds exactly.)

Fix a factorization N =N1N2 and let S2(N1, N2) denote the space of cusp forms on Γ0(N)
that are new at all primes dividing N2. Let T0(N1, N2) denote the p-adic completion of the
Hecke algebra that acts faithfully on S2(N1, N2). We simply write T0(N) for T0(N, 1). Our fixed
newform f gives rise to a homomorphism

πf : T0(N1, N2)−→O0 (4)

sending T` to a` for every prime ` -N and Uq to aq for each prime q|N .
Let XN+,N− denote the Shimura curve of level N+ attached to the definite quaternion algebra

ramified at the primes dividing N−. If M= Pic(XN+,N−)⊗ Zp, then M has a natural faithful
action of T0(N+, N−). In the construction of the p-adic L-function Lp(K∞, f), one chooses a
linear map

ψf :M→O
that is T0(N+, N−)-equivariant, where O is viewed as a T0(N+, N−)-module via πf . AsM⊗Qp

is a free T0(N+, N−)⊗Qp-module, this map is uniquely determined up to multiplication by an
element of O. By scaling by a constant of O, we can and do insist that 1 be in the image of ψf .
This normalization determines ψf up to a p-adic unit.
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We now explicitly construct such a map. LetMf denote the submodule ofM⊗O on which
T0(N+, N−) acts via πf . Then Mf is a free O-module of rank one; let gf denote a generator of
this module. The Hecke moduleM is equipped with an intersection pairing 〈·, ·〉 :M×M→ Zp
under which the action of T0(N+, N−) is adjoint.

Lemma 2.1. There is some m ∈M such that 〈m, gf 〉 is a unit.

We prove this lemma by relating M to a character group arising from a Shimura curve
attached to an indefinite quaternion algebra and then invoking results of [Tak01]. As such
character groups will be explored in detail in § 6.2, we postpone a proof until then.

Assuming this lemma, we may take the map ψf to be defined by

ψf (x) = 〈x, gf 〉.

Under this choice of normalization, we now specify the period Ω precisely. Set

ξf (N+, N−) = 〈gf , gf 〉.

As gf is only defined up to a p-adic unit, we can choose gf so that ξf (N+, N−) is in K and thus
we may view it as an element of Q̄p or C via our fixed embeddings.

Lemma 2.2. The period Ω in (3) can be taken to be

Ω =
(f, f)

ξf (N+, N−)
.

Here, (f, f) denotes the Petersson inner product of f with itself.

Proof. Let ef be the idempotent of T0(N+, N−)⊗Qp attached to f . Let P ∈M (a Heegner
point) and Gn (a Galois group) be as in [Vat03, Lemma 2.5]. Gross’ special value formula
implies that for χ a primitive character of Gn, we have〈∑

σ∈Gn

χ(σ) · efP σ,
∑
σ∈Gn

χ(σ) · efP σ
〉

=
L(f, χ, 1)

(f, f)
· Cχ · u2.

Expanding the left-hand side gives∑
σ,τ

χ(στ−1)〈efP σ, efP τ 〉=
L(f, χ, 1)

(f, f)
· Cχ · u2.

Write efP σ = cf (σ)gf with cf (σ) in the field of fractions of O. (Note that cf (σ) need not be
integral as efP σ is an element of M⊗Qp and not necessarily of M.) Then

ψf (efP σ) = 〈efP σ, gf 〉= cf (σ)〈gf , gf 〉

and thus ∑
σ,τ

χ(στ−1)ψf (efP σ)ψf (efP τ ) =
L(f, χ, 1)

(f, f)
· Cχ · u2 · 〈gf , gf 〉.

Rearranging yields ∣∣∣∣∑
σ

χ(σ)ψf (efP σ)
∣∣∣∣2 =

L(f, χ, 1)
(f, f)

· Cχ · u2 · 〈gf , gf 〉

and, since

ψf (efP σ) = 〈efP σ, gf 〉= 〈P σ, efgf 〉= 〈P σ, gf 〉= ψf (P σ),
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we have ∣∣∣∣∑
σ

χ(σ)ψf (P σ)
∣∣∣∣2 =

L(f, χ, 1)
(f, f)

· Cχ · u2 · 〈gf , gf 〉.

By the definition of the p-adic L-function, it then follows that we may take

Ω =
(f, f)

ξf (N+, N−)
. 2

2.2 The canonical period

There is a second natural choice of complex period in this context, namely Hida’s canonical
period (cf. [Hid88] and [Vat03, p. 10]). In order to state the definition of this period, we recall
the notion of a congruence number.

For later use, we proceed in somewhat more generality than is immediately necessary. For
a factorization N =N1N2, we define the congruence number ηf (N1, N2) to be any generator of
the O-ideal

πf (AnnT0(N1,N2)(ker πf )) · O;

here πf is as in (4). The congruence number ηf (N1, N2) is a unit if and only if f does not admit
any non-trivial congruences to eigenforms for Γ0(N) that are new at every prime dividing N2.
We simply write ηf (N) for ηf (N, 1). (As ηf (N1, N2) is only defined up to a p-adic unit, we can
choose it to be in K and thus view it in either Q̄p or C.)

The canonical period of f is defined as

Ωf :=
(f, f)
ηf (N)

with (f, f) as before the Petersson inner product of f with itself. This is a natural period to
consider from the point of view of congruences; see, for example, [Vat99]. Note also that it is
independent of the imaginary quadratic field K.

We denote the anticyclotomic p-adic L-function of f relative to the canonical period Ωf by
Lp(K∞, f); thus,

χ(Lp(K∞, f)) =
1
α2n
· L(f, χ, 1)

Ωf
· Cχ

with notation as before. By Lemma 2.2, we can choose Ωf so that

Lp(K∞, f) = Lp(K∞, f) ·
ηf (N)

ξf (N+, N−)
. (5)

2.3 Analytic µ-invariants

It is known by work of Vatsal [Vat02] that the p-adic L-functions Lp(K∞, f) and Lp(K∞, f) are
non-zero. In fact, the results of [Vat03] give the precise value of their Iwasawa µ-invariants. (We
normalize our µ-invariants so that µ(Q) for Q ∈ Λ is the largest exponent c such that Q ∈ pc · Λ.)

Theorem 2.3 (Vatsal). Assume that the residual Galois representation ρ̄f attached to f is
irreducible. Then:

(1) µ(Lp(K∞, f)) = 0;

(2) µ(Lp(K∞, f)) = ordp(ηf (N)/ξf (N+, N−)).
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Remark 2.4. In [Vat03], the denominator ξf (N+, N−) is mistakenly replaced with the
congruence number ηf (N+, N−). These two quantities are equal if M is a free T0(N+, N−)-
module (see Theorem 6.2) and are probably always equal, but this is currently not known. The
relation between these two quantities will be further explored in § 6.6.

Proof. The first part follows from the discussion in [Vat03, § 4.6]; see, in particular, [Vat03,
Proposition 4.7]. (Note that ν = 0 in the notation of [Vat03] because we are assuming that ρ̄f is
irreducible.) The second part follows immediately from (5). 2

2.4 Supersingular case
We now turn to the case where f is p-supersingular. Under the assumption that ap = 0, two
p-adic L-functions

L+
p (K∞, f), L−p (K∞, f) ∈ O[[Γ]]

are constructed in [DI08] (in an analogous way to the cyclotomic construction of [Pol03]). These
p-adic L-functions are defined with respect to the period Ω above; as before, we denote by
L±p (K∞, f) the corresponding p-adic L-functions normalized with respect to the canonical period
Ωf . If we only have that ap ≡ 0 (mod pn), then one may still construct p-adic L-functions

L±p (K∞, f), L±p (K∞, f) ∈ O/pn[[Γ]].

In the case when ap = 0, these L-functions are simply the mod pn reductions of L±p (K∞, f) and
L±p (K∞, f).

The results of [Vat03] extend easily to the supersingular case.

Theorem 2.5. Let f be as above and assume that ap = 0. Then:

(i) µ(L±p (K∞, f)) = 0;

(ii) µ(L±p (K∞, f)) = ordp(ηf (N)/ξf (N+, N−)).

