CYCLES ON ALGEBRAIC VARIETIES

HISASI MORIKAWA

In the present note, applying the theory of harmonic integrals, we shall
show some results on cycles on algebraic varieties and give a new birational

invariant.

NoraTiONS :

V: a non-singular algebraic variety of (complex) dimension 2 in a pro-
jective space,

Vi(Vs) : the first (second) component of VXV,

8(V): the diagonal sub-manifold of V X V,

W,: a generic hyper-plane section of (complex) dimension 7 of V,

@, R, C: the fields of rational, real, complex numbers respectively,

H,(V, Q), H(V, R), H-(V, C): the 7th homology groups of V over Q, R
and C respectively,

H(V,Q), H(V, R), H(V, C): the 7th cohomology groups of V over
@, R, C respectively,

Hy,,(V, *): the subgroup of Hp:+q(V, *) consisting of all the classes of
type (p, @),

H?9(V, %): the subgroup of H?"?(V, %) consisting all the classes of type
(5, @),

9-(V, Q): the subgroup of H.-(V, @) consisting of all the classes con-
taining algebraic cycles,

B,: the degree of H,(V, @),

{Ik,...,T'7"}: a base of H/(Vy, Q),

{47, ..., 47}: the base of H,(V., Q) corresponding to {I'y, ..., I'/"},

(¥, ..., TF"}: the base of Hun-r(Vi, Q) such that I(I'eT3*) =6ij 4, j
=1,2,..., By,

{47, ..., 47"}: the base of Hin-r(V., Q) corresponding to {I;",
D 8 3

ax, av?, ay, ay: the harmonic forms on V, V XV, Vi, V. corresponding
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tocycles X, Y, Z, Uon V, VxV, V;, V. by means of Hodge’s theorem respec-

tively,
Q%9 : the period matrix of harmonic forms of type (#, g¢) on Vi with

period cycles I'7, ..., I'7" such that p+g=7r<n, p = q,
QU@ P): the period matrix of harmonic forms of type (#n—gq, n—2p)

with period cycles I'7*, ..., I'7"" such that p+q=7, p <q.

<Q,X>=S a,
X

<a, p>u=\ anb,

v M
Z=0: Z is homologous zero over @.
o(I"): the cycle on 8(V) corresponding by the natural correspondence to

acycle I'onV,
07 (X): a cycle on V; corresponding by the natural correspondence to a

cycle X on o(V),

(A)aﬁ = (aij)a3 = Qu3,
I(X+Y; 86(V)): Kronecker index of the intersection of cycles X, Y of

8(V) along to 8(V).
Lemma 1. Let C be a cycle of dimension 27. Then
HI(Cx 4F6(Ti*)) = (I(Crerit)).

Proof. By virtue of intersection theory,”

dIriH= Eozx:iv(ri*)r;‘_r X Bin-q,
q=0W, Vv

where
DUTE) = (= D) O ( TSy ™ (I T Tinar—g) ) (I Tyt )) 7

Since

LRIy = (= 1) (KT T) NI Ty T3) (I(Tnay Taiiear)) ™
we have

I(C X £« 8(TE)) = I(C X 4" « SYSNA(TI) oy X Min-y)

q=0p,Vv

=VBPT(TEY) I(CTnmsy) ICTE 4Y)
[TRY

W, v

1) See S. Lefschetz, Topoloyg (New York), 1930.

https://doi.org/10.1017/50027763000023400 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023400

CYCLES ON ALGEBRAIC VARIETIES 175

=( —1)'2](szn o) (T pear Tiimar) ™"
'(I(r“rzn-rror)) (K5 T2) e, (T3 TE)
—Zl(crzn o (T8 -2rT 3 no2r))""
(1(r T8 Tney)YI(TETEY)) Yo, o (TETSY)
=Kriteri
=I(CriTri).

This proves our lemma.

LemMma 2. If a cycle X of dimension v on 6(V) s not homologous to zero
over Q on 6(V). Then it is not homologous to zero over @ on V XV, too.

Proof. Let {wi, ..., ws! be a base of harmonic forms of degree 7 on
Vi:. Then they can be considered as harmonic forms on VXV and on §(V)
and they are linearly independent on V XV and on 6(V). Therefore, by
d’Rham’s theorem our assertion is ture.

