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EXIT PROBLEMS FOR SPECTRALLY
NEGATIVE LÉVY PROCESSES REFLECTED
AT EITHER THE SUPREMUM OR THE INFIMUM

XIAOWEN ZHOU,∗ Concordia University

Abstract

For a spectrally negative Lévy processX on the real line, letS denote its supremum process
and let I denote its infimum process. For a > 0, let τ(a) and κ(a) denote the times when
the reflected processes Ŷ := S − X and Y := X − I first exit level a, respectively; let
τ−(a) and κ−(a) denote the times whenX first reaches Sτ(a) and Iκ(a), respectively. The
main results of this paper concern the distributions of (τ (a), Sτ(a), τ−(a), Ŷτ (a)) and of
(κ(a), Iκ(a), κ−(a)). They generalize some recent results on spectrally negative Lévy
processes. Our approach relies on results concerning the solution to the two-sided exit
problem forX. Such an approach is also adapted to study the excursions for the reflected
processes. More explicit expressions are obtained when X is either a Brownian motion
with drift or a completely asymmetric stable process.
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exit problem; excursion; risk model; ruin time
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1. Introduction and preliminaries

Let X be an R-valued spectrally negative Lévy process, i.e. a Lévy process with no positive
jumps. Write Px for the probability law of X when X0 = x. Write P := P0. Then there exists
a σ -finite Lévy measure � on (−∞, 0) such that

∫ 0

−∞
1 ∧ x2�(dx) < ∞ (1.1)

and
E[exp(λXt )] = etψ(λ), λ ≥ 0,

where the Laplace exponent ψ is of the form

ψ(λ) = mλ+ σ 2λ2

2
+

∫ 0

−∞
(eλx − 1 − λx 1{x>−1})�(dx).

We always assume that neither X nor −X is a subordinator.
Set

St := sup
0≤s≤t

Xs ∨ 0 and It := inf
0≤s≤t Xs ∧ 0
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Exit problems for spectrally negative Lévy processes 1013

for the supremum process and the infimum process of X, respectively. Then Ŷ := S − X

is the process reflected at the supremum, and Y := X − I is the process reflected at the
infimum. Both Y and Ŷ are known to be Feller processes, and S is known to be a local time
at 0 for Ŷ . We refer the reader to [3, Chapters VI and VII], [6], [8, Chapters 4 and 9], and
[13, Chapter 8] for introductions on the reflected Lévy processes.

Reflected Lévy processes arise naturally in storage and queueing theory. They are used to
define the dam-content process for a dam and the virtual waiting-time process for an M/G/1
queue; see [6] for some results and references. A two-sided reflected Brownian motion is used
in [11] to model the inventory process in a stochastic flow system. A reflected Lévy process can
also be used to describe the heavy-traffic limit of the queue-content process in a first-in-first-out
queue with a finite capacity; see [24] for a detailed review.

Reflected Lévy processes find extensive applications in risk theory for insurance, where the
surplus process is often defined via a Lévy process with no positive jumps, and the reflected
process describes a model with a constant dividend barrier. We refer the reader to [9] for
discussions and the literature therein. See [1] for an application of the reflected Lévy process
in mathematical finance.

Reflected spectrally positive Lévy processes are also used in [16] to study the genealogical
structure of a continuous-state branching process which undergoes Lévy branching. They are
used to define the height processes for the Lévy trees.

Other earlier works on reflected Lévy processes can be found in [2], [10], and [22].
For a > 0, let

τ(a) := inf{t ≥ 0 : Ŷt ≥ a},
τ−(a) := sup{t ≥ 0 : t ≤ τ(a), Ŷt = 0},

κ(a) := inf{t ≥ 0 : Yt ≥ a},

and

κ−(a) := sup{t ≥ 0 : t ≤ κ(a), Yt = 0},
with the conventions inf ∅ = ∞ and sup ∅ = 0.

The joint distribution of (τ (a), Sτ(a), Ŷτ (a)) is of interest in both queuing theory and the
risk models for insurance; see [9] and [25], and the literature therein for more details. More
specifically, in the risk model with a dividend barrier, τ(a) is related to the ruin time, Sτ(a) is
related to the total amount of dividend payments until ruin, τ−(a) is related to the last time
when dividend is paid before ruin, and Ŷτ (a)−a is related to the severity of ruin. To the author’s
knowledge such a distribution (in terms of its Laplace transform) was first obtained in [23] for
a Brownian motion with drift. We also refer the reader to [21, Exercise VI.4.9] and [25], where
the Laplace transform is recovered by Itô’s formula and the optimal stopping theorem applied
to a cleverly chosen martingale defined via Ŷ and S.

In recent years there has been renewed interest in the study of reflected spectrally negative
Lévy processes; see [1], [7], [12], [14], [17], [18], [19], and [20]. In all these papers the exit
problems are considered for the reflected processes. We are going to elaborate these works
further in the following.

When X is a spectrally negative Lévy process, the exit problem for Ŷ is considered and the
joint Laplace transform for (τ (a), Ŷτ(a)) is obtained in [1], where Itô-excursion theory is used
in the proof. This result is extended in [19] to one concerning (τ (a), Sτ(a), Ŷτ (a)−,�Xτ(a)).
Similar problems are also discussed in [17] by introducing Ŷ -related martingales. The Laplace
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transform for κ(a) is obtained in [18], where a martingale argument is employed. More
computations on the reflected processes using the excursion theory can be found in [7]. The
distribution for

∫ τ(a)
0 e−δt dSt , which can be interpreted in risk models as the present value of the

total amount of dividends before ruin, is studied in both [14] and [20] using different approaches.
For strictly stable processes X with possibly two-sided jumps, an explicit expression for the
distribution of Ŷτ (a) can be found in [12].