Proof. In [DI08], the p-adic L-functions L±p (K∞, f) are constructed via a sequence {Ln}n>1 (with
Ln ∈ O[Gal(Kn/K)]) satisfying πnn−1Ln =−ξn−1Ln−2; here

πnn−1 :O[Gal(Kn/K)]→O[Gal(Kn−1/K)]

is the natural map and ξn−1 =
∑

σ∈Gal(Kn−1/Kn−2) σ.
It follows that Ln is divisible by ωεn, where

ω+
n =

∏
16k6n
k even

ξk and ω−n =
∏

16k6n
k odd

ξk,

and ε equals the sign of (−1)n−1. For a fixed parity of n, factoring out these extra zeroes then
produces the norm compatible sequence that yields Lεp(K∞, f).

The arguments of [Vat03, § 5.9] in the ordinary case (which make use of [Vat03,
Propositions 4.7 and 5.6]) generalize immediately to show that µ(Ln) = 0 for n large enough.
Since µ(ω±n ) = 0 for all n, we deduce that µ(L±p (K∞, f)) = 0, as desired. The second part follows
from (5). 2

3. Selmer groups

We continue with the notation of the previous section. Let Vf denote the p-adic Galois
representation associated to f : it is a two-dimensional F -vector space endowed with a continuous
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action of GQ. Fix an O-stable lattice Tf ⊆ Vf and set Af = Vf/Tf . We assume throughout that
the residual Galois representation Tf/pTf ∼=Af [p] is absolutely irreducible, in which case Tf is
uniquely determined up to scaling.

3.1 p-adic Selmer groups
As with p-adic L-functions, there are two natural notions of p-adic Selmer groups of f over
the anticyclotomic Zp-extension K∞ of K: at places different from p, one can require that the
cocycles be either locally trivial or locally unramified.

Assume initially that f is a p-ordinary modular form, so that Vf is a p-ordinary Galois
representation. Define the minimal Selmer group Sel(K∞, f) as the kernel of

H1(K∞, Af )−→
∏
w-p

H1(K∞,w, Af )×
∏
w|p

H1(K∞,w, Af )
H1

ord(K∞,w, Af )

and the Greenberg Selmer group Sel(K∞, f) as the kernel of

H1(K∞, Af )−→
∏
w-p

H1(I∞,w, Af )×
∏
w|p

H1(K∞,w, Af )
H1

ord(K∞,w, Af )
;

here w runs over all places of K∞, I∞,w denotes the inertia group at w and H1
ord(K∞,w, Af ) is

the standard ordinary condition of [Gre89, p. 98].

Remark 3.1. If w is not split infinitely in K∞, then GK∞,w/I∞,w has profinite degree prime to p.
In particular, the map H1(K∞,w, Af ) to H1(I∞,w, Af ) is injective and the local conditions at w
agree for both of these Selmer groups.

Since there are no primes which split infinitely in a cyclotomic Zp-extension, the minimal
and Greenberg Selmer groups coincide in this case. In the anticyclotomic case, the existence of
primes which do split infinitely (namely, those which are inert in K/Q) can cause the Greenberg
Selmer group to be strictly larger than the minimal Selmer group.

To compare these two Selmer groups, we give a more explicit description of the local
conditions defining them. For ` a prime and m6∞, let σm,` denote the set of places of Km

lying over ` and set

H` = lim−→
m

∏
w∈σm,`

H1(Km,w, Af ) and Hp =
∏

w∈σ∞,p

H1(K∞,w, Af )
H1

ord(K∞,w, Af )

for ` 6= p.

Lemma 3.2. Let ` 6= p be prime. If ` is split in K/Q, then σ∞,` is finite and

H` =
∏

w∈σ∞,`

H1(K∞,w, Af ).

If ` is inert or ramified in K/Q, then ` splits completely in K∞ and

H` =H1(K`, Af )⊗ Λ∨

where Λ∨ = HomO(Λ, F/O).

Proof. The descriptions of σ∞,` follow easily from class field theory. The formula for H` in
the split case follows immediately. In the inert case, we have Km,w =K` for all w ∈ σm,`,
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so that ∏
w∈σm,`

H1(Km,w, Af )∼=H1(K`, Af )⊗O[Gal(Km/K)].

Taking the limit over m yields the desired description of H` in this case. 2

We now compute the difference between the defining local conditions of the minimal and
Greenberg Selmer groups. For a prime ` that is inert in K, let Hun

` ⊆H` denote the set of
unramified cocycles; that is, the kernel of the map

H1(K`, Af )⊗ Λ∨→H1(I`, Af )⊗ Λ∨

with I` ⊆GK`
the inertia group at `. This subgroup can be computed quite explicitly. We first

make a definition.

Definition 3.3. Let ` be a prime number. We define the Tamagawa exponent tf (`) as follows.
If Af is unramified at `, we set tf (`) = 0. If Af is ramified at `, we let tf (`) denote the largest
exponent t> 0 such that Af [pt] is unramified at `.

Lemma 3.4. Let ` be a prime that is inert in K. Then

Hun
`
∼=O/ptf (`) ⊗ Λ∨.

In particular, µ(Hun
` ) = tf (`) and λ(Hun

` ) = 0.

Proof. From the inflation–restriction sequence, we have

Hun
`
∼=H1(k`, A

I`
f )⊗ Λ∨

with k` = F`2 the residue field at `. Since the absolute Galois group of a finite field is pro-cyclic,
we have

H1(k`, A
I`
f )∼=AI`f /(Frob` −1)AI`f

with Frob` a Frobenius element at `. If Af is unramified at `, then AI`f =Af is divisible and has
no trivial Frobenius eigenvalues, from which it follows that H1(kv, AIvf ) vanishes. This proves
the lemma in the unramified case.

If Af is ramified at `, then

Af ∼=
(
εχ ∗
0 χ

)
as a GQ`

-module; here ε is the cyclotomic character and χ is an unramified quadratic character.
Since ` is inert in K/Q, it follows that as a GK`

-module we have

Af ∼=
(
ε ∗
0 1

)
.

By the definition of the Tamagawa exponent, it follows that

AI`f = F/O(ε)⊕O/ptf (`).

The Frobenius coinvariants of this module simply equal O/ptf (`), as desired. 2

It follows from the definitions above that there is an exact sequence

0→ Sel(K∞, f)→Sel(K∞, f)→
∏
`|N−

Hun
` .
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In particular, it follows from Lemma 3.4 that the minimal Selmer group is Λ-cotorsion if and
only if the Greenberg Selmer group is Λ-cotorsion and that, when this is the case, they have
equal λ-invariants. We will prove later that these sequences are in fact exact on the right as well,
which allows for a comparison of their µ-invariants.

If f is a p-supersingular modular form, then the above discussion goes through if for each
place w of K∞ dividing p one replaces H1

ord(K∞,w, Af ) with the plus/minus local condition
of [IP06, Kob03]. Such a condition is presently only defined under the assumptions that ap = 0, p
is split in K and each prime above p is totally ramified in K∞/K. We will make these assumptions
from now on whenever dealing with the p-supersingular case. In particular, the above discussion
yields Selmer groups Sel±(K∞, f) and Sel±(K∞, f) together with exact sequences

0→ Sel±(K∞, f)→Sel±(K∞, f)→
∏
`|N−

Hun
`

for each choice of sign. The analysis of λ- and µ-invariants applies equally well to this setting.

3.2 Residual Selmer groups
Assuming that (ρ̄f , N−) satisfies hypothesis CR of the introduction, we define a residual Selmer
group Sel(K∞, fn) of Af [pn], depending on the Galois module Af [pn] and N− but not on f itself.

Lemma 3.5. Assume that CR holds for (ρ̄f , N
−). Then for each prime `|N−, there is a unique

free rank one O/pn-direct summand A
(`)
f,n of Af,n on which GQ`

acts by either the cyclotomic
character or its negative.

Proof. This is immediate from CR for n= 1; the general case follows easily by induction. 2

Define H`,n as in the last section by replacing Af with Af,n. We also define

Hp,n =
∏

w∈σ∞,p

H1(K∞,w, Af [pn])
H1

ord(K∞,w, Af [pn])
.

If ` is inert in K, let Hord
`,n denote the image of H1(K`, A

(`)
f,n)⊗ Λ∨ in H`,n.

Fix a set Σ of places of Q containing all primes dividing Np and all archimedean places, but
no primes that ramify in K/Q. Let Σ− (respectively Σ+) denote the subset of primes of Σ− {p}
which are inert (respectively split) in K. We define the residual Selmer group Sel(K∞, fn) as the
kernel of

H1(KΣ/K∞, Af,n)→Hp,n ×
∏
`∈Σ+

H`,n ×
∏
`∈Σ−

H`,n/Hord
`,n .

