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The interaction between the flow above and below a permeable wall is a central topic
in the study of porous media. While previous investigations have provided compelling
evidence of the strong coupling between the two regions, few studies have quantitatively
measured the directionality, i.e. cause-and-effect relations, of this interaction. To shed
light on the problem, interface-resolved direct numerical simulations of channel flow
over a cylinder array for porosity ϕ = 0.4–0.9 are performed, and the friction Reynolds
number of the top smooth wall is controlled to be Reτ ≈ 180. We use transfer entropy as
a marker to evaluate the causal interaction between the free turbulent flow and the porous
medium. Correlation analysis and linear coherence spectra are also leveraged to complete
the study. Our results show that the permeability of the porous medium has a profound
impact on the intensity, time scale and spatial extent of surface–subsurface interactions.
The interaction of the free flow and porous medium is further decomposed into two
coupling directions, namely, top-down and bottom-up. For low-porosity cases, top-down
and bottom-up interactions are strongly asymmetric, the former being mostly influenced
by small near-wall eddies, and the latter reflecting the onset of Kelvin–Helmholtz type
instabilities due to the perturbation from the porous medium. As the porosity increases,
both top-down and bottom-up interactions are dominated by shear-flow instabilities.
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1. Introduction

Turbulent shear flows over porous walls are frequently encountered in the natural
environment and industrial applications, such as oil wells, catalytic reactors, heat
exchangers and porous river beds, to name but a few (Bottaro 2019). As the blocking
effect of the wall is relaxed, the porous bed allows for mass, momentum and energy
exchange across the permeable interface, and a transitional layer forms as a buffer between
the turbulent surface and laminar subsurface flows (Breugem, Boersma & Uittenbogaard
2006; Manes, Poggi & Ridolfi 2011; Fang et al. 2018; Kim et al. 2020; Suga, Okazaki &
Kuwata 2020). Previous studies of turbulent flow over permeable beds have addressed
the dependence of flow physics on the wall permeability (Finnigan 2000; Voermans,
Ghisalberti & Ivey 2017). The turbulent surface flow is similar to that of a canonical
boundary layer when the interfacial permeability is low, where the near-wall structures
are less disrupted (Breugem et al. 2006). As the permeability increases, large-scale
vortical structures emerge in the surface flow, which are attributed to Kelvin–Helmholtz
(KH) type instabilities from inflection points of the mean velocity profile (Finnigan
2000; Jiménez et al. 2001; Breugem et al. 2006; Manes et al. 2011; Nepf 2012).
Additionally, characteristics of the near-wall cycle, e.g. streaks and streamwise vortices,
are substantially weakened in the presence of porous walls compared to smooth-wall
turbulence. This is summarized by the theory of Manes et al. (2009, 2011) via two
competing mechanisms in the flow: the formation of wall-attached eddies and the
disruption by shear layer instabilities. The balance between the two mechanisms is
controlled by the wall permeability.

More recently, the application of porous media in drag reduction has inspired a series
of in-depth studies on wall permeability. Rosti, Cortelezzi & Quadrio (2015) conducted a
parameter study with coupled direct numerical simulation (DNS) and volume-averaged
Navier–Stokes (VANS) simulation. They focused on porous media with relatively low
permeability where the inertial effects within the porous layer can be neglected. It was
shown that the roles of permeability and porosity are decoupled, and the effects of
permeability are dominant with respect to the effects of porosity. In a following study,
Rosti, Brandt & Pinelli (2018) found that the total drag could be reduced by more
than 20 % through adjusting directional properties of the permeability. When streamwise
and spanwise diagonal components of the permeability tensor (streamwise and spanwise
permeability) are larger than the wall-normal component (wall-normal permeability), the
low- and high-speed streaks are more elongated in the streamwise direction, which leads
to an enhanced slip velocity and net drag decrease. Wall-normal fluctuations are also
suppressed, leading to a decrease in total shear stress.

Gómez-de Segura & García-Mayoral (2019) further explored the ability of anisotropic
permeable substrates to reduce turbulent skin friction. It was observed that the drag
reduction is proportional to the difference between the streamwise and spanwise
permeabilities for low-permeability substrates. This is consistent with the conclusion
of previous studies that streamwise-preferential complex surfaces can reduce drag
in turbulent flows. Garcia-Mayoral & Jiménez (2011) and Abderrahaman-Elena &
García-Mayoral (2017) noted the degradation of drag reduction performance when
wall-normal permeability increases, which is associated with the appearance of KH-type
eddies. Kuwata & Suga (2017) investigated the influence of the anisotropic permeability
tensor of the porous medium in a higher-permeability regime. In contrast with the result
for low-permeability porous media (Rosti et al. 2018; Gómez-de Segura & García-Mayoral
2019), it was found that streamwise and spanwise permeabilities enhance turbulence
whilst vertical permeability itself does not. In particular, the enhancement of turbulence is
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remarkable over porous walls with streamwise permeability, as it allows the development
of streamwise large-scale perturbations induced by KH instability. This is also confirmed
by Suga et al. (2020), who observed that turbulence over and under the porous surfaces
is roughly insensitive to the wall-normal permeability compared with the streamwise
permeability.

In addition to the statistical properties of turbulence over permeable walls, the dynamics
of the coupling between the surface flow and subsurface flow have also attracted numerous
studies. Breugem et al. (2006) reported the correlation between the sign of the wall-normal
flow transporting fluid across the permeable interface and the sign of the fluctuating
streamwise velocity in the surface flow. This linkage was confirmed by the experiments
of Kim et al. (2018) and the DNS of Chu et al. (2021). Manes et al. (2009) uncovered two
types of turbulence within the porous bed using spectral analysis. The first type is periodic
large-scale motions with a wavelength 10 times the eddy turnover time. They speculated
that these large-scale motions are generated remotely in the flow surface and imposed onto
the flow below the permeable interface. The second type is small-scale turbulent events in
the transitional layer, which may be associated with pore-scale vortices generated locally
within the porous medium.

Kuwata & Suga (2016) used proper orthogonal decomposition (POD) to extract the
large-scale pressure perturbations across a permeable interface, which are associated
with KH-type eddies. Motlagh & Taghizadeh (2016) examined the POD spatial mode
to inspect the influence of wall permeability on the dynamical features of flow across
the permeable interface. They revealed that the permeability of the wall modifies
the size and even the shape of the large-scale, energetic dominant structures that
stem from the KH instability. A recent study by Kim et al. (2020) examined the
amplitude modulation in permeable-wall turbulence. The spatiotemporal signatures of
amplitude modulation were also characterized using correlation map and conditional
averaging techniques. The connections between large-scale regions of high/low streamwise
momentum in the surface flow, downwelling/upwelling across the permeable interface, and
enhancement/suppression of small-scale turbulence were also observed. Moreover, it was
found that porous media with rough surfaces are subject to stronger penetration of the flow
into the permeable bed modulated by large-scale structures in the surface flow.