In this paper we continue to implement the fluctuation theory for Lévy processes to study
the abovementioned joint distribution. A key observation is that the exit problem for the
reflected process is, at its heart, a two-sided exit problem for the underlying Lévy process.
More precisely, by first considering the exit time of process X from the interval (−a, ε) and
then letting ε → 0+, in Theorem 4.1 we recover the multidimensional Laplace transform for
(τ (a), Sτ(a), τ−(a), Ŷτ(a)). To this end, the solution to the so-called two-sided exit problem
in [5], which we will introduce in Section 2, plays a key role in this work. Similarly, by
considering how process X exits the interval (−ε, a) we also obtain a Laplace transform for
(κ(a), Iκ(a), κ−(a)) in Theorem 5.1. Our approach is a direct application of the solution to
the two-sided exit problem together with the strong Markov property. Therefore, it has the
advantage of being self contained. In the other literature, martingale methods, the Wiener–
Hopf factorization, or Itô’s excursion theory are often exploited.

We remark that our approach has the spirit of Chaumont and Doney’s characterization of
the excursion measure via the limit of the probability law of the killed Lévy process normed
by the renewal function for the appropriate ladder height process; see [8, Proposition 17]. It is
certainly evident that most of the results in this paper can also be recovered via Itô’s excursion
theory.

For x ≥ 0, write

L−1(x) := inf{t ≥ 0 : St > x} = inf{t ≥ 0 : Xt > x}.
The process L−1 is the so-called inverse local time or the ladder height time of Ŷ . In Section 4
the same idea as that used in the proof of Theorem 4.1 leads to the defective distribution of
L−1(x) when it is restricted to [0, τ (a)). The approach in this paper is further exploited in
Section 4 to find the joint distribution on the starting time, the height, and the duration of the
first excursion for Ŷ with height at least a.

As examples, the Brownian motion with drift and the completely asymmetric stable process
are studied in detail in Section 5. Some explicit expressions are obtained.

Throughout this paper, our basic data are the Lévy measure � and the scale function W(q),
which will be defined in Section 2.

2. The two-sided exit problem for spectrally negative Lévy processes

For a, b > 0, throughout this section, we will always write

T := inf{t ≥ 0 : Xt �∈ (−a, b)}.
The fluctuation theory for Lévy processes concerns the joint distribution of T and XT ; see [6]
for a review of earlier work. We refer the reader to [5], [8, Chapter 9], and [13, Chapter 8] for
a more recent and comprehensive coverage.

In the following we collect some results that we will need later in the paper.
The Laplace exponent ψ(x) is strictly convex for x ≥ 0. Moreover, ψ(0) = 0 and

limx→∞ ψ(x) = ∞. Then, for λ > 0, the equation ψ(x) = λ has exactly one positive
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solution. In the sequel we denote the unique positive solution by 
(λ), i.e. ψ(
(λ)) = λ. Set

(0) := limλ→0+
(λ).

For the so-called one-sided exit problem with a = ∞, it is known that [6, Theorem VII.1]

E[e−qT ] = E[exp(−qL−1(b))] = e−b
(q), q > 0. (2.1)

A solution to the two-sided exit problem, where a �= ∞ and b �= ∞, can be found in [5].
More precisely, in [5] it was pointed out that

E[e−qT 1{XT=b}] = W(q)(a)

W(q)(a + b)
(2.2)

and ([5, Corollary 1], note that the two qs should appear in its original statement)

E[e−qT ] = Ŵ (q)(a, b)

:= 1 + qW̄ (q)(a)− qW(q)(a)W̄ (q)(a + b)

W(q)(a + b)
,

(2.3)

where the (generalized) scale function W(q) is a continuous function over [0,∞) which is
determined by its Laplace transform

∫ ∞

0
e−λxW(q)(x) dx = 1

ψ(λ)− q
, λ > 
(q), (2.4)

and

W̄ (q)(x) :=
∫ x

0
W(q)(r) dr, x ≥ 0.

We always write W for W(0). By Equation (9) of [5] we have

W(q)(x) =
∞∑
k=1

qk−1W ∗k(x), (2.5)

where ‘∗’ stands for the convolution operator.
By Theorem 1 and Corollary 2 of [5], for z < −a, we have

E[e−qT 1{XT ∈dz}] =
∫ b

−a
dyW̃ (q)(a, b, y)�(−y + dz), (2.6)

where

W̃ (q)(a, b, y) := W(q)(a)W(q)(b − y)

W(q)(a + b)
−W(q)(−y) 1{y≤0} .

Therefore,

E[e−qT 1{XT=−a}]
= E[e−qT ] − E[e−qT 1{XT=b}] −

∫ −a−

−∞
E[e−qT 1{XT ∈ dz}]

= Ŵ (q)(a, b)− W(q)(a)

W(q)(a + b)
−

∫ b

−a
dyW̃ (q)(a, b, y)�((−∞,−y − a)). (2.7)
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In the following we collect some known properties of W(q). It is clear, from (2.2), that
the scale function W(q)(x) is strictly increasing for x > 0 and for q > 0, W(q)(x) → ∞ as
x → ∞. We have W(q)(0) = 0 if and only if the paths of X are of unbounded variation, and
also if and only if 0 is regular for (−∞, 0) for X [3, Corollary VII.5]. It follows, from (2.5),
that

lim
x→0+

W(q)(x)