We note that these are the Selmer groups that are considered in [BD05]. If f is p-supersingular,
ap = 0, p is split in K/Q and each prime above p is totally ramified in K∞/K, we may define
Sel±(K∞, fn) analogously as in [DI08].

Proposition 3.6. Assume that (ρ̄f , N−) satisfies CR. If f is p-ordinary, then

Sel(K∞, f) = lim−→
n

Sel(K∞, fn).

If f is p-supersingular, ap = 0, p is split in K/Q, and each prime above p is totally ramified in
K∞/K, then

Sel±(K∞, f) = lim−→
n

Sel±(K∞, fn).
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Proof. We treat only the case when f is p-ordinary as the proof in the supersingular case is
identical. To do this, we check that Sel(K∞, fn) is contained in Sel(K∞, f)[pn] with finite index
bounded independent of n. This suffices to prove the proposition since lim−→ Sel(K∞, fn) is then
finite index in Sel(K∞, f) and Sel(K∞, f) has no proper finite index submodules. (See [Gre99,
Proposition 4.14] for a proof of this fact for elliptic curves over cyclotomic Zp-extensions, which
generalizes to the case we are considering. See [Kim] for the supersingular case. In both cases,
one needs as an input the fact that these Selmer groups are Λ-cotorsion. This is established in
the next section of this paper assuming hypothesis CR; see Theorem 4.1.)

Note that
Sel(K∞, f)[pn]⊆H1(KΣ/K∞, Af )[pn]∼=H1(KΣ/K∞, Af,n)

as ρ̄f is irreducible. It a straightforward diagram chase to verify that Sel(K∞, f)[pn] equals the
kernel of

H1(KΣ/K∞, Af,n)→Hp,n ×
∏
`∈Σ
`6=p

H`,n/Hfin
`,n,

where

Hfin
`,n =


A
GK`
f /pnA

GK`
f ⊗ Λ∨ for ` inert in K,∏

w∈σ∞,`

A
GK∞,w

f /pnA
GK∞,w

f for ` split in K.

Here, we are identifying AGF
f /pnAGF

f with its image in the exact sequence

0→AGF
f /pnAGF

f →H1(F, Af,n)→H1(F, Af )[pn]→ 0

for F =K` or K∞,w.
To compare Sel(K∞, fn) and Sel(K∞, f)[pn], we compare the local conditions that define

them as subsets of H1(KΣ/K∞, Af,n). A straightforward computation shows that for ` inert in
K, we have Hord

`,n =Hfin
`,n. Therefore, there is an exact sequence

0→ Sel(K∞, fn)→ Sel(K∞, f)[pn]→
∏
`|N+

w∈σ∞,`

A
GK∞,w

f /pnA
GK∞,w

f .

Another simple computation shows that the final term in this sequence is finite and of size
bounded independent of n, as desired. 2

3.3 Evaluating at the trivial character
The following proposition illustrates how the minimal Selmer group Sel(K∞, f) loses information
about the rational primes that are inert in K (and thus infinitely split in K∞), while the
Greenberg Selmer group Sel(K∞, f) retains information about these primes. The analogous
proposition for cyclotomic extensions is proven in [Gre99, § 4]. We thus omit a proof here as the
arguments of [Gre99] carry through with only a few changes.

Proposition 3.7. Assume that Sel(K, f) is finite. If Lalg(K∞, f) (respectively Lalg(K∞, f))
denotes the characteristic power series of Sel(K∞, f)∨ (respectively Sel(K∞, f)∨) and 1 denotes
the trivial character, then

1(Lalg(K∞, f))∼ |Sel(K, f)|·
∏
v|p

|Af (kv)|2 ·
∏
v|N+

|k|tf (v)
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and

1(Lalg(K∞, f))∼ |Sel(K, f)| ·
∏
v|p

|Af (kv)|2 ·
∏
v|N

|k|tf (v).

Here, v runs through places of K and a∼ b if their quotient is a p-adic unit.

4. Divisibilities

4.1 Statement
Recall that f is a normalized newform of weight two and squarefree level N =N+N−, K/Q is
a quadratic imaginary field in which all of the prime divisors of N+ (respectively N−) are split
(respectively inert), and N− is the product of an odd number of primes. By [Car91, Théorème 2],
we may associate to f a Galois representation

ρf :GQ→GL2(O0)

(which gives rise to Tf after tensoring with O). Our goal in this section is to prove the following
generalization of the main results of [BD05, DI08]. For a cotorsion Λ-module M , we write
charΛ(M) for the characteristic ideal of the dual of M .

Theorem 4.1. Assume that p> 5 and that (ρ̄f , N−) satisfies CR. If f is p-ordinary, then
Sel(K∞, f) is a cotorsion Λ-module and

charΛ(Sel(K∞, f)) divides Lp(K∞, f) in Λ.

If f is p-supersingular, ap = 0, p is split in K/Q, and each prime above p is totally ramified in
K∞/K, then Sel±(K∞, f) is a cotorsion Λ-module and

charΛ(Sel±(K∞, f)) divides L±p (K∞, f) in Λ.

Remark 4.2. Bertolini–Darmon [BD05] and Darmon–Iovita [DI08] proved this result under two
additional hypotheses:

(1) the ring O0 of Fourier coefficients equals Zp;

(2) ηf (N+, N−) is a p-adic unit.

We note that our hypothesis that (ρ̄f , N−) satisfies CR is a weakening of this second condition.
Indeed, by level-lowering, if ηf (N+, N−) is a p-adic unit, then ρ̄f is ramified at all primes q|N−.
(Note that the converse of this statement is not true.) Hypothesis CR only demands that if ρ̄f
is unramified at some q|N−, then q 6≡ ±1 (mod p).

In the remainder of this section, we explain how to remove these two hypotheses. As the
necessary changes are identical in the ordinary and supersingular cases, for simplicity we will
restrict our attention to the ordinary case. Our argument is a slight modification of that of [BD05];
we will assume familiarity with the latter work throughout this section and will focus on the
differences.

4.2 Preparations
It is essential to our method of proof that we work in a more general setting than the previous
section. To this end, fix n> 1 and let f denote an O0/pn-valued eigenform for T0(N+, N−); for
our purposes it is most convenient to regard f as a homomorphism f : T0(N+, N−)→O0/pn.
Associated to f and K, we have a p-adic L-function Lp(K∞, f) ∈ O/pn[[Γ]].
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Let A0
f denote the free O0/pn-module of rank two endowed with a continuous O0/pn-linear

action of GQ associated to f by [Car91, Thèoréme 3]. Define Af :=A0
f ⊗O0 O. Assuming CR, we

may define a residual Selmer group Sel(K∞, f) attached to Af and N− as in § 3.2. The residual
Selmer group Sel(K∞, f) is naturally endowed with the structure of a Λ/pn-module.

Finally, we fix an O-algebra homomorphism ϕ : Λ→O′ with O′ a discrete valuation ring
of characteristic zero with maximal ideal p′. Let sf denote the O′-length of Sel(K∞, f)∨ ⊗Λ O′
and let 2tf denote the O′-valuation of ϕ(Lp(K∞, f)) ∈ O′/ϕ(p)n (which we take to be infinite
if ϕ(Lp(K∞, f)) = 0). (We use 2tf to correspond to the notation of [BD05].) We will prove the
following proposition.

Proposition 4.3. Fix n> 1 and t0 > 0. Let N− denote a squarefree integer divisible by an odd
number of primes, each inert in K/Q. Let f̃ be an O0/pn+t0-valued eigenform for T0(N+, N−)
and let f be its projection onto O0/pn. Assume that:

(1) the homomorphism f : T0(N+, N−)→O0/pn is surjective;

(2) (ρ̄f , N−) satisfies hypothesis CR;

(3) 2tf < 2t0.

Then sf 6 2tf .

We claim that this proposition implies Theorem 4.1. Indeed, fix f as in Theorem 4.1 and a
homomorphism ϕ as above. If ϕ(Lp(K∞, f)) = 0, then certainly ϕ(Lp(K∞, f)) belongs to the
O′-Fitting ideal of Sel(K∞, f)∨ ⊗Λ O′. Otherwise, choosing t0 larger than the O′-valuation of
ϕ(Lp(K∞, f)) and applying Proposition 4.3 for all n, we obtain again that ϕ(Lp(K∞, f)) belongs
to the Fitting ideal of Sel(K∞, f)∨ ⊗Λ O′. Applying this for all ϕ, Proposition 3.6 and [BD05,
Proposition 3.1] yield Theorem 4.1.