Despite the latest advances in the field, the dynamics of the mass and momentum
transfer across the interface of porous media are far from being settled. Although we
do have a solid knowledge of the connection between flow structures resulting from
the surface–subsurface interaction, the fundamental cause-and-effect relations of these
fluid motions are rarely inspected. To what extent does the outer turbulence determine
the flow inside porous media and vice versa? These questions cannot be addressed by
correlation, spectral analysis and traditional mode decomposition methods (e.g. POD), as
these approaches do not provide the directionality and time asymmetry required to quantify
causation (Kantz & Schreiber 2004; Pearl 2009). In recent years, new linear dynamics tools
have emerged to study the structure and dynamics of turbulent flow. Examples are dynamic
mode decomposition (DMD) (Schmid 2010), spectral proper orthogonal decomposition
(SPOD) (Towne, Schmidt & Colonius 2018), etc. DMD and SPOD allow the original
nonlinear dynamics of the flow to be approximated by a linear system, which is suitable
for the low-order modelling of quasi-linear systems. Nonetheless, for highly nonlinear
dynamics such as the coupling of free flow and porous media, it is unclear whether
the linear modes extracted by these tools alone are enough to explain cause-and-effect
relationships in the original nonlinear system.
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Recently, Lozano-Durán, Bae & Encinar (2020) highlighted the importance of causal
inference in fluid mechanics (see also Lozano-Durán et al. 2021) and proposed to
leverage information-theoretic metrics to explore causality in turbulent flows. In particular,
Lozano-Durán et al. (2020) examined the causal interactions of energy eddies in
wall-bounded turbulence using transfer entropy. The concept of transfer entropy was first
proposed by Schreiber (2000) as a tool to evaluate the directional information transfer
between a source signal and receiver signal. Information transfer between two time series is
typically defined as the dependence of the future state of the receiver on the previous state
of the source. Schreiber’s (2000) definition of transfer entropy is essentially predictive
information transfer and measures the average information contained in the source about
the next state of the destination that was not already contained in the destination’s past.
In this respect, transfer entropy quantifies the statistical coherence between temporally
evolving systems in a directional and dynamic manner. In this study, we conduct a DNS
of a fully resolved interface and porous domain, and follow the analysis of Lozano-Durán
et al. (2020) to quantify the causality between the interaction of surface and subsurface
flow. Traditional tools such as spectral and correlation analysis are also provided to
complement the analysis.

The work is organized as follows. We present the details of the DNS dataset in § 2. In
§ 3, coupling between inner and outer flow structures will be inspected in detail using a
series of tools, e.g. spectral analysis, linear coherent spectra, as well as transfer entropy.
The object is to illustrate the asymmetry in the interaction of surface–subsurface flow.
Finally, conclusions are offered in § 4.

2. Numerical simulations

The three-dimensional incompressible Navier–Stokes equations are solved in non-
dimensional form,

∂uj

∂xj
= 0,

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
+ Πδi1, (2.1)

where Π is a constant pressure gradient in the mean-flow direction. The governing
equations are non-dimensionalized by normalizing lengths by the half-width of the
whole simulation domain H (figure 1a), velocities by the averaged bulk velocity Ub of
the free-flow region (y/H = [0, 1]), such that time is non-dimensionalized by H/Ub.
The spectral/hp element solver Nektar++ (Cantwell et al. 2011; Chu et al. 2020;
Pandey et al. 2020) is used to discretize the numerical domain containing complex
geometrical structures. The solver allows for arbitrary-order spectral/hp discretizations
with hybrid-shaped elements. The time stepping is performed with a second-order mixed
implicit–explicit (IMEX) scheme. The time step is fixed to �T/(H/Ub) = 5 × 10−4.

Hereafter, the velocity components in the streamwise x, wall-normal y and spanwise z
directions are denoted as u, v and w, respectively. The domain size (Lx/H × Ly/H × Lz/H)
is 10 × 2 × 0.8π. The lower half (y/H = [−1, 0]) contains the porous medium and the
upper half (y/H = [0, 1]) is the free channel flow. The porous layer consists of 50
cylindrical elements along the streamwise direction and five rows in the wall-normal
direction, as illustrated in figure 1(a). The distance between two neighbouring cylinders is
fixed at D/H = 0.2.

The no-slip boundary condition is applied to the cylinders, the upper wall and the
lower wall. Periodic boundary conditions are used in the streamwise and spanwise
directions. The geometry is discretized using quadrilateral elements on the x–y plane
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Figure 1. (a) Configuration of the computational domain; (b) corresponding cylinder radius of each porosity
case; and (c) variation of normalized diagonal components of the permeability tensor

√
K

p+
αα and Forchheimer

coefficients Cp+
αα with porosity.

Case ϕ Rep
τ �xp+/�yp+/�zp+ Res

τ �xs+/�ys+/�zs+

C04 0.4 351 1.9/0.48/5.7 198 4.7/0.46/4.7
C05 0.5 336 2.2/0.38/5.3 180 6.3/0.43/4.5
C06 0.6 464 3.5/0.50/6.8 190 5.5/0.47/5.4
C07 0.7 625 4.2/0.55/8.4 160 5.2/0.51/5.1
C08 0.8 793 3.1/0.51/5.0 170 4.1/0.40/2.8
C09 0.9 1028 3.4/0.58/6.6 205 4.8/0.47/3.3

Table 1. Simulation parameters. The porosity of the porous-medium region is ϕ; the friction Reynolds
numbers for the porous and impermeable top walls are Rep

τ and Res
τ , respectively; and �xp+/�yp+/�zp+ and

�xs+/�ys+/�zs+ are the respective grid spacings in wall units of porous wall and top wall, respectively.

with local refinement near the interface. High-order Lagrange polynomials (polynomial
order P = 5–9) are used within each element in the x–y plane. The spanwise direction is
extended with a Fourier-based spectral method.

Six DNS cases are performed with varying porosity ϕ = 0.4–0.9, which is defined as
the ratio of the void volume to the total volume of the porous structure. The parameters
of the simulated cases are listed in table 1, where the cases are named after their
respective porosity. The superscripts (·)p and (·)s represent variables of permeable wall
and top smooth wall sides, respectively. Variables with superscript + are scaled by friction
velocities uτ of their respective side and viscosity ν. Note that the distance between
cylinders is fixed, and the porosity is changed by varying the radius of the cylinders. The
relation between porosity ϕ and cylinder radius r is shown in figure 1(b). The normalized
cylinder radius is in the range rp+ = 42–52 for all the cases tested (see table 2) such
that the effect of surface roughness is assumed to be on a similar level. The Reynolds
number of the top wall boundary layer is set to be Res

τ = δsus
τ /ν ≈ 180 for all cases (δ is

the distance between the position of maximum streamwise velocity and the wall). In this
manner, changes in the top wall boundary layer are minimized. On the top smooth wall
side, the streamwise cell size ranges from 4.1 ≤ �xs+ ≤ 6.3 and the spanwise cell size is
below �zs+ = 5.4. On the porous-medium side, �zp+ is below 8.4, whereas �xp+ and
�yp+ are enhanced by polynomial refinement of the local mesh (Cantwell et al. 2011).
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Case
√

Kxx
p+,

√
Kyy

p+ √
Kzz

p+ Cp+
xx , Cp+

yy rp+

C04 2.80 7.28 0.24 50
C05 4.55 8.86 0.37 42
C06 9.34 15.23 0.58 48
C07 20.65 30.98 2.99 52
C08 36.83 53.99 13.58 52
C09 53.97 77.92 30.66 48

Table 2. Characteristics of the porous media:
√

Kαα
p+ and Cp+

αα are the diagonal components of the
permeability tensor and Forchheimer coefficient, respectively, in the direction of α (α ∈ {x, y, z}); and rp+
is the radius of the cylinders. All the variables are normalized using up

τ and ν.