W(x)
= 1; (2.8)

see [7, Lemma 1].
If the paths ofX are of unbounded variation thenW(q)′(x), the derivative ofW(q)(x), exists

and is continuous for all x > 0. If the paths of X are of bounded variation then both W(q)′
+ (x)

and W(q)′
− (x), the right derivative and the left derivative of W(q)(x), respectively, exist and

agree except for the set

D := {x > 0 : � has a positive mass at − x};
see [7, Lemma 1]. Furthermore,

W ′+(0) := lim
x→0+

W(x)−W(0)

x
(2.9)

is either a positive constant or +∞ [18, Lemma 4]. Therefore, whenever W(q)(0) = 0,
combining (2.8) and (2.9) we have W(0) = 0 and

W ′+(0) = lim
x→0+

W(q)(x)

x
. (2.10)

We remark that W ′+(0) is finite if and only if either X has a nontrivial Brownian component,
or the Lévy measure � has a finite total mass. Therefore, W(0) = 0 and W ′+(0) < ∞ if and
only if X has a nontrivial Brownian component, and in this caseW ′+(0) = 2/σ 2; see the proof
of Lemma 4 of [18]. Integrating by parts on its Laplace transform we can also show that

lim
x→0+ xW

(q)′(x) = 0.

The scale functionW(q) is related to the excursion measure. Write E (a) for the set of generic
excursions with height at least a. Write n̂, defined on

⋃
a>0 E (a), for the excursion measure

of Ŷ . By Theorem VII.8 of [3] we have

n̂(E (a)) = W ′(a)
W(a)

. (2.11)

More relationships like this can be found in [7].
Throughout this paper, we assume that either the paths of X are of unbounded variation or

that the Lévy measure� for X is absolutely continuous with respect to the Lebesgue measure.
As a result, W(q) is continuously differentiable over the interval (0,∞).

3. The conditional exit problem

In this section we introduce several preliminary results concerning the exit problem for
the spectrally negative Lévy process conditioning on exiting from below. They will settle a
technical issue arising from the proofs in Section 4 and Section 5.
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For any a, b ≥ 0, set

T (−a, b) := inf{t ≥ 0 : Xt �∈ (−a, b)}.
Given ε > 0 and a > 0, let Xε(·) := X(· ∧ Tε) denote the process obtained by stopping X at
time Tε := T (−a, ε). Let (F ε

t ) denote the filtration generated by process Xε.
For x ∈ (−∞, ε), let Pxε denote the probability law for Xε starting at x and conditioning

on the event such that {Xε(Tε) = X(Tε) ≤ −a}, i.e. for any x ∈ (−a, ε) and any A ∈ F ε
t ,

by (2.2) and the Markov property, we define

Pxε (A) := Px{A | X(Tε) ≤ −a}
= W(a + ε)

W(a + ε)−W(a + x)
Ex

[((
1 − W(a +Xt)

W(a + ε)

)
1{t<Tε} + 1{t≥Tε,X(Tε)≤−a}

)
1A

]

and, for any x ∈ (−∞,−a], we define

Pxε {Xε(t) = x for all t ≥ 0} = 1.

Set Pε := P0
ε . Then (Pxε , x < ε) is the probability law of Xε conditional on the event that Xε

exits the interval (−a, ε) at −a. Note that Xε is a Markov process under (Pxε , x < ε). See
[3, Section VII.3] and [15] for similar conditional Lévy processes.

The following lemma concerns the exit problem for the conditional process.

Lemma 3.1. Given c and d such that −a ≤ c < x < d < ε, we have

Pxε {Xε(T (c, d)) = d} = (W(a + ε)−W(a + d))W(x − c)

(W(a + ε)−W(a + x))W(d − c)
(3.1)

and

Exε [e−qT (c,ε)]
= 1 − q

∫ ε

c

dy
W(a + ε)−W(a + y)

W(a + ε)−W(a + x)

×
(
W(q)(x − c)W(q)(ε − y)

W(q)(ε − c)
−W(q)(x − y) 1{y≤x}

)
. (3.2)

Proof. Equation (3.1) just follows from the definition of Pxε and (2.2).
Observe that on the one hand we have

Exε

[∫ T (c,ε)

0
dte−qt

]

=
∫ ∞

0
dte−qt Pxε {t < T (c, ε)}

=
∫ ∞

0
dte−qt

∫ ε

b

W(a + ε)−W(a + y)

W(a + ε)−W(a + x)
Px{Xt ∈ dy, t < T (c, ε)}

=
∫ ε

c

dy
W(a + ε)−W(a + y)

W(a + ε)−W(a + x)

(
W(q)(x − c)W(q)(ε − y)

W(q)(ε − c)
−W(q)(x − y) 1{y≤x}

)
,

(3.3)
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where we need Theorem 1 of [5] for the last equality, and on the other hand we have

Exε

[∫ T (c,ε)

0
dte−qt

]
= 1

q
(1 − Exε [e−qT (c,ε)]). (3.4)

Then the Laplace transform, (3.2), readily follows from (3.3) and (3.4).