4.3 Construction of cohomology classes
Fix N− divisible only by primes inert in K/Q and a surjective homomorphism f : T0(N+, N−)→
O0/pn such that the residual representation ρ̄f satisfies hypothesis CR. Write T 0

f for the Galois
representation associated to f over O0/pn and set Tf = T 0

f ⊗O0 O.
We say that a rational prime ` is admissible relative to f if:

(1) ` does not divide N−;
(2) ` is inert in K/Q;
(3) p does not divide `2 − 1;
(4) one of `+ 1− f(T`) or `+ 1 + f(T`) equals zero in O0/pn.

Fix an admissible prime ` relative to f . In this section, we give the construction of a
cohomology class

κ(`) ∈ Ĥ1(K∞, Tf ) = lim←−
n

H1(K∞, Tf/pnTf )

which is central to the argument.
For any admissible prime `, the arguments of [BD05, Theorem 5.15] yield a surjective

homomorphism
f` : T0(N+, N−`)→O0/pn,

which agrees with f at all Hecke operators away from ` and which sends the Atkin–Lehner
operator U` to the unique ε ∈ {±1} such that `+ 1− εf(T`) vanishes inO0/pn. (This construction
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uses the freeness of a certain character group, which is established under hypothesis CR in
Theorem 6.2 later in the paper.) Note that the surjectivity of f` is automatic from the surjectivity
of f and the admissibility of `.

Write If`
for the kernel of f`, J (`) for the Jacobian of the Shimura curve X0(N+, N−`), and

Tap(J (`)) for its p-adic Tate module. The key result, which corresponds to [BD05, Theorem 5.17],
is the following.

Proposition 4.4. The Galois representations Tap(J (`))/If`
and T 0

f are isomorphic.

Proof. As the Frobenius traces of GQ on these two representations agree for all primes away
from N`, it suffices to show that T := Tap(J (`))/If`

is free of rank two over O0/pn. Since p1 is
the maximal ideal of O0, the first step of [BD05, Theorem 5.17] applies to show that T/p1 is two
dimensional over k0. We will use this to deduce the desired result for T .

We first show that T has a free O0/pn-submodule of rank one. Let Φ` denote the group of
connected components of the Néron model of J (`) over the Witt vectors of F`2 . The proof
of [BD05, Lemma 5.15] shows that Φ`/If`

is isomorphic to O0/pn. Let c ∈ Φ`/If`
correspond to

1 ∈ O0/pn under some such isomorphism. Applying the argument of [BD05, Lemma 5.16] to c
yields an integer n′ and an element t ∈ J (`)[pn

′
](Qur

` )/If`
which maps onto c under the natural

map

J (`)[pn
′
](Qur

` )/If`
→ Φ`/If`

.

Since this map respects the Hecke actions and thus is O0/pn-linear, the cyclic O0/pn-module
generated by t surjects onto a free O0/pn-module of rank one and thus must itself be free of rank
one. As

J (`)[pn
′
](Qur

` )/If`
↪→ T,

this yields the desired submodule.
As GQ acts irreducibly on T/p1, we may choose an element g ∈GQ so that t and u := gt are

a basis of T/p1; here t is the element constructed above generating a free O0/pn-module of rank
one. Note that u also generates a free O0/pn-module of rank one.

We will show that t and u are an O0/pn-basis of T . They span by Nakayama’s lemma, so it
suffices to show that in any relation

αt= βu (6)

with α, β ∈ O0, we must have α, β ∈ pn. Note that we must have α, β ∈ p1 since t, u are a basis
modulo p1. In fact, if d denotes the minimal O-valuation of any element of p1, then we have that
p1 = pd, so that

α, β ∈ pd. (7)

Since GQ surjects onto GL2(k0), we may choose an element h ∈GQ with the property that

ht= 2t+ t′; hu= u+ u′,

where

t′, u′ ∈ p1T = pdT. (8)

Applying h− 1 to (6), we find that

αt= βu′ − αt′. (9)

Suppose now that we know that α, β ∈ pr for some r < n. We will show that in fact
α, β ∈ pr′ for some r′ > r; the fact that α, β ∈ pn then follows by induction. By (8) and (9)
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we have that
αt ∈ pr+dT. (10)

If r + d> n, then αt= 0; since t generates a free O0/pn-module, it follows that α ∈ pn. The same
argument shows that β ∈ pn as well, so that in this case we are done.

If r + d < n, then multiplying both sides of (10) by pn−r−d and using pn−r−dpr+d ⊆ pn yields

αpn−r−dt= 0.

Since t generates a free O0/pn-module, it follows that

αpn−r−d ⊆ pn.

Let a, b > 0 be such that
pn−r−dO = pa; pnO = pb.

Then we have that α ∈ pb−a ∩ O0 = pb−a. Clearly, b> n. Also, a < n− r since O0 contains
elements of all valuations which are multiples of d and some multiple of d lies between n− r − d
and n− r. It follows that b− a > r, so that α ∈ pr′ for r′ = b− a > r. Since by (6) we have
βu ∈ pr+dT as well, an identical argument shows that β ∈ pr′ , as desired. This completes the
proof. 2

With this result in hand, the construction of the cohomology class

κ0(`) ∈ Ĥ1(K∞, T 0
f )

proceeds as in [BD05, §§ 6 and 7]. Defining κ(`) as the image of κ0(`) under the natural map

Ĥ1(K∞, T 0
f )→ Ĥ1(K∞, Tf ),

the proof of the two explicit reciprocity laws

δ`(κ(`)) = Lp(K∞, f) in Λ/pn,
v`2(κ(`1)) = Lp(K∞, g) in Λ/pn

proceeds as in [BD05, §§ 8–9].

4.4 Euler system arguments
We now give the proof of Proposition 4.3 via a modification of the Euler system arguments
of [BD05, § 4]. Our proof proceeds by induction on tf . Let f be an eigenform as in Proposition 4.3.
When tf = 0, the proof of [BD05, Proposition 4.7] carries over to prove that Sel(K∞, f) is trivial,
as required. Assume therefore that tf > 0.

As in [BD05], for any (n+ tf )-admissible prime ` we may construct from κ(`) and an (n+ tf )-
admissible set of primes S a cohomology class

κ′ϕ(`) ∈ Ĥ1
S(K∞, Tf )

satisfying [BD05, Lemmas 4.5 and 4.6]. Let Π denote the set of (n+ t0)-admissible primes ` for
which ordp′(κϕ(`)) is minimal. The set Π is non-empty by [BD05, Theorem 3.2] and, writing t
for the value ordp′(κϕ(`)) for ` ∈Π, by [BD05, Lemma 4.8] we have t < tf . (Note that we are
using (n+ t0)-admissible primes, rather than (n+ tf )-admissible primes as in [BD05]. This is
necessary to facilitate our induction but has no effect on the results used above.)

Fix `1 ∈Π and let s ∈H1(K, Tf )⊗O′/p′ denote the image of κ′ϕ(`) in

Ĥ1
S(K∞, Tf )⊗O′/p′ ⊆ Ĥ1

S(K∞, Tf )/mΛ ⊗O′/p′ ⊆H1(K, Tf )⊗O′/p′.
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By [BD05, Theorem 3.2], there exists an (n+ t0)-admissible prime `2 such that v`2(s) 6= 0; here

v`2 : Ĥ1(K∞,`2 , Tf )→ Ĥ1
fin(K∞,`2 , Tf )

is as in [BD05]. Note that

t= ordp′(κϕ(`1)) 6 ordp′(κϕ(`2)) 6 ordp′(v`1(κϕ(`2))). (11)

(Here, the first inequality is by the definition of Π and the second follows from the fact that v`1
is a homomorphism.) However, by [BD05, Corollary 4.3], we have

ordp′(v`1(κϕ(`2))) = ordp′(v`2(κϕ(`1))).

Furthermore, since v`2(s) 6= 0, we must have

ordp′(v`2(κϕ(`1))) = ordp′(κϕ(`1)).

It follows that the inequalities in (11) must be equalities; in particular,

ordp′(κϕ(`2)) = t,

so that `2 ∈Π.

Let g denote the O0/pn+t0-valued eigenform for T0(N+, N−`1`2) attached to f and (`1, `2)
by [BD05, Proposition 3.12]. By [BD05, Theorem 4.2], we have

v`2(κ(`1)) = Lp(K∞, g).