Lemma 3. Let C be a cycle of dimension 2r. Then
Cx &+ 6(V) = DI(C x 4+ 6(rkr)) - 6(If).
k

Proof. By Lemma 2 H(4(V), C) is inbedded in H(V, C). Hence
IUC x A« 3(V)) oIk 5 8(V) =I(C x 45* - 5(I'F)). Therefore

C x £78(V)=0I(C x LTk o(rk).
k

ProrositioNn 1. Let C be a cycle of type (» ¥ s, = s) with complex coef-
ficients. Then

C) Q(n-qis,n-p;s) = Q(p,Q)(I(Cr;.-+ r‘;i-))’
with a matrix A(C), where p+qg=7 < n.
Proof. Let {ai, ..., a;} be a minimum base of harmonic forms of type
(p, @) on Vi. We denote by the same notations «i, . . . a; the harmonic forms
on VxV induced by ai, . . ., a;. Then we have
(< ai, 67C x 47+ 8(V))>)
=(<ai, Cx 46(V)>)
=(<ai, 3I(C x 4+ -6(IF))6(rf)>)
k
=(<ai, DI(C x 4T3k rk>)
k
=(<aj, T >)I(C x £ 6(IF))
=QPo(I(Crirrit)).
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On the other hand

(< ai, Cx £3(V)>)
=(< aj, aéiiﬁ*a(\r) > rer)
=(<ai, at N i+ N az¥y > rxv)
=(<ai N at N a5y, abit > rxr)
= ( <SC a; N Ctlsz(s), A;Jr+ > ).

The type of the form
SC ai N ash

is (p, )+, n)—(rFs,r+xs)=(n—q+xs, n—pFs).
Hence
(<ai, Cx £76(V)>) = A(C) @Un-axsme=%s)
with a matrix A(C). Therefore
QP O(I(CT7 T7)) = A(C) Qrmaeen%9),
LEmMma 4. Let r 2 n. Then (I(W,T'H T2Y)) is non-singular.

Proof. Since {I'}*,..., 'S} is a base of Hin—r(V, @), by virtue of
theory of harmonic integral on a Hodge variety,”? {W,I'}*, ..., W,I'77"} is a
base of H,(V, Q). Hence (I(W,I':* T'i*)) is non-singular.

Tueorem 1. Let r £ n. Let C be a cycle of type (v, r). Then

A(C)
' A4(C)
LRI TN I(W, I )™ = " 2,
" A (C)

where ¢ g

Q(r-z,Z)

. for odd 7,

o1, 7=1)

9(7‘)=< \‘Q J
/ !2(7‘,0)

Q(r—l,l)

: for even 7.

Lriz, r12)

2) See ]J. Igusa, On Picard varieties §II, 6, Proposition 3 American Journal, 74, 1-22
(1952).
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This is an immediate consequence from Proposition 1.

TuaeoreMm 2. Let 7 be an odd integer less than n. Let {si, ..., si} be a

base of the module of rational matrices S = (sij) such that
sy it =o.
Ty, J
Let K:(V, Q) be the sub-module of H:,(V, Q) consisting of Z such that
I(ZrETritYy=0 4, 7=1,2, ..., B,. Then there exists an isomorphism from
H,,(V, Q)/H, (V, Q) N\ K:r(V, Q)
onto the module of rational matrices M satisfying
i) QM= 42" with a matrix 4,
where
Q(f,o)
!2(7‘—2,2)

for odd 7,

k é(l, r—1;

/ g(r, 0) \
g(r—l, 1)

9(73 — ﬁ

for even 7.

\ Qrs2,7/2) /

i) SpS,MUI(W, THTi*))=0 »=1,2,...,1L

-~

Proof. Let D, ..., Dn be independent generators of H, (V, Q)/H, ,(V, @)
N K;,(V, Q). Let ¢ be the linear mapping such that

gﬂ(;aka) =$dk(I(Dkri+ )W, e ity
Then, by virtue of Theorem 1,
27¢(Sarp) = 427

with a matrix 4.

On the other hand we get
SpSv¢(SarDi) (1(W, £+r£+>>=s,)sy(1(2aknkr’;+r£*)>
=@l sPTrEriy=0 »=1,2,...,1L
k 7,3

Conversely we assume that a rational matrix M satisfies the condition 1),
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ii). From ii) it follows that there exists a cycle with rational coefficients C
such that

(I(crirrit)) = M(I(W, T i),

We assume that C is not homologous to a cycle of type (7, ) modulo K. (V, @).