Remark 3.1. By Lemma 3.1 we can verify the following facts:

lim
ε→0+ Pxε {Xε(T (−a, 0)) ≤ −a} = 1 for all x ∈ (−a, 0) (3.5)

and
lim
c→0− lim

ε→0+ Eε[e−qT (c,ε) 1{Xε(T (c,ε))≤c}] = 1. (3.6)

Moreover, (3.5) holds uniformly for x bounded away from 0.
Set

ςε := sup{t < T (−a, ε) : X(t) ≥ 0} = sup{t < T (−a, ε) : Xε(t) ≥ 0},
with the convention sup ∅ := ∞. Then, for any c ∈ (−a, 0), we see that ςε ≤ T (c, ε) on the
event

{Xε(T (c, ε)) ≤ c, Xε ◦ θT (c,ε)(T (−a, 0)) ≤ −a},
where θt stands for the shift operator, i.e. Xs ◦ θt = Xt+s . Consequently, we find that

Eε[exp(−qςε)] ≥ Eε[e−qT (c,ε) 1{Xε(T (c,ε))=c}] Pcε{Xε(T (−a, 0)) ≤ −a}
+

∫ c−

−∞
Eε[e−qT (c,ε) 1{Xε(T (c,ε))∈dx}] Pxε {Xε(T (−a, 0)) ≤ −a}. (3.7)

We can first let ε → 0+ in (3.7) and then let c → 0+ in (3.7). Now it follows, from (3.5) and
(3.6), that

lim
ε→0+ E[exp(−qςε) | X(T (−a, ε)) ≤ −a] = lim

ε→0+ Eε[exp(−qςε)] = 1. (3.8)

Remark 3.2. We can also show that (3.8) holds if T (−a, ε) is replaced by T (ε− a, ε), and ςε
is replaced by

ς ′
ε := sup{t < T (ε − a, ε) : X(t) ≥ 0}. (3.9)

Remark 3.3. Similarly, for b > 0 and ς ′′
ε := sup{t < T (−ε, b) : X(t) ≤ 0}, we can show that

lim
ε→0+ E[exp(−qς ′′

ε ) | X(T (−ε, b)) = b] = 1.

4. Lévy processes reflected at the supremum

We are ready to introduce one of the main results in the paper. For r ≤ 0, write �̄(r) :=
�((−∞, r]). For z ≥ a > 0, write

Hα(z) := W(α)(0)W(α)(a)�̄(−z)+W(α)(a)

∫ a

0
dyW(α)′(y)�̄(y − z)

−W(α)′(a)
∫ a

0
dyW(α)(y)�̄(y − z)
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and
Vα(a) := αW̄ (α)(a)W(α)′(a)− αW(α)(a)2 +W(α)′(a).

Note that Hα is continuous under the assumption given at the end of Section 2.
Recall from the definition in Section 1 that τ−(a) denotes the starting time (in the usual

time scale) of the first excursion (from 0) of Ŷ with height at least a. Observe that Xτ−(u) =
Sτ−(u) = Sτ(u).

Our next result concerns the joint distribution of (τ (a), Sτ(a), τ−(a), Ŷτ(a)). Note that when
Ŷ exceeds a certain level, it could either reach the level or overshoot it. We then consider the
two cases separately. It partially generalizes Theorem 1 and Theorem 2 of [19]. Our approach
is different from that in [19].

Theorem 4.1. For any z > a > 0 and any α, β, γ > 0, we have

E[exp(−ατ(a)−βSτ(a)−γ τ−(a)) 1{Ŷτ (a)≥z}] = W(α+γ )(a)Hα(z)
W(α)(a)(W(α+γ )′(a)+ βW(α+γ )(a))

(4.1)

and

E[exp(−ατ(a)− βSτ(a) − γ τ−(a)) 1{Ŷτ (a)=a}] = W(α+γ )(a)(Vα(a)−Hα(a))

W(α)(a)(W(α+γ )′(a)+ βW(α+γ )(a))
.

(4.2)

Proof. For z > a > ε > 0, set

� := E[exp(−ατ(a)− βSτ(a) − γ τ−(a)) 1{τ(a)<∞,Ŷτ (a)≥z}].

Recall that ς ′
ε is defined in (3.9). By distinguishing whether Sτ(a) ≥ ε or Sτ(a) < ε and applying

the strong Markov property, we readily see that, for small enough ε,

� ≤ E[exp(−(α + γ )T (−a, ε)− βε) 1{XT (−a,ε)=ε}]�
+ E[exp(−αT (−a, ε)) 1{XT (−a,ε)≤ε−z}] (4.3)

and

� ≥ E[exp(−(α + γ )T (ε − a, ε)− βε) 1{XT (ε−a,ε)=ε}]�
+ E[exp(−αT (ε − a, ε)− γ ς ′

ε − βε) 1{XT (ε−a,ε)≤−z}]. (4.4)

To simplify the expressions, we set λ = α + γ throughout the proof. Solving (4.3) and (4.4)
for �, we respectively find that

� ≤ E[e−αT (−a,ε) 1{XT (−a,ε)≤ε−z}]
1 − E[exp(−λT (−a, ε)− βε) 1{XT (−a,ε)=ε}]

and

� ≥ E[exp(−αT (ε − a, ε)− γ ς ′
ε − βε) 1{XT (ε−a,ε)≤−z}]

1 − E[exp(−λT (ε − a, ε)− βε) 1{XT (ε−a,ε)=ε}]
. (4.5)

We want to show that

lim
ε→0

E[e−αT (−a,ε) 1{XT (−a,ε)≤ε−z}]
1 − E[exp(−λT (−a, ε)− βε) 1{XT (−a,ε)=ε}]

= W(λ)(a)Hα(z)

W(α)(a)(W(λ)′(a)+ βW(λ)(a))
. (4.6)
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Firstly, by (2.2) we find that

lim
ε→0

1

ε
(1 − E[exp(−λT (−a, ε)− βε) 1{XT (−a,ε)=ε}])

= lim
ε→0

1

ε

(
1 − e−βεW(λ)(a)

W(λ)(a + ε)

)

= W(λ)′(a)
W(λ)(a)

+ β. (4.7)

Secondly, by (2.6) we have

lim
ε→0

1

ε
E[e−αT (−a,ε) 1{XT (−a,ε)≤ε−z}]