The total number of grid points ranges from 88×106 (case C04) to 582×106 (case C09).
Each cylinder in the porous domain is resolved with 80–120 grids along the perimeter.

The diagonal components of the permeability tensor Kαα and the Forchheimer tensor
Fαα are measured by DNS of only the porous-medium region. For the measurement of
permeability along the α axis of the porous medium, the domain boundaries parallel to
the α axis are periodic. The diagonal components of the permeability Forchheimer tensors
are calculated using the Darcy–Forchheimer equation,

〈ui〉 = −Kij

μ

∂〈p〉 f

∂xj
− Fij〈uj〉, (2.2)

where 〈ui〉, 〈p〉 f and μ are the superficially volume-averaged velocity, the volume-averaged
fluid-phase pressure and the dynamic viscosity of the fluid, respectively. The superscript
‘f ’ denotes a value in the fluid phase. The Forchheimer tensor Fij is modelled as
Fij = Cij|〈u〉|/ν, where | · | denotes the modulus. Note that, for a porous medium whose
configuration is symmetric in the x, y and z directions, the permeability and Forchheimer
tensors become diagonal (Suga et al. 2020).

The measured permeabilities Kαα and Forchheimer coefficients Cαα are listed in table 2,
and their relation with porosity is shown in figure 1(c). The normalized permeability√

Kαα
p+ = √

Kααup
τ /ν grows almost exponentially with porosity. According to Voermans

et al. (2017), cases C04 and C05, whose
√

Kxx
p+,

√
Kyy

p+ and
√

Kzz
p+ are well below 10,

belong to the transitional regime where both attached eddies and KH eddies exist. Cases
C06–C09 belong to the highly permeable regime where KH eddies prevail since

√
Kαα

p+

is close to or above 10. The Forchheimer tensors account for the nonlinear part of the
relation between pressure drop and flow rate. The spanwise component Czz is zero for all
the cases, while the streamwise and wall-normal components (Cxx and Cyy) are non-zero.
The normalized Forchheimer coefficients Cp+

xx and Cp+
yy are relatively small for porosity

ϕ = 0.4–0.6, where Darcy’s law works well. The nonlinear term becomes non-negligible
for higher-porosity cases.

3. Results

The current section will start with the basic statistics (§ 3.1) and instantaneous flow fields
(§ 3.2) to offer a general impression of the flow in the vicinity of the permeable interface.
Then, § 3.3 will show the spectral density and linear coherence spectra (LCSs), providing
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2

Figure 2. (a) Mean streamwise velocity 〈ū〉 normalized by us
τ ; and (b) mean TKE profiles 〈q̄〉 normalized

by (us
τ )

2. Profiles of impermeable smooth-wall channel from Hoyas & Jiménez (2008) for Reτ = 180 are
superimposed in thin dashed lines for comparison.

insights into the surface–subsurface interactions from a scale-specific perspective. The tool
of transfer entropy will be introduced in § 3.4 to unravel the asymmetry and directionality
in the coupling process.

3.1. Mean velocity and turbulent kinetic energy profiles
The mean statistics of all the cases are briefly discussed here to outline the impact of
porosity on surface and subsurface flow. Figure 2(a,b) shows the mean profiles for the
streamwise velocity 〈ū〉 and turbulent kinetic energy (TKE) 〈q̄〉 = 〈u′u′ + v′v′ + w′w′〉/2
normalized by us

τ . The operators 〈·〉 and (·) represent the spatial average in the x–z
plane and the temporal average, respectively, and the prime denotes turbulent fluctuations,
φ′ = φ − φ̄. The profiles of an impermeable smooth-wall channel from Hoyas & Jiménez
(2008) are also included for comparison. For increasing wall porosity, the mean velocity
profile becomes more skewed towards the top wall as a consequence of the higher skin
friction on the porous wall (Breugem et al. 2006). Below the interface (y = 0), the
mean velocity profiles exhibit a clear inflection point, which is typically associated with
KH-type instabilities responsible for additional turbulent structures (Manes et al. 2011).
This is partly substantiated by figure 2(b), which shows that the TKE below and above
the interface is significantly enhanced for higher porosity considered here (ϕ = 0.7–0.9).
In the following sections, we illustrate how the change of flow structures in the interface
region affects the interaction between surface and subsurface flow.

3.2. Upwelling and downwelling events
The upwelling/downwelling events transport fluid directly across the interface, which
provide an intuitive picture of the interaction process. Examples of typical upwelling and
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Figure 3. Instantaneous u′ fields (C05) during (a) an upwelling event and (b) a downwelling event. Fluctuation
velocity (u′, v′) in the porous-medium region is illustrated by vectors, which are normalized to unit
length.

downwelling events are captured in figure 3 for case C05 (ϕ = 0.5). During the upwelling
event (figure 3a, x/D = 1), a small amount of fluid is ejected from beneath the interface
(tUb/D = 0), which later becomes a low-speed bulb above the interface (tUb/D =
0.3–0.6) to finally merge with a large low-speed structure downstream (tUb/D = 0.9).
During the downwelling event (figure 3b, x/D = 1), a portion of low-speed fluid is
absorbed into the porous medium (tUb/D = 0). The low-speed structure is later separated
into two structures as the upper part is convected downstream (tUb/D = 0.3–0.9). The
observations from the instantaneous fields also suggest that upwelling/downwelling events
are subjected to the modulation of large-scale motions in the free-flow region. Specifically,
the upwelling events at the gaps are often related to large-scale low-speed structures
above the interface (see figure 3a, at y/D = 0.5), while downwelling events are usually
associated with high-speed structures (see figure 3b, at y/D = 0.5). This connection was
also observed by Kim et al. (2018), and it is further discussed in the following sections. In
addition, the momentum flux between neighbouring gaps is usually negatively correlated,
i.e. upwelling and downwelling events usually occur side by side, probably due to the
constraint imposed by continuity at the interface.

3.3. Spectral density and linear coherence spectra
It is known that the flow structure near a permeable interface is characterized by a broad
spectrum of length scales (Manes et al. 2011; Kim et al. 2020). To get a general overview
of the energetic scales in the channel and porous-medium regions, we conduct temporal
spectral analysis for all the present cases. Figure 4 (isolines) shows the premultiplied
spectral density of the three velocity components in the middle of two neighbouring
cylinders. Figure 2 reveals that the TKE magnitudes above and below the interface differ
significantly. To better illustrate the energetic scale at each y position clearly, we consider
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the normalized energy spectra defined as

Φuiui( y; f ) = |〈ûi( y; f )û∗
i ( y; f )〉|

σ 2
ui
( y)

, (3.1)

where ûi( y; f ) denotes the temporal Fourier transform of ui( y; t) at position y, ∗ indicates
complex conjugate, 〈·〉 denotes ensemble averaging and σui( y) is the standard deviation of
ui at the y position. The frequency of fluctuations inside the porous medium is generally
lower than that in the channel region and centred around Ub/(Hf ) ≈ 2–3. One clear
connection between the channel region and porous region is that the scale of Φuu above
the interface is synchronized with the frequency of fluctuations beneath the interface,
especially the v component. This can be explained by the fluid exchange across the
interface induced by upwelling/downwelling motions as described in § 3.2.