Thus, tg = t < tf . The eigenform g satisfies all of the hypotheses of Proposition 4.3, so that we
may now apply the induction hypothesis to conclude that sg 6 2tg. From here, one argues as
in [BD05, pp. 34–35] to conclude that sf 6 2tf as well. This completes the proof.

5. Algebraic µ-invariants

We return now to the notation of § 3. For simplicity, we focus initially on the ordinary case and
state the results in the supersingular case at the end of the section; the proofs are identical
(using [IP06, Proposition 4.16] to check hypothesis (4)) of Proposition A.2).

Our comparison of µ-invariants of Selmer groups relies crucially on the exactness of the
following sequences.

Proposition 5.1. Assume that p> 5 and that (ρ̄f , N−) satisfies CR. The defining sequences

0→ Sel(K∞, f)→H1(KΣ/K∞, Af )→
∏
`∈Σ

H`→ 0,

0→Sel(K∞, f)→H1(KΣ/K∞, Af )→Hp ×
∏
`∈Σ+

H` ×
∏
`∈Σ−

H`/Hun
` → 0

are exact.

Proof. In Appendix A, we include a general proposition on the surjectivity of global-to-local
maps. To check the hypotheses of this proposition, note that the first is immediate, the second
follows from Theorem 4.1, the third is a consequence of the irreducibility of Vf , and the
last follows from the fact that

∑
p|p rp = 2 (see [Gre89, Proposition 1]). 2
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Corollary 5.2. Assume that (ρ̄f , N−) satisfies CR. Then the sequence

0→ Sel(K∞, f)→Sel(K∞, f)→
∏
`|N−

Hun
` → 0

is an exact sequence of cotorsion Λ-modules. In particular,

λ(Sel(K∞, f)) = λ(Sel(K∞, f))

and

µ(Sel(K∞, f)) = µ(Sel(K∞, f)) +
∑
`|N−

tf (`).

Proof. This is immediate from Proposition 5.1 and Lemma 3.4. 2

Combining this corollary with the results of [Vat03], we thus obtain the following theorem,
which we state in both the ordinary and supersingular cases.

Theorem 5.3. Let f be a normalized newform of weight two and squarefree level N =N+N−

with N− divisible by an odd number of primes. Assume that hypothesis CR holds for
(ρ̄f , N−).

(1) If f is p-ordinary, then

µ(Sel(K∞, f)) = 0 and µ(Sel(K∞, f)) =
∑
`|N−

tf (`).

(2) If f is p-supersingular, ap = 0, p is split in K/Q, and each prime above p is totally ramified
in K∞/K, then

µ(Sel±(K∞, f)) = 0 and µ(Sel±(K∞, f)) =
∑
`|N−

tf (`).

Proof. By Theorem 2.3.1, we know that µ(Lp(K∞, f)) vanishes. Thus, the O[[Γ]]-divisibility of
Theorem 4.1 implies that µ(Sel(K∞, f)) vanishes as well. Corollary 5.2 then gives the value
of µ(Sel(K∞, f)). The supersingular case is identical. 2

6. The µ-part of the main conjecture

6.1 The main conjecture

The anticyclotomic Iwasawa main conjecture for a modular form f relates its p-adic L-function
to the characteristic ideal of its Selmer group. As we have seen, there are two choices of each
object in this setting. The main conjecture predicts that they correspond as follows.

Conjecture 6.1. Let f be a modular form of weight two and squarefree level N =N+N−

with N− the product of an odd number of primes. Assume that the residual representation ρ̄f
is absolutely irreducible.

(1) If f is p-ordinary, then Sel(K∞, f) and Sel(K∞, f) are Λ-cotorsion,

charΛ(Sel(K∞, f)) = Lp(K∞, f) · Λ,
charΛ(Sel(K∞, f)) = Lp(K∞, f) · Λ.
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(2) If f is p-supersingular, then Sel±(K∞, f) and Sel±(K∞, f) are Λ-cotorsion,

charΛ(Sel±(K∞, f)) = L±p (K∞, f) · Λ,
charΛ(Sel±(K∞, f)) = L±p (K∞, f) · Λ.

The formulae on µ-invariants in Theorems 2.3, 2.5, and 5.3 immediately yield the µ-part
of this conjecture for Sel(K∞, f) and Lp(K∞, f). However, the corresponding formulae for the
µ-invariants of Sel(K∞, f) and Lp(K∞, f) do not immediately appear identical. Indeed, by
Theorems 2.3 and 5.3, this equality of µ-invariants reduces to the equality

ordp

(
ηf (N)

ξf (N+, N−)

)
=
∑
`|N−

tf (`). (12)

The right-hand side of (12) is a purely local expression while the left-hand side is a difference of
global terms.

In the remainder of this section, we will reduce (12) to an equality involving degrees of
modular parameterizations arising from Shimura curves, which was established by Ribet and
Takahashi [RT97, Tak01].

6.2 Character groups
For this subsection, we fix a factorization N =N1N2 such that N2 has an even number of prime
divisors. (In the following subsection, we will take N1 =N+r and N2 =N−/r for some r|N−.) Let
J = J0(N1, N2) denote the Jacobian of the Shimura curve of level N1 attached to the indefinite
quaternion algebra ramified exactly at the primes dividing N2.

The special fiber at r|N of the Néron model of J is an extension of an abelian variety by
a torus. Let Xr(J) = Xr(N1, N2) denote the O-completion of the character group of this torus
endowed with its natural action of T0(N1, N2). If r|N1, then this action factors through the r-new
quotient of this Hecke algebra and, moreover, Xr(J) is a faithful T0(N1/r, rN2)-module (see, for
instance, [BD05, Proposition 5.8.3]). Let mf ⊆ T0(N1, N2) be the maximal ideal corresponding
to f ; set T̂0(N1, N2) = T0(N1, N2)mf

⊗Zp O and X̂r(J) = Xr(J)mf
.

Theorem 6.2. If (ρ̄f , rN2) satisfies hypothesis CR, then X̂r(J) is free of rank one over the

Hecke algebra T̂0(N1/r, rN2).

Proof. By [Wil95, Theorem 2.1], J0(N)[mf ] has dimension two over k0. Since (ρ̄f , N2) satisfies
hypothesis CR, by [Hel07, Corollary 8.11 and Remark 8.12], J0(N1, N2)[mf ] has dimension two
over k0. Since (ρ̄f , r) satisfies hypothesis CR, a standard application of Mazur’s principle (for
instance [Hel07, Lemma 6.5]) implies that Xr(J)/mfXr(J) has dimension one over k. Thus, by
Nakayama’s lemma and the faithfulness of the Hecke action, we deduce that X̂r(J) is free of rank
one over T̂0(N1/r, rN2). 2

Consider now the optimal quotient ξ : j→A attached to f ; thus, A is an abelian variety
and ker(ξ) is connected. Let X̂r(A) and X̂r(A∨) be the analogues of X̂r(J) for A and its dual
abelian variety A∨. As in [Kha03, p. 208], we may fix an isomorphism X̂r(A)∼= X̂r(A∨). With
this isomorphism fixed, the map ξ induces maps

ξ∗ : X̂r(J)→ X̂r(A) and ξ∗ : X̂r(A)→ X̂r(J).

Moreover, as in [Kha03, p. 207], ξ∗ξ∗ acts on X̂r(A) by multiplication by some element δf (N1, N2)
in O. Changing our chosen isomorphism above will only change this number by a p-adic unit
and so the O-ideal (δf (N1, N2)) is well defined. We simply write δf (N) for δf (N, 1).
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Let Φr(J) denote the component group of J at r and set Φ̂r(J) = (Φr(J)⊗Z O)mf
. We define

Φ̂r(A) analogously. We state here two propositions summarizing the properties of these character
and component groups that will be needed in what follows.

Proposition 6.3.

(1) The monodromy pairings 〈·, ·〉A and 〈·, ·〉J induce exact sequences

0→ X̂r(A)→ X̂r(A)∨→ Φ̂r(A)→ 0,
0→ X̂r(J)→ X̂r(J)∨→ Φ̂r(J)→ 0.

(2) If r|N2, then Φ̂r(J) = 0 and Φ̂r(A) is O-cyclic of order |k|tf (r).