= lim
ε→0

1

ε

∫ ε

−a
dyW̃ (q)(a, ε, y)�̄(ε − y − z)

= W(α)(0)�̄(−z)+ lim
ε→0

1

ε

∫ a

0
dy

(
W(α)(a)W(α)(y + ε)

W(α)(a + ε)
−W(α)(y)

)
�̄(y + ε − z)

= W(α)(0)�̄(−z)+ lim
ε→0

1

ε

∫ a

0
dy(W(α)(y + ε)−W(α)(y))�̄(y + ε − z)

+ lim
ε→0

1

ε

∫ a

0
dy

(
W(α)(a)W(α)(y + ε)

W(α)(a + ε)
−W(α)(y + ε)

)
�̄(y + ε − z)

= W(α)(0)�̄(−z)+
∫ a

0
dyW(α)′(y)�̄(y − z)− W(α)′(a)

W(α)(a)

∫ a

0
dyW(α)(y)�̄(y − z)

= Hα(z)

W(α)(a)
. (4.8)

Then (4.6) follows readily.
Furthermore, we can show that (4.6) also holds if T (−a, ε) is replaced by T (ε − a, ε).

From (3.8), observe that

lim
ε→0

E[exp(−αT (ε − a, ε)− γ ς ′
ε) 1{XT (ε−a,ε)≤−z}]

E[exp(−αT (ε − a, ε)) 1{XT (ε−a,ε)≤−z}]
= lim
ε→0

E[exp(−αT (ε − a, ε)− γ ς ′
ε) | XT (ε−a,ε) ≤ −z]

E[exp(−αT (ε − a, ε)) | XT (ε−a,ε) ≤ −z]
= 1.

Therefore,

lim
ε→0

E[exp(−αT (ε − a, ε)− γ ς ′
ε − βε) 1{XT (ε−a,ε)≤−z}]

1 − E[exp(−λT (ε − a, ε)− βε) 1{XT (ε−a,ε)=ε}]

= W(λ)(a)Hα(z)

W(α)(a)(W(λ)′(a)+ βW(λ)(a))
.

We have thus proved (4.1).
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By arguments similar to those used in (4.3)–(4.5), we obtain

E[exp(−ατ(a)− βSτ(a) − γ τ−(a))]

= lim
ε→0

E[e−αT (−a,ε) 1{XT (−a,ε)≤−a}]
1 − E[exp(−λT (−a, ε)− βε) 1{XT (−a,ε)=ε}]

. (4.9)

By (2.3) we obtain

lim
ε→0

1

ε
E[e−αT (−a,ε) 1{XT (−a,ε)≤−a}] = lim

ε→0

1

ε

(
Ŵ (α)(a, ε)− W(α)(a)

W(α)(ε + a)

)

= Vα(a)

W(α)(a)
; (4.10)

thus, (4.2) follows from a combination of (4.7), (4.8), (4.9), and (4.10).

Remark 4.1. Given x ∈ (0, a), by (2.2), (2.6), and (2.7), we can easily find expressions
for (4.1) and (4.2) under E−x by distinguishing whether X first exits the interval (−a, 0) from
its upper boundary or from its lower boundary.

Remark 4.2. Combining (4.1) and (4.2), we have

E[exp(−ατ(a)− βSτ(a) − γ τ−(a))] = W(α+γ )(a)Vα(a)
W(α)(a)(W(α+γ )′(a)+ βW(α+γ )(a))

. (4.11)

By (4.11) we further have

E[e−γ τ(a)] = 1 + αW̄ (α)(a)− αW(α)(a)2

W(α)′ ,

E[e−γ τ−(a)] = W ′(a)W(γ )(a)

W(a)W(γ )′(a)
, (4.12)

and

E[exp(−βSτ(a))] = W ′(a)
W ′(a)+ βW(a)

.

In particular, Sτ(a) follows an exponential distribution with mean W(a)/W ′(a); for an inter-
pretation of the ratio W(γ )(a)/W(γ )′(a), see [7, Lemma 2] .

Arguments similar to those in Theorem 4.1 also lead to a result on the inverse local timeL−1.

Proposition 4.1. For any x, a > 0, we have

E[exp(−αL−1(x)) 1{L−1(x)<τ(a)}] = exp

(
−W

(α)′(a)x
W(α)(a)

)
. (4.13)

Proof. Define

g(x) := E[exp(−αL−1(x)) 1{L−1(x)<τ(a)}].
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Applying the strong Markov properties at exit times T (ε − a, ε) and T (−a, ε), respectively,
we have

E[e−αT (ε−a,ε) 1{X(T (ε−a,ε))=ε}]g(x − ε)

≤ g(x)

≤ E[e−αT (−a,ε) 1{X(T (−a,ε))=ε}]g(x − ε).

Letting ε tend to 0, then g solves the following differential equation

g′(x) = limε→0 g(x − ε)(E[e−αT (ε−a,ε) 1{X(T (ε−a,ε))=ε}] − 1)

ε

= −g(x)W
(α)′(a)x

W(α)(a)
.

So, (4.13) follows.

Remark 4.3. It is easy to see that (4.13) also leads to (2.11).

Remark 4.4. Let a tend to ∞ in (4.13). Comparing with (2.1) we find that

lim
a→∞

W(α)′(a)
W(α)(a)

= 
(α). (4.14)

We have thus recovered Lemma 1 of [1] and Lemma 2 of [19].

Remark 4.5. We can also recover the distribution for Sτ(a) by letting α = 0 in (4.13).