We put ac = ac,+ (ac, +ac)) + . . . + (ac,+ ac}), where
ac, is of type (7=, 7+v) »=0,1,..., 7,

acp is of type (r+w, 7—») 2=1,2,...,7

and C,, C. are cycles with complex coefficients corresponding to harmonic
forms ac,, ac;, by means of Hodge’s theorem respectively. Then, since C is
real, necessalily we get ac;=&c_\,. By virtue of the assumption on C, there
exists v such that

(I((C,, + CL) T T = 0.
On the other hand from Proposition 1, putting
T(C,+CL) 87 = 0I((C, + CO TH T I(W, T3 T4)) ™
we have that for any 7, j at most one i, j-element of T(Cy), T(Ci+Cl), ...,
T(Cr+C}) does not vanish. From (I((C,,+CL(I'¥Ii*)) %0 we see that
T(C,,+ C},) = 0. By virtue of Proposition 1 T(C,,+ Cl,) varies of the type of

integrants. This is a contradiction to our assumption. Therefore our theorem

is proved.

TueoreMm 3. Let {Si, ..., Si} be a base of the module of rational matrices
S = (si;) such that

g‘.s,-jr{* ri*=o.
Let K3u-s(V, Q) be the sub-module of Han-»(V, Q) consisting of Z such that
I(W,Zri'ri*)=0 4,j=1,2,..., B.
Then there exists an isomorphism from
Dn-1(V, @)/9n-1(V, Q) N K»_o(V, Q).
onto the module of rational matrices M satisfying

i) 4009 =0%9M with a matrix A,
i) SpS,M(I(W,Iitri*))=o, v=12...,1
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Proof. Let Dy, ..., Dy be independent generators of 9,-1(V, @). Then
DiWz, ..., DyW, are independent generators of $:(V, @).® On the other
hand, by virtue of Lefschetz-Hodge’s theorem,” H; (V, @) =9:(V, @). Hence
if we put

gﬂ(;aka) = %tzk(l(WszTi~+ TN I(WL I i)',

‘Then, by the strictly same reason in the proof of Theorem 3, ¢ gives our
isomorphism.

We call the degree of Dn-1(V, @)/Hx-1(V, Q) N K5»_2(V, Q) the restricted
Picard number of V.

Then we get the following.
THEOREM 4. Restricted Picard number is a birational invariant.

Proof. Let V' be another non-singular algebraic variety, which is equivalent
to V by a birational correspondence 7. Then T induces isomorphisms from
H(V, Q), H*"(V, C) onto Hi(V', @), H*Y(V', C) respectively.” We denote
by f and f* these isomorphisms.

We denote by [HV, C)1, LHY(V', C)] the sub-rings generated by H'(V, C),
HYV', C) respectively. Then f* induces an isomorphism from [H'(V', C)] onto
[HYV, C)], for f* mapps H*(V',C) onto H'(V,C) and f* induces a homo-
morphism from [H'(V, C)], onto LH'(V', C)1.

On the other hand, since

arit = (afrity)

and
! it — ! ;

AF(ry") = AfTD+

we have
aritrit = arir A acfr =/ (aprir) N (apet))
=f*(d}<ri>+) AN f*(d,'f<r{)+)

=f (aprh+ N apeir) = f (afritrrie).

3.4 W. V. D, Hodge, The theory and applications of harmonic integrals, IV, 51, 2
(London), 1940.
5 See J. Igusa, On Picard varieties §1I, 11, American Journal, 74, 1-22 (1952).
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Therefore
;Ejsij“}miﬁfu‘{ﬁ =0
if and only if
Dsijaritrit =0.
7
This shows that
s (D AIrH* =0
1,7
if and only if
Sisy M rit=o.
1,7

Let al, ..., ak be differentials of the first kind on V' such that 2% is the
period matrix of f*(al), . .., f*(aby:) with period cycles I'i, ..., I't". Then
the period matrix of af, ..., aky with period cycles f(I'D), ..., f(I't) is

(1,0)

also 2 Therefore, by virtue of Theorem 3, we get

D1V, @)/ K s(V, @) N Du-1(V, Q)
= Dua(V, @)/ Kua(V, Q) N Dui(V!, Q).

This proves our assertion.

Mathematical Institute,
Nagoya University
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