Our results also show a drastic change of spectrum in the channel flow with porosity.
For lower porosity (ϕ = 0.4–0.5), the scale of Φvv and Φww in the near-wall region
(Ub/(Hf ) ≈ 0.5–1) is smaller than that of Φuu (Ub/(Hf ) ≈ 2), and has a considerable
disparity with that of subsurface flow. For these two cases, the spectra in the channel region
mimic those in non-permeable channels. As porosity increases (ϕ = 0.6–0.9), Φvv and
Φww near the interface in the channel region are increasingly more synchronized with the
frequency inside the pore, shifting towards lower frequency. Such a change in the spectra
Φvv and Φww is an indication of different dominating flow structures in each channel
region.

The spectral density reveals the energetic frequency modes at each wall-normal position.
To investigate the linear coupling between fluctuations in the channel and porous medium
in more detail, we compute the LCS defined as

Γ 2
uiv

( y, yr; f ) = |〈ûi( y; f )v̂∗( yr; f )〉|2
〈|ûi( y; f )|2〉〈|v̂( yr; f )|2〉 , (3.2)

where | · | designates the modulus, y is the wall-normal position and yr is the reference
position. Since we are interested in the fluid exchange across the interface, the reference
signal is selected to be the wall-normal velocity v, and the reference position yr is at the
interface y = 0. Note that, by definition, 0 ≤ Γ 2 ≤ 1, and that Γ 2 may be interpreted as
the square of a scale-specific correlation coefficient (Baars, Hutchins & Marusic 2017).
LCS provides an indirect measure of the phase consistency across ensembles of v( yr = 0)

and ui( y), with concurrent amplitude covariations. If each ensemble used to construct the
cross-spectrum contains a random phase shift for a certain scale (a non-consistent phase
shift), then that scale is not correlated and hence Γ 2 ≈ 0.

The LCSs Γ 2
uv and Γ 2

vv are superimposed on the spectra Φuu and Φvv as coloured
contours in figure 4. The magnitude of the LCSs is only significant for Γ 2

uv and Γ 2
vv , while

the magnitude of Γ 2
wv is negligible and not shown. The correlated scales and wall-normal

range in the LCSs vary with the porosity. For the low-porosity cases (ϕ = 0.4–0.5), the
correlated region (Γ 2 > 0.1) in the channel is very limited, i.e. y/H < 0.1, for both Γ 2

uv

and Γ 2
vv . This suggests that momentum flux across the interface can hardly affect the outer

layer of the free flow. Below the interface, there is a correlation peak at Ub/(Hf ) ≈ 0.5,
which is the scale subject to the influence of the momentum flux at the interface. Note
that this scale is much smaller than the most energetic scale in the porous medium,
Ub/(Hf ) ≈ 3, and close to the scale of the near-wall streamwise vortices when normalized
with wall units, i.e. Ubup

τ /( f ν) ≈ 300.
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Figure 4. Premultiplied temporal spectral densities (isolines) at the centre of the cylinder gap. Columns 1–3
correspond to Φuu, Φvv and Φww, respectively. Rows (a–f ) denote C04–C09, respectively. The levels for the
isolines are from 0 to 2.4 × 10−3 with a step of 0.3 × 10−3. LCSs Γ 2 are superimposed with coloured contours;
Γ 2

uv and Γ 2
vv are shown in columns 1 and 2, respectively. The levels for the coloured contours are from 0 to 0.5

with a step of 0.1. The horizontal dashed lines indicate the position of crest height (y = 0), which is selected to
be the reference position yr in (3.2).
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As porosity increases (ϕ = 0.6–0.9), the wall-normal extent of the correlated region in
the channel increases drastically for Γ 2

vv , approaching the top wall. For the highest porosity
(ϕ = 0.9), Γ 2

uu shows a symmetrical patch at the top wall, indicating that the large-scale
fluctuations dominate the entire channel. Moreover, the most correlated scale under the
interface gradually attains Ub/(Hf ) ≥ 2, which is close to the energetic scale of Φvv in the
porous-medium region. This scale is consistent with the scale of KH eddies observed by
Breugem et al. (2006) and Kuwata & Suga (2017).

The spectral density combined with the LCSs illustrates the scale-specific coherence
between the surface–subsurface flow and the fluctuations at the interface. Porosity ϕ = 0.6
seems to represent a transitional point. For porosity lower than 0.6, the channel flow is
close to being over a non-permeable wall and the interaction between the two regions is
limited. For higher porosity, there is clear evidence that KH eddies emerge and take an
active role in the flow coupling across the interface. Note that the permeability increases
drastically with porosity. From porosity ϕ = 0.6, the permeability of the porous medium
is high enough (

√
Kxx

p+ = 9.34,
√

Kzz
p+ = 15.23) to be classified as highly permeable

according to the framework of Voermans et al. (2017). For the highly permeable regime,
the flow field is characterized by the dominance of KH-type eddies. Manes et al. (2011)
also found that the signature of KH instability is not obvious until

√
K

+ = 17, which is
close to the spanwise permeability of C06 (ϕ = 0.6).

The results in this section and previous works established a clear picture of the change of
flow structures with wall permeability. Yet, the dynamics of the interaction at the interface
are not fully unveiled. An important unanswered question is related to the coupling
direction, i.e. is the channel flow influencing the porous-medium flow or the other way?
This missing information in directionality is the main shortcoming of ‘correlation-based’
methods. In the following sections, the information-theoretic tool will be used to tackle
this problem.

3.4. Information transfer between free-flow and porous-medium structures

3.4.1. Causality among time signals as transfer entropy
We use transfer entropy (Schreiber 2000) as a marker to evaluate the direction of
coupling, i.e. the cause–effect relationship, between two time signals representative of
some fluid quantities of interest (Lozano-Durán et al. 2020). Transfer entropy is an
information-theoretic metric representing the dependence of the future state of signal X
on the past of signal Y . This dependence is measured as the decrease in uncertainty (or
entropy) of the signal X by knowing the past state of Y . The transfer entropy from Y to X
is formally defined as

T Y→X(�t) = H(Xt | Xt−1) − H(Xt | Xt−1, Yt−�t). (3.3)

Here the subscript t denotes time; �t is the time lag between the source (signal Y) and the
target (signal X); and Xt−1 denotes the immediate past of Xt, i.e. the state that is one time
step earlier than Xt. Finally, H(A | B) in (3.3) is the conditional Shannon entropy of the
variable A given B,

H(A | B) = E[log( p(A, B))] − E[log( p(B))], (3.4)

where p(·) is the probability density function, and E[·] denotes the expected value. The
second term on the right-hand side of (3.4) is the Shannon entropy of variable B, which
is the average uncertainty in the samples of B, or the average information conveyed
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by B. The first term on the right-hand side of (3.4) is the joint entropy of variables A
and B. The conditional entropy H(A | B) is essentially the entropy (or uncertainty) left for
A taking out any dependence of B. Thus, H(Xt | Xt−1) in (3.3) is the intrinsic uncertainty
of X conditioned on knowing its own history, and H(Xt | Xt−1, Yt−�t) is the uncertainty
of X provided that both its history and the state of Yt−�t are known. Therefore, T Y→X can
be understood as the fraction of information in X not explained by its immediate past that
is explained by the past of Y .