Remark 4.6. IfX has a downward drift, then 0 is transient for Ŷ . Let τ−(∞) denote the arrival
time of the unique excursion with infinite lifetime. Note that τ−(∞) is also the last time when
X reaches its overall supremum Sτ−(∞). It follows, from (4.11) and (4.14), that

E[exp(−βSτ−(∞) − γ τ−(∞))] = lim
a→∞

W ′(a)W(γ )(a)

W(a)(W(γ )′(a)+ βW(γ )(a))

= 
(0)


(γ )+ β
. (4.15)

Define
l(a) := inf{t > 0 : Ŷτ−(a)+t = 0},

with the convention inf ∅ := ∞. Then l(a) denotes the length of the first excursion with height
at least a. Modifying the arguments used in Theorem 4.1 leads to the Laplace transform for
(τ−(a),Xτ−(a), l(a)).

Theorem 4.2. For any a > 0 and any α, β, γ > 0, we have

E[exp(−ατ−(a)− βXτ−(a) − γ l(a))] (4.16)

= W(α)(a)

(W(α)′(a)+ βW(α)(a))W(γ )(a)

×
(
(Vγ (a)−Hγ (a))e

−a
(γ ) −
∫ ∞

a+
e−x
(γ ) dHγ (x)

)
. (4.17)
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Proof. Considering how process X exits the intervals (−a, ε) or (ε − a, ε), similar to the
proof of Theorem 4.1, we can show that, for T := T(−a,ε),

E[exp(−ατ−(a)− βXτ−(a) − γ l(a))] = lim
ε→0

E[e−γ l(a) 1{XT≤−a}]
1 − E[e−αT−βε 1{XT=ε}]

= lim
ε→0

E[e−γ T 1{XT=−a}]e−a
(γ )

1 − e−βε E[e−αT 1{XT=ε}]

+ lim
ε→0

∫ −a−
−∞ E[e−γ T 1{XT ∈ dx}]ex
(γ )
1 − e−βε E[e−αT 1{XT=ε}] ,

where (2.1) was used in the last equation.
So, (4.16) follows from combining (4.7), (4.8), and (4.10).

Note that 0 is recurrent for Ŷ if either X is recurrent or limt→∞Xt = ∞. In this case the
excursion process for Ŷ is a Poisson point process.

Set Ȳt := sup0≤s≤t Ŷs . We can easily find the distribution for Ȳτ−(a).

Proposition 4.2. Suppose that 0 is recurrent for Ŷ , then, for any 0 < y < a, we have

P{Ȳτ−(a) < y} = W(y)W ′(a)
W ′(y)W(a)

.

Proof. Consider the Poisson point process of excursions in E (y). Note that {Ȳτ−(a) < y} is
also the event that the first arrived excursion of height at least y is indeed an excursion of height
at least a. Then it follows, from (2.11), that

P{Ȳτ−(a) < y} = n̂(E (a))

n̂(E (y))
= W(y)W ′(a)
W ′(y)W(a)

;

see [3, Proposition 0.5.2].

5. Lévy processes reflected at the infimum

Recall from its definition in Section 1 that κ−(b), b > 0, denotes the starting time of the
first excursion for Y with height at least b. Also note that Xκ−(b) = Iκ−(b) = Iκ(b).

For λ, β, b > 0, write

G(λ, β, b) :=
∫ b

0
dyW(λ)(b − y)

(
�̄(−y)−

∫ 0−

−∞
�(−y + dz)eβz

)
.

Note that G(λ, 0, b) = 0.
Our next theorem is parallel to Theorem 4.1. Recall, from Section 2, that W(0) = 0 and

W ′+(0) < ∞ if and only if the Brownian component for X is nontrivial.

Theorem 5.1. For any b > 0 and any α, β, γ > 0,

• if W(0) > 0, we have

E[exp(−ακ(b)+ βIκ(b) − γ κ−(b))]

= W(α+γ )(b)
W(α)(b)(1 + (α + γ )W̄ (α+γ )(b)+G(α + γ, β, b))

; (5.1)
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• if W(0) = 0 and W ′+(0) < ∞, we have

E[exp(−ακ(b)+ βIκ(b) − γ κ−(b))]

= W(α+γ )(b)
W(α)(b)(βσ 2W(α+γ )(b)/2 + 1 + (α + γ )W̄ (α+γ )(b)+G(α + γ, β, b))

;
(5.2)

• if W(0) = 0 and W ′+(0) = ∞, we further suppose that, for any λ ≥ 0, there exits δ > 0
such thatW(λ)(x)/x decreases for x ∈ (0, δ), or equivalently,W(λ)′(x)x−W(λ)(x) ≤ 0
for x ∈ (0, δ), then (5.1) holds.

Proof. Similar to the proof of Theorem 4.1, we can show that, for T := T (−ε, b),
E[exp(−ακ(b)+ βIκ(b) − γ κ−(b))]

= lim
ε→0

W(α)(ε)

W(α)(b + ε)(1 − E[exp(−λT + βXT ) 1{XT≤−ε}]) .

It follows, from (2.3) and (2.6), that

E[exp(−λT + βXT ) 1{XT=−ε}]

= e−βε
{
Ŵ (λ)(ε, b)− W(λ)(ε)

W(λ)(b + ε)
−

∫ b

−ε
dyW̃ (λ)(ε, b, y)�̄(−y − ε)

}

and

E[exp(−λT + βXT ) 1{XT <−ε}] =
∫ b

−ε
dyW̃ (λ)(ε, b, y)

∫ −ε−

−∞
�(−y + dz)eβz.