Proof. The first part is [Gro72, Theorem 11.5]; the second part follows from [Kha03,
Proposition 3]. 2

Let X̂r(J)f ⊆ X̂r(J) denote the subgroup on which T̂0(N1, N2) acts via πf ; in particular,
ξ∗X̂r(A)⊆ X̂r(J)f . Then X̂r(J)f is a free O-module of rank one; let gr denote a generator of this
module.

Proposition 6.4. Let r|N1.

(1) X̂r(J)f/ξ∗X̂r(A) is O-cyclic with size |k|tf (r).

(2) If X̂r(J) is free over T̂0(N1/r, rN2), then

(〈gr, gr〉J) = (ηf (N1/r, rN2)).

Proof. The first part follows from [Kha03, Lemma 2]. For the second part, by Proposition 6.3, the
monodromy pairing on X̂r(J) is perfect. Thus, since X̂r(J) is free over T̂0(N1/r, rN2), by [DDT95,
Lemma 4.17], 〈gr, gr〉J computes the congruence number ηf (N1/r, rN2). 2

6.3 Comparing definite and indefinite Shimura curves

Fix a divisor r of N− and let Xr(J) = Xr(N1, N2) be the character group of the previous
subsection, where N1 =N+r and N2 =N−/r. Let XN+,N− denote the Shimura curve (as in § 2)
of level N+ attached to the definite quaternion algebra ramified at the primes dividing N−.

Proposition 6.5. For each r|N−, there is a canonical Hecke-equivariant isomorphism

Pic(XN+,N−)⊗O ∼= Xr(N+r, N−/r).

Moreover, this isomorphism takes the intersection pairing on Pic(XN+,N−) to the monodromy
pairing on Xr(N+r, N−/r).

Proof. See [Koh01, Theorem 4.3]. 2

We now give the proof of Lemma 2.1 of § 2.

Proof of Lemma 2.1. Let r be any divisor of N−. By Proposition 6.5, we have

M= Pic(XN+,N−)⊗O ∼= Xr(N+r, N−/r).

Thus, the lemma follows from [Tak01, Lemma 2.2 and Theorem 2.7], which proves the analogous
statement for the character group Xr(N+r, N−/r). 2
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6.4 Modular degrees

Throughout this section, for x ∈ O, we write (x) for the O-ideal generated by x. The following
proposition (and its proof) is essentially [Tak01, Theorem 2.3].

Proposition 6.6. We have

ordp(δf (N1, N2)) = tf (r) + ordp(〈gr, gr〉J)

for r|N1.

Proof. Let gr be a generator of X̂r(J)f . By Proposition 6.4, if xr is a generator of X̂r(A), then
ξ∗(xr) = cf (r)gr for some cf (r) ∈ O such that ordp cf (r) = tf (r). Thus,

δf (N1, N2) · 〈xr, xr〉A = 〈xr, ξ∗ξ∗xr〉A = 〈ξ∗xr, ξ∗xr〉J
= 〈cf (r)gr, cf (r)gr〉J = cf (r)2 · 〈gr, gr〉J .

By Proposition 6.3, ordp(〈xr, xr〉A) = tf (r), which proves the proposition. 2

The following proposition establishes the equality of the p-parts of a congruence number and
a degree of a modular parameterization in the case of a modular curve, that is, N2 = 1. For more
general results along these lines, see [AU96, ARS06, CK04].

Proposition 6.7. We have, as O-ideals,

(δf (N)) = (ηf (N)).

Proof. By level-lowering, there exists some prime r|N such that ρ̄f is ramified at r. Thus, the
Tamagawa exponent tf (r) is zero and by Proposition 6.6 we have

(δf (N)) = (〈gr, gr〉J)

as ideals of O, where gr is a generator of X̂r(N/r, r)f .
Since ρ̄f is ramified at r, it is immediate that (ρ̄f , r) satisfies CR and, thus, by Theorem 6.2,

X̂r(J) is free over T̂0(N/r, r). By Proposition 6.4, it follows that

(〈gr, gr〉J) = (ηf (N/r, r)).

But, as ρ̄f is ramified at r,

(ηf (N)) = (ηf (N/r, r)),

as any form congruent to f is automatically new at r. Combining these equalities yields the
proposition. 2

6.5 The µ-part of the main conjecture

Theorem 6.8. Let f be a modular form of weight two and squarefree level N =N+N− with
N− the product of an odd number of primes. Assume that (ρ̄f , N−) satisfies hypotheses CR.
Then

ordp

(
ηf (N)

ξf (N+, N−)

)
=
∑
`|N−

tf (`).

Proof. Recall that ξf (N+, N−) = 〈gf , gf 〉, where gf is a generator of Mf , the subspace of
Pic(XN+,N−)⊗Z O, where T0(N+, N−) acts via πf . By Proposition 6.5, for any r|N−, we
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have 〈gf , gf 〉= 〈gr, gr〉J , where gr is a generator of X̂r(J)f . Thus, Propositions 6.6 and 6.7 yield

ordp

(
ηf (N)

ξf (N+, N−)

)
= ordp

(
δf (N, 1)

δf (N+r, N−/r)

)
+ tf (r).

The main result of Ribet–Takahashi [RT97, Tak01] is

ordp

(
δf (N, 1)
δf (N1, N2)

)
=
∑
r|N2

tf (r)

for any factorization N =N1N2, where N2 has an even number of prime factors. Combining
these two equalities then yields the theorem. 2

Theorem 6.9. Assume that (ρ̄f , N−) satisfies CR.

(1) If f is p-ordinary, then

µ(Sel(K∞, f)) = µ(Lp(K∞, f)) = 0

and

µ(Sel(K∞, f)) = µ(Lp(K∞, f)).

(2) If f is p-supersingular, ap = 0, p is split in K/Q, and each prime above p is totally ramified
in K∞/K, then

µ(Sel±(K∞, f)) = µ(L±p (K∞, f)) = 0

and

µ(Sel±(K∞, f)) = µ(L±p (K∞, f)).

Proof. The equality for the minimal Selmer group and Lp(K∞, f) follows from Theorems 2.3
and 5.3 as all of these µ-invariants are zero. The equality for the Greenberg Selmer group follows
from these theorems and from Theorem 6.8 as

µ(Lp(K∞, f)) = ordp

(
ηf (N)

ξf (N+, N−)

)
=
∑
r|N−

tf (r) = µ(Sel(K∞, f)).

The supersingular case follows identically by appealing to Theorem 2.5. 2

6.6 Quantitative level-lowering
When (ρ̄f , N−) satisfies CR, we have

ξf (N+, N−) = ηf (N+, N−)

by Theorem 6.2 and Proposition 6.4. In this case, the µ-part of the main conjecture is thus
equivalent to the equality

ordp

(
ηf (N)

ηf (N+, N−)

)
=
∑
r|N−

tf (r). (13)

We propose the following formula, which would explain this equality in general.

Let f be a weight two eigenform of squarefree level N = aqb with q prime. Then

ordp(ηf (aq, b)) = tf (q) + ordp(ηf (a, qb))

as ideals of O.
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Remark 6.10. (1) Equation (13) follows immediately from this formula as

ordp(ηf (N)) = tf (q) + ordp(ηf (N/q, q))
= tf (q) + tf (q′) + ordp(ηf (N/(qq′), qq′))

= · · ·=
∑
q|N−

tf (q) + ordp(ηf (N+, N−)).

(2) The formula of Ribet and Takahashi [RT97] involving degrees of modular
parameterization arising from Shimura curves is completely analogous to the above formula
when one changes the new-part of the level two primes at a time.

(3) The analogous formula for congruence numbers arising from changing the new-part of
the level by two primes was used by Khare [Kha03] to relate certain new quotients of a Hecke
algebra to the full Hecke algebra in a case where hypothesis CR was satisfied.

This formula can be regarded as a quantitative form of level-lowering much like Wiles’
numerical criterion [Wil95] can be viewed as a quantitative version of level-raising. More precisely,
let f be an eigenform of weight two and level N , and suppose that ρ̄f is unramified at a prime
q|N . By definition, tf (q)> 0, so that the proposed formula implies that ηf (N, 1)/ηf (N/q, q) is
a non-unit. That is, there exists an eigenform g of level N which is congruent to f , but which
is old at q. This is precisely what is predicted by level-lowering.

We conclude this section with a proof of this formula assuming CR. Note that this hypothesis
puts us into the case where ‘Mazur’s principle’ applies to establish level-lowering.