In order to quantify the relative strength of causality, we scale the magnitude of
TY→X within the range [0, 1] and define the normalized transfer entropy (Gourévitch &
Eggermont 2007),

T̃ Y→X = T Y→X − E[T Ys→X]
H(Xt | Xt−1)

, (3.5)

where the term E[TYs→X] is introduced to alleviate the bias due to statistical errors. This
is achieved with the surrogate variable Ys, which is constructed by randomly permuting
Y in time to break any causal links with X. The conditional entropy of the denominator
represents the information of X that cannot be explained by its past state Xt−1. Thus, the
normalized transfer entropy represents the percentage of history-independent information
in X that can be explained by the past state of Y .

The transfer entropy in (3.5) determines the statistical direction of information transfer
between time signals by measuring asymmetries in their interactions. We adopted this
metric in the present work as an indication of causality. It is noted that the identification
of cause-and-effect relationships among events or variables remains an open challenge.
Moreover, poor time-resolved datasets or short time sequences are prone to yield biased
estimates. Therefore, the calculation results should be carefully checked for convergence
and validity. Note that (3.3) is the most basic definition of transfer entropy since only one
state from the history of the target signal, i.e. Xt−1, and one state from the history of the
source signal, i.e. Yt−�t, are included. We could choose to include more states from the
history of X and Y in (3.3), i.e. increase the so-called embedding dimensions (Schreiber
2000), which may lead to a more sophisticated definition of the causal relation. On the
other hand, increasing embedding dimension requires an exponentially larger sampling
ensemble, and it is much trickier to derive the physical mechanism from transfer entropy
for a high embedding dimension. For the current study, we follow the basic definition of
transfer entropy for the sake of statistical convergence.

3.4.2. Coherent structure of proper orthogonal decomposition modes
To evaluate the transfer entropy between surface and subsurface flows, one needs to extract
time-varying sequences of the characteristic structures in both regions. In this section,
we conduct POD to find the energetic modes above and below the interface, and we
will measure the causal relationship between the POD time coefficients in the following
sections. In POD, the fluctuating velocity field u′(x, t) = [u′(x, t), v′(x, t), w′(x, t)] is
decomposed via optimal energy criteria into

u′(x, t) =
K∑

k=1

ak(t)φk(x), (3.6)

where ak(t) is the time coefficient for the kth-rank mode and φk(x) are the modes that
constitute an orthogonal spatial basis. In the current study, we focus on the instantaneous
fluctuation velocity fields in the x–y plane, and the spanwise scale of flow structures is
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Figure 5. First POD spatial modes of channel φc
1 and porous region φ

p
1 . Colour contour shows the magnitude

of the v component, i.e. φv , and vectors denote the flow direction of (u, v). The lengths of the vectors are
normalized to 1. Columns (a–f ) represent cases C04 to C09, respectively. The upper row is for the channel
region and the lower row is for the pore region.

not considered. The control volume of POD is defined in the vicinity of one pore unit. The
wall-normal extent of the channel region is selected from the crest height (y = 0) to the
border of the boundary layer above the permeable wall, which is defined as the location
of maximum mean velocity. For the porous-medium region, we focus on the first layer of
cylinders to capture the so-called transition layer (Kim et al. 2020), i.e. the region with
direct mass and momentum exchange with the free flow.

The streamwise extent for the present POD analysis is intentionally chosen to be only
one pore unit, as we are mainly concerned with the local interaction between the free flow
and the porous medium. In that case, the streamwise extent of one pore unit is thus the
smallest possible control volume that is meaningful for our analysis. Additionally, it is
also advantageous that the time coefficient of leading-order mode, a1(t), contains as much
information as possible.

It should be noted that, as the streamwise extent of the current control volume is limited,
so is the ‘scale’ of the structure associated with the time coefficient. Hereafter, we refer to
the ‘scale’ of the flow motions as the extent of their temporal dimension. More specifically,
we will refer to structures with high frequency Ub/(Hf ) ≤ 1 as ‘small scale’, which has
an equivalent length of Ubup

τ /( f ν) ≤ 1000 in wall units. This scale is usually associated
with near-wall vortices and streaks in the channel. Those fluctuations with low frequency
Ub/(Hf ) ≥ 2 will be regarded as ‘large scale’, as they correspond to the outer-scale
structures and KH eddies in the channel flow.

The first-order POD spatial modes of the channel region φc
1 and porous-medium region

φ
p
1 for all the cases are shown in figure 5. The POD is computed from a time series of

2000 snapshots spanning a time of TUb/H = 30–50. The time interval between snapshots
is chosen to be �tUb/H ≈ 0.02. As shown by the temporal spectral density in figure 4,
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Figure 6. TKE contribution ratio of the ith mode of (a) channel region and (b) porous-medium region. The
insets zoom in on the first three orders of modes.

the temporal resolution is enough to resolve the dynamics of the energetic motions of
interest. The POD is computed for all 50 pore units in the streamwise direction and for 12
evenly spaced positions in the spanwise direction. The spanwise spacing of the x–y planes
is chosen to be greater than �Zs+ ≥ 100 for all the cases (i.e. larger than the spacing
of near-wall streaks) to guarantee the statistical independence between different spanwise
positions.

For all cases shown in figure 5, the first mode for the turbulent boundary layer
(TBL) region φc

1 consists of a large counter-gradient region (Lu & Willmarth 1973), i.e.
ejection-like Q2 events when u′ < 0 and v′ > 0, and sweep-like Q4 events when u′ > 0
and v′ < 0. There are more Q2/Q4 structures stacking up alternately in the wall-normal
direction as the order of φc increases (not shown here), but their contribution is much lower
than that of φc

1. As illustrated in figure 6(a), the first mode accounts for up to 30–50 % of
the total TKE above the interface. Owing to the small control volume, the TKE is mostly
concentrated in the first three modes, and the energy contribution of higher-order modes
is almost negligible.

The first mode in the porous region φp shows a richer structure, which is dramatically
affected by the porosity. In the low-porosity cases C04 and C05 (ϕ = 0.4 and 0.5), φ

p
1

encompasses a vortex trapped on the top of the cylinder’s gap, and a weak vertical
mass transfer within the gap. The ‘topping’ vortex works as a buffer region that blocks
direct fluid exchange between surface and subsurface flows. For increasing porosity
(ϕ = 0.6–0.9), the vortex above the gap becomes smaller and attaches to the rear of the
cylinder, leaving room for a vertical ‘mini-channel’ within the gap. The ‘mini-channel’
allows a direct mass and momentum flux across the interface, enhancing the interaction
between the porous and channel regions. Figure 6(b) shows that the modes φ

p
1 already

account for 50–65 % of the TKE, and they can be considered the simplest representation
of the flow patterns close to the interface.