We then have

1 − E[exp(−λT + βXT ) 1{XT≤−ε}]

= 1 − e−βε
{
Ŵ (λ)(ε, b)− W(λ)(ε)

W(λ)(b + ε)
−

∫ b

0
dyW̃ (λ)(ε, b, y)�̄(−y − ε)

}

−
∫ b

0
dyW̃ (λ)(ε, b, y)

∫ −ε−

−∞
�(−y + dz)eβz + e−βεAε − (1 − e−βε)Bε,

where

Aε :=
∫ 0

−ε
dyW̃ (λ)(ε, b, y)

∫ −ε−

−∞
�(−y + dz)(1 − eβz)

and

Bε :=
∫ 0

−ε
dyW̃ (λ)(ε, b, y)

∫ −ε−

−∞
�(−y + dz)eβz.

If W(0) = 0 then W(α)(0) = W(0) = 0, and condition (1.1) implies that

∫ 0

−∞
dx1 ∧ (−x)�̄(x) < ∞. (5.3)
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For W ′+(0) < ∞, by integration by parts we obtain

lim
ε→0

Aε

ε
= lim
ε→0

1

ε

∫ 0

−ε
dy

(
W(λ)(ε)W(λ)(b − y)

W(λ)(b + ε)
−W(λ)(−y)

)

×
(
(1 − e−βε)�̄(−ε − y)+

∫ −ε−

−∞
dz�̄(−y + z)βeβz

)

= β lim
ε→0

∫ 0

−ε
dy

(
−W

(λ)(ε)W(λ)′(b)
W(λ)(b + ε)

+W
(λ)′
+ (0)

)
(ε + y)�̄(−ε − y)

+ lim
ε→0

β

ε

∫ 0

−ε
dy

(
−W

(λ)(ε)W(λ)′(b)
W(λ)(b + ε)

+W
(λ)′
+ (0)

)
(ε + y)

∫ −ε−y

−∞
dz�̄(z)

= 0,

where for the last equality, we have used the fact that
∫ 0
−ε dz(−z)�̄(z) → 0 as ε → 0, which

follows from (5.3), and the fact that, for any c > 0,

lim
ε→0

1

ε

∫ 0

−ε
dy(ε + y)

∫ −ε−y

−∞
dz�̄(z)

≤ lim
ε→0

1

ε

∫ 0

−ε
dy(ε + y)

∫ −c

−∞
dz�̄(z)+ lim

ε→0

1

ε

∫ 0

−ε
dy

∫ 0

−c
dz(−z)�̄(z).

Similarly,

lim
ε→0

(1 − e−βε)Bε
ε

= 0.

For W ′+(0) = ∞, we find that

lim
ε→0

Aε

W(λ)(ε)

= lim
ε→0

∫ 0

−ε
dy

(
W(λ)(b − y)

W(λ)(b + ε)
− W(λ)(−y)

W(λ)(ε)

)

×
(
(1 − e−βε)�̄(−ε − y)+

∫ −ε−

−∞
dz�̄(−y + z)βeβz

)

= β lim
ε→0

∫ 0

−ε
dy

(
−εW

(λ)′(b)
W(λ)(b)

+ W(λ)(ε)−W(λ)(−y)
(ε + y)W(λ)(ε)/ε

)
(ε + y)�̄(−ε − y)

+ lim
ε→0

β

ε

∫ 0

−ε
dy

(
− εW(λ)′(b)
W(λ)(b + ε)

+ W(λ)(ε)−W(λ)(−y)
(ε + y)W(λ)(ε)/ε

)
(ε + y)

∫ −ε−y

−∞
dz�̄(z)

= 0,

where for the last equality, we have used the monotonicity assumption on W(λ)(x)/x for x
close to 0, i.e. for small enough ε,

0 ≤ W(λ)(ε)−W(λ)(−y)
ε + y

/
W(λ)(ε)

ε
≤ 1.

Similarly,

lim
ε→0

(1 − e−βε)Bε
W(λ)(ε)

= 0.
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Consequently, identity (5.2) follows from an argument similar to that used in the proof of
Theorem 4.1. Note that identities (2.8) and (2.10), and W ′+(0) = 2/σ 2 are needed at the end
of the argument.

If W(0) > 0 then W(α)(0) = W(0) > 0. We also have

∫ 0

−∞
1 ∧ (−x)�̄(dx) < ∞

[3, Corollary VII.5], which implies that

∫ 0

−∞
dx�(x) < ∞.

Identity (5.1) can be obtained similarly.

Remark 5.1. Given x ∈ (0, b), it follows, from (2.2), (2.6), and (2.7), that with λ = α + γ ,

Ex[exp(−ακ(b)+ βIκ(b) − γ κ−(b))] (5.4)

= W(α)(x)

W(α)(b)
+ E[exp(−ακ(b)+ βIκ(b) − γ κ−(b))]

×
(∫ b−x

−x
dyW̃ (q)(x, b, y)

∫ −x

−∞
eβ(z+x)�(−y + dz)

+ Ŵ (λ)(x, b − x)− W(λ)(x)

W(λ)(b)

−
∫ b−x

−x
dy�̄(−y − x)W̃ (q)(x, b, y)

)
. (5.5)

Remark 5.2. If 0 is irregular for (−∞, 0) for X, i.e. W(0) > 0, we can directly obtain the
expression for E[exp(−ακ(b)+ βIκ(b) − γ κ−(b))] from (5.4) by letting x → 0+ in (5.4) and
then solving the resulting equation.