Theorem 6.11. Let f be a newform of weight two and squarefree level N = aqb. Assume that
(ρ̄f , bq) satisfies CR and that there are at least two primes at which ρ̄f is ramified. Then

ordp(ηf (aq, b)) = tf (q) + ordp(ηf (a, qb)).

Proof. Note that if ρ̄f is ramified at r|N , then

(ηf (cr, d)) = (ηf (c, rd))

for N = crd since any form congruent to f must be r-new. Since ρ̄f is ramified at two distinct
primes, using the above observation, we may assume that b has an even number of prime factors
and that there is some prime r|a at which ρ̄f is ramified.

On the one hand, applying Proposition 6.6 at the prime r (which is valid since b has an even
number of prime factors) yields

ordp(δf (aq, b)) = tf (r) + ordp(〈gr, gr〉J)
= tf (r) + ordp(ηf (aq/r, rb)) = ordp(ηf (aq, b)).

The second equality follows from Proposition 6.4 and Theorem 6.2 (as we are assuming CR). The
third equality follows since ρ̄f is ramified at r.

On the other hand, applying Proposition 6.6 at the prime q yields

ordp(δf (aq, b)) = tf (q) + ordp(ηf (a, qb)).

Hence,

ordp(ηf (aq, b)) = tf (q) + ordp(ηf (a, qb)),

proving the theorem. 2
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7. λ-invariants and congruences

In the papers [EPW06, GV00] explicit formulae are given for the differences of λ-invariants of
cyclotomic Selmer groups of congruent modular forms. These results transfer verbatim to the
setting of anticyclotomic Selmer groups for modular forms f such that N(ρf )/N(ρ̄f ) is only
divisible by primes split in K. Here, N(ρ) is the (prime-to-p) Artin conductor of ρ.

Theorem 7.1. Fix a quadratic imaginary field K/Q and a modular residual representation ρ̄
such that (ρ̄, N(ρ̄)−) satisfies CR. Let S(ρ̄) denote the collection of newforms f such that ρ̄f ∼= ρ̄
and N(ρf )/N(ρ̄) is squarefree and divisible only by primes that are split in K.

(1) The value of λ(Sel(K∞, f)) is the same for all f ∈ S(ρ̄) such that N(ρf ) =N(ρ̄); denote
this common value by λ(ρ̄).

(2) For arbitrary f ∈ S(ρ̄), we have

λ(Sel(K∞, f)) = λ(ρ̄) +
∑

`|(N(ρf )/N(ρ̄))

δ`(f),

where δ`(f) is a non-negative constant that only depends upon ρ̄f and the restriction of ρf to
an inertia group at `.

Proof. The structure of the local cohomology group at a prime v that is finitely split in K∞/K
is identical to the cyclotomic case. For this reason, the arguments of [EPW06, § 4] go through
verbatim. 2

Remark 7.2. (1) The constant δ`(f) is explicitly described in [EPW06, p. 570].

(2) As a consequence of the above theorem, the modular forms in S(ρ̄) with the smallest
λ-invariant are the ones that are minimally ramified. As one raises the level at split primes,
the λ-invariant will increase or remain the same.

(3) If one enlarges S(ρ̄) and allows for primes that are inert in K, the situation becomes
dramatically different, as is explained in the following theorem.

Theorem 7.3 (Bertolini–Darmon). Let K be a quadratic imaginary field and let f be a weight
two newform of squarefree level N =N+N− (with respect to K). If ηf (N+, N−) is a unit, then
there exists a weight two newform g of squarefree level M (divisible by N) such that:

(1) ρ̄g ∼= ρ̄f ;

(2) M/N is divisible by an even number of primes all of which are inert in K;

(3) Sel(K∞, g) = 0.

Proof. To prove this, one applies the arguments of [BD05, Theorem 4.4] with ϕ being
reduction modulo π. In the notation of [BD05], tf then equals λ(Lp(K∞, f)) as we know
that µ(Lp(K∞, f)) = 0. Their induction argument then produces a modular form g satisfying
(1) and (2) such that either λ(Lp(K∞, g)) = 0 or Sel(K∞, g)[π] = 0. In either case, we have
λ(Sel(K∞, g)) = 0 and, since Sel(K∞, g) has no finite index submodules, we must have that
Sel(K∞, g) = 0.

The hypothesis that ηf (N+, N−) is a p-adic unit is used to ensure that the mod pn forms
constructed from level-raising actually lift to true modular forms. 2
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Remark 7.4. The hypothesis that ηf (N+, N−) is a p-adic unit is necessary in the above theorem.
Indeed, consider a newform f such that tf (`)> 0 and δ`(f)> 0 for some `|N+. Let g be a
newform of level M such that N |M and such that ρ̄g ∼= ρ̄f . Thus, ρ̄g is unramified at ` and, by
level-lowering, there exists a form h of level M/` congruent to g. Then, by Theorem 7.1, we have

λ(Sel(K∞, g)) = λ(Sel(K∞, h)) + δ`(h).

As δ`(f)> 0 and ρ̄f ∼= ρ̄h, we also have δ`(h)> 0. In particular, λ(Sel(K∞, g))> 0 and thus
Sel(K∞, g) 6= 0.
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Appendix A. Surjectivity of global-to-local maps

Let K be a number field and let F be a finite extension of Qp with ring of integers O. Let V be
an F -representation space for GK of dimension d which is ramified at only finitely many primes.
Let T be a GK-stable lattice of V and set A= V/T ∼= (K/O)d. Further, fix a finite set of places
Σ of K containing all places over p and ∞ along with all of the ramified primes for V .

Let L/K be a (possibly infinite) Galois extension and let ΣL denote all of the places of L
sitting over a place in Σ. For w ∈ ΣL, fix a subspace Lw ⊆H1(Lw, A) such that σLw = Lσw for
σ ∈Gal(L/K). We refer to this as a Selmer structure for A over L. This Selmer structure induces
a Selmer group

Sel(L, A) = ker
(
H1(KΣ/L, A)→

∏
w∈ΣL

H1(Lw, A)/Lw
)
.

We note that if K ⊆M ⊆ L is a tower of Galois extensions, then a Selmer structure for A
over L naturally induces one over M . Indeed, let v be a place of M sitting over some place of Σ.
Then restriction yields a map

H1(Mv, A) res−−→H1(Lw, A)Gal(Lw/Mv)

for w any place of L over v and we set

Lv := res−1(LGal(Lw/Mv)
w ).

This subspace is independent of the choice of w.
Let K∞/K be a Zp-extension and assume that we have a Selmer structure for A over K∞.

Then, for each n> 0, we have the induced Selmer structure over Kn and thus a Selmer group
Sel(Kn, A). Moreover, directly from the definitions, we see that

Sel(K∞, A) = lim−→
n

Sel(Kn, A).

Remark A.1. It was explained to us by Ralph Greenberg that the induced Selmer structure in
the supersingular case ‘regularizes’ Kobayashi’s plus/minus local condition at p.

Indeed, if E/Q is an elliptic curve with ap = 0, Kobayashi’s plus/minus local condition is a
subspace of H1(Qn,p, E[p∞]) with Zp-corank equal to a polynomial in p of degree either pn or
pn−1 depending on the parity of n. The value of the Zp-corank is always strictly between pn−2
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and pn. At the infinite level, the plus/minus local condition is defined as the direct limit of these
finite-level local conditions and is a cofree submodule of H1(Q∞,p, E[p∞]) of corank one.

The induced Selmer structure is then obtained by taking invariants from the Selmer structure
over Q∞,p down to Qn,p. Since the local condition at the infinite level is cofree, the induced local
condition at level n has Zp-corank pn (and is thus regularly behaved). This regular behavior is
used crucially in the theorem below.

By comparing coranks, we see that Kobayashi’s plus/minus local condition must be different
from the induced local condition. Fortunately, even if the corresponding finite-level Selmer groups
differ, the limits of these Selmer groups both yield the same Selmer group over Q∞.

For v a prime of K, let σm,v denote the set of places of Km lying over v and set

Hv(K∞, A) = lim−→
m

∏
w∈σm,`

H1(Km,w, A)/Lw.

For any number field L/K, let

δ(L, V ) =
∑

v complex

d+
∑
v real

d−v ,

where v runs over archimedean places of L and d−v is the dimension of the −1 eigenspace of a
complex conjugation over v acting on V .

If p is a prime of K, the Λ-corank of LP is independent of the choice of prime P of K∞ lying
over p; we denote it by rp.