The time coefficients of the first modes, ac
1 and ap

1, are compared in figure 7. Note
that time coefficients represent the instantaneous magnitude of the corresponding spatial
modes and, as such, can be used as markers of the flow structure in each region. In the
current context, ac

1 denotes the intensity of Q2/Q4 events above the pore unit, whereas ap
1

reflects the strength of the vortex and momentum flux at the gap. Excerpts of the time series
of ac

1 and ap
1 are plotted in figure 7(a1–f 1). Overall, both time signals show a certain degree
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Figure 7. Excerpts of POD time series in the channel and porous regions (a1–f 1) and the correlation profiles
(a2–f 2). Rows (a–f ) are from cases C04–C09, respectively. In panels (a1–f 1), solid lines represent the time
coefficient ac

1 of the channel, and dashed lines are for the ap
1 of the porous region. In panels (a2–f 2), solid lines

show the profile of Rac
1ap

1
at the same pore unit. Dashed lines show the correlation profiles between ac

1 of two

adjacent pore units, i.e. Rac
1ac

1,l/D=1
. Dotted lines show the correlation profiles between ap

1 of two adjacent pore
units, i.e. Rap

1ap
1,l/D=1

.

of synchronization, which seems to become stronger as porosity increases. Large-scale
fluctuations with period �tUb/H ≥ 5 can be observed in ac

1 and ap
1 for higher-porosity

cases (ϕ ≥ 0.6), with scales consistent with the prediction of linear stability theory
(Jiménez et al. 2001) and experimental observations (Manes et al. 2011; Kim et al. 2020).
These observations are confirmed by the correlation profiles in figure 7(a2–f 2), which is
defined as

RXY(�t) = 〈X(t)Y(t + �t)〉
σXσY

, (3.7)

where X and Y are time series, 〈·〉 denotes ensemble average and σ is the standard
deviation of the variable. In the current section, we are concerned with the solid lines
in figure 7(a2–f 2), where X and Y are ac

1 and ap
1 at the same pore units, respectively. For

increasing porosity, the magnitude of the correlation peak increases from 0.58 (ϕ = 0.4)
to 0.78 (ϕ = 0.9). The increase of temporal scale is reflected in the width of the main
peak. Moreover, there are no strong negative peaks for low-porosity cases (ϕ = 0.4, 0.5).
In contrast, strong negative peaks emerge on the correlation profiles from ϕ = 0.6 with an
interval of �tUb/H ≈ 6–8, corresponding to the large-scale fluctuations observed in the
time series. The latter suggests again that KH eddies begin to dominate channel flow for
ϕ = 0.6.

The correlation profile of time coefficients provides further support for the existence
of active interaction between surface and subsurface flow for different porosities.
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However, similar to the LCS, it only reveals the extent of mutual influence and there is
no discrimination about the cause-and-effect relation.

3.4.3. Transfer entropy between surface and subsurface flow
We assess the causal interactions between the coherent structure in the channel region
and porous medium by evaluating the transfer entropy between ac

1 and ap
1, i.e. T̃ ac

1→ap
1

and T̃ ap
1→ac

1
. Hereafter, for the sake of brevity, we will refer to the coupling effect from

the channel flow to the porous medium as ‘top-down’ coupling, or generally T̃ c→p.
Correspondingly, the coupling effect from the porous medium to the channel flow will
be referred to as ‘bottom-up’ coupling, or T̃ p→c.

The contours of normalized transfer entropy of the time coefficients are shown in
figures 8 and 9 as a function of time delay �t (i.e. the time horizon for causality as shown
in (3.3)). The information transfer between different pore units is also inspected, with l
the streamwise offset of target time coefficient X = ac

1,l(t) (or ap
1,l(t)) from Y = ap

1(t) (or
ac

1(t)). For example, l/D = 2 denotes a target signal X acquired two pore units downstream
of the location of Y . We take into account all 50 pore units in the streamwise direction
and 12 spanwise positions, which amounts to a number of samples equal to O(106) for
each case. An adaptive binning method (Darbellay & Vajda 1999) is used to estimate the
probability density function in (3.3), with the bin number equal to 50 in each dimension
according to the empirical recommendation of Hacine-Gharbi et al. (2012). It was tested
that varying the number of bins by ±50 % did not alter the conclusions presented here.
Detailed convergence assessment of the numerical computation of transfer entropy is
documented in the Appendix.

The strongest values of T̃ are organized along the two ridges in the space of (l, �t)
indicated by solid and dashed lines in figures 8 and 9. These ridges mark the time delay
and spatial offset at which information transfer between the two signals is the maximum.
When X and Y are within the same pore unit (l = 0), the time lag to reach the maximum
T̃ ac

1→ap
1

and T̃ ap
1→ac

1
can be interpreted as the time elapsed in the porous medium to be

influenced by the free flow, or vice versa. For increasing l, the time delay for the maximum
transfer entropy increases linearly with l along the upper ridge (solid lines) with a slope
of l/�t ≈ 0.4Ub − 0.6Ub. The linear increase of the time delay �t with streamwise
distance l is mainly attributed to the convection of the flow structures in the channel.
As shown in figure 7(a2–f 2), the correlation profiles between two adjacent pore units in
the channel Rac

1ac
1,l/D=1

(dashed lines) peak at �tUb/H = 0.25–0.30, which is equivalent
to a convection speed of (0.67–0.8)Ub for the fluctuation of the time coefficient ac

1. This
is roughly the same as the slope of the first ridge, and the discrepancy between the two
values could be attributed to the scale dependence of the transfer entropy, which will be
further discussed in next section.

For l/D ≥ 1, a second ridge appears in figures 8 and 9 (dashed lines). The emergence
of the second ridge could be attributed to the linkage of adjacent pore units. As
shown in figure 3, local upwelling/downwelling events are usually accompanied by a
downwelling/upwelling event at adjacent pore units, owing to the continuity constraint.
This leads to a general phase shift between the fluctuations in adjacent pore units and also
a strong coupling effect between them. Such a coupling of adjacent pore units makes it
possible for the upstream subsurface fluctuations to affect downstream free flow indirectly,
which is reflected on the second ridge. This is supported by the correlation profiles of
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Figure 8. Transfer entropy of POD time coefficients ac
1 → ap

1. Panels (a–f ) represent cases C04–C09,
respectively. Solid and dashed lines are used to mark the upper and lower ridges on the contours, respectively.
The coloured contours are normalized with their respective maximum.

Rap
1ap

1,l/D=1
in figure 7(a2–f 2). The profiles of Rap

1ap
1,l/D=1

(dotted lines) also exhibit peaks,

whose magnitudes increase from 0.65 to 0.9 for porosity ϕ = 0.4–0.9. The time delays
of the peaks are generally larger than that of Rac

1ac
1,l/D=1

. This time lag reflects the phase

shift between ap
1 of adjacent pores. For low-porosity cases, such a phase shift can be mainly

attributed to the continuity constraint, as the convection velocity in the pore is close to zero.
For higher-porosity cases (ϕ ≥ 0.6), KH-type eddies start to dominate, and both channel
and porous media regions are populated by highly periodic large-scale fluctuations. The
coupling effect can thus be found between two far apart pores (l/D ≥ 5).