Remark 5.3. The joint Laplace transform (5.4) yields

Ex[e−ακ(b)] = 1 + αW̄ (α)(x)

1 + αW̄ (α)(b)
, (5.6)

and we have recovered Proposition 2(i) of [18].
In addition, from (5.4) we obtain

Ex[e−γ κ−(b)] = W(γ )(b)(1 + γ W̄ (γ )(x))

W(b)(1 + γ W̄ (γ )(b))
+ W(x)−W(γ )(x)

W(b)
. (5.7)

In particular,

E[e−γ κ−(b)] = W(γ )(b)

W(b)(1 + γ W̄ (γ )(b))
.

Remark 5.4. If X is drifted to +∞ then W is necessarily bounded and 
(0) = 0. It follows,
from (2.4), that

lim
b→∞W(b) = 1

ψ ′(0+) .

https://doi.org/10.1239/jap/1197908821 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908821


Exit problems for spectrally negative Lévy processes 1027

From (2.1) and (2.2), observe that, for y > 0,

lim
b→∞

W(γ )(b − y)

W(γ )(b)
= e−y
(γ ).

Consequently, by Theorem 5.1 and (4.14), we further have

E[exp(βIκ−(∞) − γ κ−(∞))] = lim
b→∞ E[exp(βIκ−(b) − γ κ−(b))]

= ψ ′(0+)
βσ 2/2 + γ /
(γ )+G∗(γ, β)

when the Brownian component is nontrivial, and

E[exp(βIκ−(∞) − γ κ−(∞))] = ψ ′(0+)
γ /
(γ )+G∗(γ, β)

otherwise (under the condition of Theorem 5.1), where κ−(∞) is the last time when X attains
its infimum Iκ−(∞) and

G∗(γ, β) :=
∫ ∞

0
dye−y
(γ )

(
�(−y)−

∫ 0−

−∞
�(−y + dz)eβz

)
.

Note that G∗(γ, 0) = 0 and limγ→0+ γ /
(γ ) = ψ ′(0+).

6. Examples

For examples we first consider a Brownian motion with drift, i.e. Xt = mt + Bt , where Bt
is a Brownian motion. Then

ψ(δ) = δ2

2
+mδ

and

(λ) = −m+

√
m2 + 2λ.

It follows that, for m �= 0,

W(α)(a) = 1√
m2 + 2α

(exp(−a(m−
√
m2 + 2α))− exp(−a(m+

√
m2 + 2α))),

W(α)′(a) = m+ √
m2 + 2α√

m2 + 2α
exp(−a(m+

√
m2 + 2α))

− m− √
m2 + 2α√

m2 + 2α
exp(−a(m−

√
m2 + 2α)),

and

W̄ (α)(a) = m− √
m2 + 2α

2α
√
m2 + 2α

− m− √
m2 + 2α

2α
√
m2 + 2α

exp(−a(m+
√
m2 + 2α))

+ m+ √
m2 + 2α

2α
√
m2 + 2α

exp(−a(m−
√
m2 + 2α))− m+ √

m2 + 2α

2α
√
m2 + 2α

.
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In addition, for m = 0,

W(α)(a) = 1√
2α
(exp(a

√
2α)− exp(−a√2α)),

W(α)′(a) = exp(a
√

2α)+ exp(−a√2α),

and

W̄ (α)(a) = 1

2α
(exp(a

√
2α)+ exp(−a√2α)− 2).

We can check that

Vα(a) = αW̄ (α)(a)W(α)′(a)− αW(α)(a)2 +W(α)′(a) = 2e−2am.

Therefore,

E[exp(−ατ(a)− βSτ(a) − γ τ−(a))] = 2e−2amW(α+γ )(a)
W(α)(W(α+γ )′(a)+ βW(α+γ )(a))

,

which is in agreement with Theorem 1 of [25].
By (4.15) we have, for m < 0,

E[exp(−βSτ−(∞) − γ τ−(∞))] = 2m

m− √
m2 + 2γ − β

.

Moreover, by Proposition 4.2 it follows that, for m > 0,

P{Ȳτ−(a) < y} =
(

2me−2ma

1 − e−2ma

)(
1 − e−2my

2me−2my

)

= e−2ma − e−2m(a+y)

e−2my − e−2m(a+y) .

We now consider a completely asymmetric stable process with parameter 1 < θ < 2. Its
Laplace exponent is

ψ(α) = αθ = θ(θ − 1)

�(2 − θ)

∫ 0

−∞
(eαx − 1 − αx)(−x)−θ−1 dx.

Then 
(λ) = λ1/θ and

�(dx) = θ(θ − 1)

�(2 − θ)
(−x)−θ−1 dx, x < 0.

In addition,
W(α)(x) = θxθ−1E′

θ (αx
θ ), x ≥ 0,

where

Eθ(y) :=
∞∑
n=0

yn

�(1 + θn)

denotes the Mittag–Leffler function of parameter θ , and E′
θ denotes its derivative. Such an

expression for W(α) can be found in [4].
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We can easily verify the monotonicity assumption on W(λ)(x)/x in Theorem 5.1 for the
completely asymmetric stable process. Then by (4.12) we have

E[e−γ τ−(a)] = (θ − 1)E′
θ (γ a

θ )

(θ − 1)E′
θ (γ a

θ )+ γ θaθE′′
θ (γ a

θ )
.

Moreover, by (5.6) and (5.7), we have

E[e−ακ(b)] = 1

Eθ(αbθ )

and

E[e−ακ−(b)] = �(1 + θ)E′
θ (αb

θ )

Eθ (αbθ )
.

We can also derive other explicit, although rather complex expressions for the multidimen-
sional Laplace transforms obtained in Theorem 4.1, Theorem 4.2, and Theorem 5.1. But the
details are omitted.
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