Structure Of Outer Regions Of Accretion Disks In Agn
 Non irradiated, vertically averaged accretion disks
 Jean Marc HURÉ, Suzy COLLIN \& Guillaume PINEAU DES FORÊTS
 DAEC et URA 173 du CNRS
 Observatoire de Paris-Meudon - Place Jules Janssen - 92195 Meudon Principal

DESCRIPTION OF THE MODEL
Radial structure of outer regions of α-disks (Shakura \& Sunyaev 1973) is investigated in a more sophisticated way than in Collin-Souffrin \& Dumont (1990). The vertically averaged equations for the disk structure hold but some of them are reconsidered : the equation of state (atoms, ions and molecules) with a the rigourous treatment of opacities is introduced. The radiative flux is treated as in Hubeny (1990), and finally a rigourous treatment of the self-gravitaty is included.

We have studied the influence of (M, \dot{M}, α) on the global structure, the influence of self-gravity, and the effect of neglecting some opacity sources. Here are the results for the temperature T and the half-thickness H for a "canonical" model (appliable to NGC 5548 for instance) : $\mathrm{M}=51()^{7} \mathrm{M}_{\odot}, \mathrm{L}=1 / 30 \mathrm{~L}_{\mathrm{Edd}}\left(\approx() .04 \mathrm{M}_{\odot} / \mathrm{yr}\right)$ and $\alpha=1$.

MAIN CONCLUSIONS
Hydrostatic equilibrium cannot be maintained if the gas is too cool to support its own gravity $\left(\Rightarrow T /\left.\mu\right|_{\text {min. }} \approx \mathrm{m}_{\mathrm{H}} / \mathrm{k}(2 \mathrm{GM} / 3 \alpha)^{2 / 3}\right.$). The " $\mathrm{t}_{\mathrm{r}, \phi}=\alpha \mathrm{P}$ " formalism is not consistent with the equations that include self-gravity. Finally, the opacity is dominated by atomic boundfree and molecular absorption.

Preliminary results on irradiated disks show that the self-graviting dominated region is pushed further away, at $R \approx 1()^{4} \mathrm{R}_{\mathrm{S}}$.

REFERENCES

Collin-Souffrin S. \& Dumont A.M., 1990, Astro. \& Astrophys., 229, 292
Hubeny I., 199(), Ap. J., 351, 632
Shakura N.I. \& Sunyaev R.A., 1973, Astro. \& Astrophys., 24, 337
483
T. J.-L. Courvoisier and A. Blecha: Multi-Wavelength Continuum Emission of AGN, 483.
© 1994 IAU. Printed in the Netherlands.