Figure 10 shows the variation of maximum T̃ between ac
1 and ap

1 at the same pore and
the corresponding time delay �t as a function of porosity ϕ. Note that the magnitude
of T̃ reflects the fraction of information in the target signal that can be explained by the
history of the source signal. For ϕ = 0.4–0.6, the magnitude of top-down transfer T̃

max
c→p is

lower than that of bottom-up transfer T̃
max
p→c. This outcome suggests that the flow inside a

pore is weakly dependent on the channel flow in low-porosity cases, while the channel
flow is subject to a higher influence from the perturbation of the pores. The scenario
changes for higher-porosity cases (ϕ = 0.7–0.9), where the normalized transfer entropy
of top-down coupling is stronger than in the other direction. The switch in the dominant
coupling direction occurs at ϕ = 0.6–0.7, corresponding to the transition from limited
permeable regime to highly permeable regime, as discussed in §§ 2 and 3.3.
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Figure 9. Transfer entropy of POD time coefficients ap
1 → ac

1. Panels (a–f ) represent cases C04–C09,
respectively. Solid and dashed lines are used to mark the upper and lower ridges on the contours, respectively.
The coloured contours are normalized with their respective maximum.
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Figure 10. (a) Maximum transfer entropy T̃
max

and (b) corresponding time delay �t as functions of porosity.
Solid lines with circles denote the direction from channel to porous medium, i.e. T̃

max
c→p, and dashed lines with

squares are from porous medium to channel, i.e. T̃
max
p→c.

For both coupling directions, the time delay �tmaxUb/H for maximum transfer entropy
increases with ϕ (figure 10b). Therefore, the increase of time delay indicates the growth of
large-scale motions in the channel and porous-medium regions, which was also evidenced
by the spectral density (figure 4).
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3.4.4. The dependence of causality on time scale
The fluctuations in the turbulent free flow consist of multiple time scales as illustrated
by the spectral density shown in figure 4. In this section, we investigate which of these
scales have the largest impact on the interactions between the surface and subsurface flows.
To address this point, a bandpass filter is applied to ac

1 to select modes in a certain
frequency range,

ǎc
1(t) =

∫ fc+0.5B

fc−0.5B
âc

1( f )e2πift df +
∫ −fc+0.5B

−fc−0.5B
âc

1( f )e2πift df , (3.8)

where ˇ(·) indicates a bandpass-filtered signal, ˆ(·) denotes the Fourier transformation in
time, fc is the central frequency of the filter band and B is the bandwidth. The bandwidth
is set to BD/Ub = 0.1, which provides a balance between localized frequencies and
statistical convergence of the results. The normalized transfer entropy as defined in (3.5)
is then evaluated between ac

1 and ap
1. Note that only the time coefficients from the channel

region ǎc
1 are bandpass-filtered. As shown by the spectral density in figure 4, there is a

clear cutoff for switching scales across the interface for the TKE spectra. The isolines
in the channel region have larger spacing, consisting of a wider spectrum of structures
from hundreds of wall units to tens of channel widths. In contrast, isolines inside the
porous medium, especially Φvv , have much smaller spacing and are mainly concentrated
at lower frequencies (Ub/(Hf ) ≥ 2). Therefore, it is not necessary to filter the signals in
the porous region. This setting also allows us to account for inter-scale coupling, where
the interacting fluctuations in the two regions are of different scales. An example is the
upwelling/downwelling motions illustrated in figure 3, where a short ejection of fluid into
the channel could grow eventually into a large-scale structure.

The transfer entropies of top-down and bottom-up coupling are shown in figures 11
and 12 (coloured contours), respectively. The asymmetry of the interaction is again
clearly illustrated by the different scale dependence of the two coupling directions. For
low-porosity cases (C04 and C05), the top-down information transfer T̃ ǎc

1→ap
1

is mainly
carried out by modes within the range Ub/( fcH) ≈ 0.5–2 (figure 11a), which translates
into a streamwise wavelength of λx ≈ 0.8Ubup

τ /( fcν) ≈ 230–920 in wall units using
Taylor’s hypothesis. Note that the convection speed here is selected to be 0.8Ub, which
is the convection speed of ac

1 evaluated in § 3.4. This streamwise length scale is close to
that of the near-wall streamwise vortices and streaks, suggesting that near-wall structures
have a considerable impact on the momentum transport inside the porous medium.
Bottom-up transfer T̃ ap

1→ǎc
1

for cases C04 and C05 (figure 12a,b) also exhibits a patch
at the ‘small-scale’ range, corresponding to the ‘feedback’ of porous-medium flow to
the near-wall structures. Additionally, there is another significant peak at low-frequency
modes Ub/( fcH) ≈ 3–6. This length is consistent with the range of scale of KH eddies,
and could be explained by the evolution of ejected fluid in the channel (figure 3), where
a small perturbation at the interface may eventually generate large-scale structures. The
observations above also explain the LCSs for cases C04 and C05 (figure 4a2,b2), where
the coherence peaks at Ub/( fcH) ≈ 0.5–1 below the interface, and mainly at large scales in
the channel. The LCS and transfer entropy identified similar structures that are involved in
the coupling process, but their role in different coupling directions can only be confirmed
by the information-theoretic tool.

As the wall permeability increases (C06–C09), the coloured contour of T̃ ǎc
1→ap

1
(figure 11) is notably different from the cases with low porosity. The most significant
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Figure 11. Dependence of transfer entropy on time scale in the direction from channel flow to porous medium.
Coloured contour, T̃ ǎc

1→ap
1
; isolines, T̃ ǔc→Mp . Panels (a–f ) represent cases C04–C09, respectively. All the

contours and isolines are normalized with their respective maximum. The levels of isolines are from 0.2 to 0.8
with a step of 0.2.

change is the additional peak located at large scales Ub/( fcH) ≥ 5 along with the original
peak for near-wall structures. The scale for near-wall eddies also grows. For bottom-up
coupling T̃ ǎp

1→ac
1
, the subsurface fluctuations have an impact exclusively on the large-scale

modes (Ub/( fcH) ≥ 5) in the channel. As discussed in § 3.4.2, the KH eddies with time
scale �tUb/H ≈ 6–8 start to dominate the channel region for ϕ ≥ 0.6 (

√
Kxx

p+ ≥ 9.34,√
Kzz

p+ ≥ 15.23), consistent with the active large-scale modes in figure 12(c–f ). This
scale is also consistent with the estimation of the characteristic frequency of shear
instability proposed by Ghisalberti & Nepf (2002), which is Ub/( fKHH) ≈ 5–8 for cases
C06–C09. These observations suggest that the near-wall turbulence in high-porosity cases
C06–C09 is dominated by large-scale shear instability modes, which give rise to strong
surface–subsurface interactions. In all the above scenarios, the subsurface flow always has
an impact on large-scale modes in the channel, which are associated with KH instability.
This suggests that the fluctuations inside the porous medium act as a source of perturbation
for the onset of KH eddies.

The POD time coefficients of the first modes ac
1 and ap

1 used in the analysis above may
lack information on very high-frequency fluctuations. For completeness, we assess the
influence on the results of using signals with additional temporal spectral content. For the
free-flow region, we define the instantaneous turbulent fluctuation uc = u′(xg, ypeak, zg, t)
from the peak of 〈q̄〉( y) (y+

peak ≈ 15) above the gap centre (xg, yg, zg). The instantaneous
vertical mass flux across cylinder gaps Mp(t) = ∫

gap v′(x, t) dx is used to represent
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Figure 12. Dependence of transfer entropy on time scale in the direction from porous medium to channel
flow. Coloured contour, T̃ ǎp

1→ac
1
; isolines, T̃ Mp→ǔc . Panels (a–f ) represent cases C04–C09, respectively. All

the contours and isolines are normalized with their respective maximum. The levels of isolines are from 0.2 to
0.8 with a step of 0.2.

the temporal fluctuation in the porous region caused by upwelling/downwelling events.
The transfer entropy between bandpass-filtered ǔc and Mp, T ǔc→Mp and T Mp→ǔc , is then
calculated following the same procedure as above, and the results are superimposed in
figures 11 and 12 as solid isolines. For all the cases evaluated, the results for the two sets
of signals are very similar, with a small phase shift for very high-porosity cases (C08 and
C09), which proves that the current result is robust against different choices of time series.