Proposition A.2. Assume that:

(1) no place of K lying over p splits completely in K∞;

(2) Sel(K∞, A) is Λ-cotorsion;

(3) H0(K∞, A∗) is finite, where A∗ = Hom(T, µp∞);

(4)
∑
p|p

rp = [K : Q]d− δ(K, V ).

Then the global-to-local map

H1(K∞, A)
γ−→
∏
v∈Σ

Hv(K∞, A)

is surjective.

Versions of this theorem appear in [Gre99, GV00, Wes05]. Our theorem differs from these
results in that it allows for more general local conditions at p (not just an ordinary condition) and
also allows for the possibility of primes splitting infinitely in the Zp-extension K∞/K. However,
the basic structure of our argument is identical to all of these proofs. We most closely follow
[GV00, Proposition 2.1], recalling their argument below and making the necessary changes as
they arise.

Proof. We first note that it suffices to show that coker(γ) is finite as the target of γ contains no
proper finite index submodules. Indeed, to see this, first consider a place v of K that is finitely
decomposed in K∞. For w a place of K∞ over v, we have Gal(K∞,w/Kv)∼= Zp, which has
cohomological dimension one. Hence, H1(K∞,w/Kv, A) is divisible and thus Hv is also divisible
as it is a direct sum of quotients of such groups. For v infinitely decomposed, as in Lemma 3.2,
we have Hv ∼=H1(Kv, A)⊗ Λ∨, which has no proper finite index submodules.
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A strategy for showing that coker(γ) is finite is to show that the corresponding cokernel at
level n is finite with size bounded independent of n. However, these finite level cokernels could
be infinite if the characteristic power series of Sel(K∞, A)∨ has p-cyclotomic zeroes. To avoid
this problem, we use Greenberg’s trick of twisting the Galois module structure.

Namely, let κ : Gal(K∞/K)∼= 1 + pZp be an isomorphism and consider the twisted module
At :=A⊗ κt for t ∈ Z. Since A and At are isomorphic as GK∞-modules, the Selmer structure for
A over K∞ induces a Selmer structure on At over K∞, which we write as Lw,t. The corresponding
Selmer groups differ only by a twist; as Λ-modules, we have

Sel(K∞, A)(κt)∼= Sel(K∞, At),

where the Λ-module structure of the left-hand side is twisted by κt.
The Selmer structure for At over K∞ induces one over Kn for each n> 0. Let γt denote

the global-to-local map defining Sel(K∞, At) and let γn,t denote the corresponding map defining
Sel(Kn, At). To prove the theorem, it suffices to show that there is some t such that coker(γn,t)
is finite for all n> 0 and of size bounded independent of n.

We have

0−→ Sel(Kn, At)−→H1(KΣ/Kn, At)
γn,t−−→

∏
v∈Σn

H1(Kn,v, At)/Lv,t, (14)

where Σn is the set of places of Kn over places of Σ. We will now analyze the O-corank of each
term in this sequence.

As is argued in [GV00],

corankO H1(KΣ/Kn, At) > δ(Kn, V )

and, for all but finitely many t,

corankO Sel(Kn, At) = corankO
∏
v∈Σn
v-p

H1(Kn,v, At)/Lv,t = 0.

We note that the computation of the O-corank of Sel(Kn, At) uses the second hypothesis of the
theorem.

Now consider a prime v of Kn sitting over p. The local Euler characteristic of At over Kn,v

is d[Kn,v : Qp]. For all but finitely many t, H0(Kn,v, At) and H2(Kn,v, At) are finite and, thus,
the O-corank of H1(Kn,v, At) equals d[Kn,v : Qp] for these t.

Let P be any place of K∞ over v. By definition, Lv,t := LGal(K∞,P/Kn,v)
P,t and thus has O-corank

at least rp[Kn,v :Kp] and exactly this value for all but finitely many t. Summing over v|p for such
values of t yields∑

v|p

corankO H1(Kn,v, At)/Lv,t =
∑
v|p

d[Kn,v : Qp]− rp[Kn,v :Kp]

= d[Kn : Q]−
(∑

p|p

rp

)
[Kn :K]

=
(
d[K : Q]−

∑
p|p

rp

)
pn

= δ(K, V )pn

= δ(Kn, V ).
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The second to last equality follows from the fourth assumption of the theorem and the final
equality follows from a direct computation as p 6= 2. Combining the computations of the O-
corank of the terms of (14), we see that for all but finitely many t, the cokernel of γn,t is finite.

In [GV00], using Poitou–Tate duality, it is moreover shown that if coker(γn,t) is finite, then

|coker(γn,t)|6 |H0(K∞, A∗)|.

This bound is independent of n by the third hypothesis of the theorem. Thus, coker(γt) = coker(γ)
is finite, proving the theorem. 2
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Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Lecture Notes in Mathematics, vol. 288
(Springer, Berlin–New York, 1972) (with M. Raynaud and D. S. Rim).

Hel07 D. Helm, On maps between modular Jacobians and Jacobians of Shimura curves, Israel J. Math.
160 (2007), 61–117.

1380

https://doi.org/10.1112/S0010437X11005318 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005318


On anticyclotomic µ-invariants of modular forms

Hid88 H. Hida, Modules of congruence of Hecke algebras and L-functions associated with cusp forms,
Amer. J. Math. 110 (1988), 323–382.

IP06 A. Iovita and R. Pollack, Iwasawa theory of elliptic curves at supersingular primes over
Zp-extensions of number fields, J. Reine Angew. Math. 598 (2006), 71–103.

Kha03 C. Khare, On isomorphisms between deformation rings and Hecke rings, Invent. Math. 154
(2003), 199–222.

Kim B.-D. Kim, The plus/minus Selmer groups for supersingular primes and the Selmer groups,
Preprint.

Kob03 S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152
(2003), 1–36.

Koh01 D. Kohel, Hecke module structure of quaternions, in Class field theory—its centenary and
prospect (Tokyo, 1998), Advanced Studies in Pure Mathematics, vol. 30 (Mathematical Society,
Japan, Tokyo, 2001), 171–195.

Pol03 R. Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke Math.
J. 118 (2003), 523–558.

Rib90 K. Ribet, On modular representations of Gal(Q̄/Q) arising from modular forms, Invent. Math.
100 (1990), 431–476.

RT97 K. Ribet and S. Takahashi, Parameterizations of elliptic curves by Shimura curves and by
classical modular curves, in Elliptic curves and modular forms (Washington, DC, 1996), Proc.
Natl. Acad. Sci. USA 94 (1997), 11110–11114.

Tak01 S. Takahashi, Degrees of parameterizations of elliptic curves by Shimura curves, J. Number
Theory 90 (2001), 74–88.

Vat99 V. Vatsal, Canonical periods and congruence formulae, Duke Math. J. 98 (1999), 397–419.
Vat02 V. Vatsal, Uniform distribution of Heegner points, Invent. Math. 148 (2002), 1–46.
Vat03 V. Vatsal, Special values of anticyclotomic L-functions, Duke Math. J. 116 (2003), 219–261.
Wes05 T. Weston, Iwasawa invariants of Galois deformations, Manuscripta Math. 118 (2005),

161–180.
Wil95 A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995),

443–551.

Robert Pollack rpollack@math.bu.edu
Department of Mathematics, Boston University, Boston, MA, USA

Tom Weston weston@math.umass.edu
Department of Mathematics, University of Massachusetts, Amherst, MA, USA

1381

https://doi.org/10.1112/S0010437X11005318 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005318

	1 Introduction
	2 p-adic L-functions and analytic μ-invariants
	2.1 The complex period Ω
	2.2 The canonical period
	2.3 Analytic μ-invariants
	2.4 Supersingular case

	3 Selmer groups
	3.1 p-adic Selmer groups
	3.2 Residual Selmer groups
	3.3 Evaluating at the trivial character

	4 Divisibilities
	4.1 Statement
	4.2 Preparations
	4.3 Construction of cohomology classes
	4.4 Euler system arguments

	5 Algebraic μ-invariants
	6 The μ-part of the main conjecture
	6.1 The main conjecture
	6.2 Character groups
	6.3 Comparing definite and indefinite Shimura curves
	6.4 Modular degrees
	6.5 The μ-part of the main conjecture
	6.6 Quantitative level-lowering

	7 λ-invariants and congruences
	Acknowledgements
	Appendix A Surjectivity of global-to-local maps
	References