The results of the current section have revealed the asymmetric nature in the coupling
of free flow and porous medium in terms of both scale and strength of their interaction.
This new insight about the asymmetry of interactions in permeable walls was challenging
to infer from correlation analysis, while here we have been able to discuss separately the
top-down and bottom-up coupling with the aid of cause-and-effect analysis. In addition,
we have introduced LCSs in § 3.3 to analyse the coherence between vertical interfacial
fluctuations and surface–subsurface flow scale by scale, and the outcome is consistent
with the results based on transfer entropy.

4. Concluding remarks

We have investigated the causal interactions between the turbulent flow over porous media
and the subsurface flow using information-theoretic tools. The data were obtained by
interface-resolved DNS, and transfer entropy was employed to quantify the causality
between time signals representative of the flow structures. A collection of time series
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of POD coefficients and instantaneous velocity/momentum flux signals have been used
to characterize the dynamics of energy-containing eddies in the free flow and in the
subsurface flow region. We have focused on two effects: (i) the bottom-up and top-down
directionality of the interactions across the surface–subsurface interface and (ii) the impact
of the porosity of the medium on the nature of these interactions.

Our results show that the porosity of current porous media has a profound impact on the
intensity, time scale and streamwise extent of surface–subsurface interactions. For values

of porosity equal to 0.4 and 0.5, which correspond to a permeability of
√

K
p+ ∼ O(1),

there is a clear asymmetry between top-down and bottom-up interactions. The former
is dominated by the influence of near-wall attached eddies (e.g. streamwise vortices and
streaks) on the subsurface flow, whereas the latter is mostly the disruption of free-flow
large-scale structures by upwelling/downwelling events. This is partly supported by the
LCSs, which measure the scale-dependent coherence between fluctuations in both regions
and vertical momentum flux at the interface. The LCS analysis shows that there is a
coherence peak below the interface at the scale of near-wall vortices and streaks for
low-porosity cases. Above the interface, the fluctuations in the channel are correlated with
momentum flux mainly for large scales.

As the porosity increases above ϕ = 0.6, the flow enters the so-called highly permeable
regime

√
K

p+ 
 1, where KH-type eddies prevail in both channel and porous-medium
regions. For highly permeable cases, the bottom-up interactions remain dominated by
the KH-type eddies; however, the flow structures responsible for top-down interactions
change from near-wall attached eddies to large-scale shear-instability eddies, leading to an
increase in the temporal and spatial extent of causal interactions. This suggests that the
perturbation induced by the vertical momentum flux across the interface is an important
source of shear instabilities for flows over porous beds. This observation is supported by
the LCS and correlation analysis, which also reveals the profound influence of KH-type
eddies in the coupling of the two regions.

The present results reveal that the coupling asymmetry of scale dependence with

interfacial permeability is
√

K
p+ ∼ O(1), which is the case for a natural sediment–water

interface, such as river flows over sand beds. However, this is only constrained to the
current geometry of porous media, i.e. aligned cylinder array. Future work is needed
to confirm whether the present conclusions are applicable to other porous media. For
example, Kim et al. (2020) found that there is a significant difference between rough and
smooth permeable interfaces in terms of the strength of penetration into the permeable
bed modulated by large-scale structures in the surface flow. Recent studies have also
revealed that streamwise preferential porous media might promote drag reduction (Rosti
et al. 2018; Abderrahaman-Elena & García-Mayoral 2017). These studies hinted that bed
roughness and permeability ratio could also be factors influencing the coupling dynamics,
and deserved to be studied in the future.
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Figure 13. Convergence test with case C09. Panels (a1–a3) are for T̃ c→p, and panels (b1–b3) are for T̃ p→c,
which is evaluated with POD time coefficients. (a1,b1) Dependence of T̃ (�t) on ensemble size. The profiles
are evaluated separately with a quarter (solid line), a half (dashed line) and the totality (dotted line) of the entire
ensemble. (a2,b2) Dependence on the choice of bin number. The markers represent bin number 25 (solid line),
50 (dashed line) and 75 (dotted line) on each dimension. (a3,b3) Dependence on the temporal resolution of the
time series. The markers represent that the time step is n = 4 (solid line), n = 2 (dashed line) and n = 1 (dotted
line) times that used in § 3, i.e. �T/(H/Ub) ≈ 0.02.

Appendix. Convergence assessment of the numerical computation of transfer
entropy

To provide a visual impression of the statistical convergence of the causal maps in § 3.4,
we display in figure 13(a1,b1) the profiles of T̃ ap

1→ac
1,l/D=0

(�t) and T̃ ac
1→ap

1,l/D=0
(�t) (case

C09) (the same as figure 8f and figure 9f at l/D = 0) using the total, a half and a quarter
of the original samples. The ensemble is reduced by shortening the time signals by a half
or three-quarters. The results indicate that variations of the most intense transfer entropy
are below 15 %. More importantly, the result of the half-size ensemble (dashed lines) is
almost the same as that of the whole ensemble (dotted lines), suggesting that the current
sampling number is enough for a converged evaluation of the transfer entropy.

In the current study, we follow a direct method to compute probability densities by
discretizing the continuous-valued signals in bins. The binning is performed by adaptive
partitioning (Darbellay & Vajda 1999), with the number of bins in each dimension
equal to 50 according to the empirical recommendation of Hacine-Gharbi et al. (2012).
Figure 13(a2,b2) compares the current result of C09 with those using bin numbers 25 and
75. The variation of transfer entropy at the peak is below 15 %, and the time delays of the
peaks are the same. Therefore, changing the number of bins does not alter the conclusions
presented here.

The time step of the sampling series is �T/(H/Ub) ≈ 0.02, which is enough to resolve
the temporal fluctuations in both the channel and porous-medium regions for all the cases
(see the spectral density in figure 4). To evaluate the influence of temporal resolution, the
time coefficients are downsampled to a coarser resolution, i.e. with a time step of 2�T
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and 4�T . Note that using a larger time step could also bring changes to the denominator
of the normalized transfer entropy defined in (3.5), since the denominator represents the
information about a signal’s future state that is independent of its past state. It is usually the
case that, when the time step between these two states increases, the stored information in
the past state decreases, since they are less related because of the larger temporal interval.
Therefore, a larger time step corresponds to a larger denominator for normalized transfer
entropy. This could explain the smaller magnitude of the peak for T̃ c→p with a time
resolution of 4�T in figure 13(a3) (solid line). However, the time lag for the peak of
the case with the poorest resolution is still the same as for the other two profiles with finer
time steps (figure 13a3, dashed line and dotted line). For T̃ p→c, all the profiles collapse
well onto each other. Generally, the peaks and shapes of the transfer entropy profiles are
preserved despite the change of temporal resolution, so the variation of time step in the
tested range will not bias the current conclusion.
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