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bvo-NORMS FOR SOME TRIANGULAR MATRICES

B. E. RHOADES

ABSTRACT.  In this paper we obtain the bvy-norms for several well-known classes
of matrix operators.

In a series of papers [14], [15], and [7] the author obtained the norms of generalized
Hausdorff matrices, considered as bounded operators on £” spaces, 1 < p < oo. The
£ and ¢! norms have been known for some time. In this paper we focus on the last
remaining common sequence space—bvy := {x : lim,x, = 0 and ¥ |x, — xp41| < 00}.
An equivalent norm on the space is ¥ |x, — x,—1|. However, we shall use the former
one, since it enjoys a greater symmetry and is the one commonly used. We shall also use
the corresponding form for the bvg norm of linear operators. Necessary and sufficient
conditions for an infinite matrix A to be a bounded operator on bvy are that A have null
columns and that

< 00,

ey sup

r

r
Z Ank — Qp+l k
k=0

and (1) is the norm. See, e.g. [16].

Since all norms considered in this paper will be in bvy, we shall simply write the bvg
norm as || - ||, rather than || - ||py,.

Our first norm result will be established for certain lower triangle matrices.

THEOREM 1. Let A be a lower triangular matrix with non-negative entries, zero
column limits, decreasing row sums, and satisfying

> (ank — anr1p) = O0foreach0<r<n, n=0,1,2,....
k=0

Then ||A]| = ago-

Received by the editors September 14, 1990; revised May 28, 1991 and February 5, 1992 .
AMS subject classification: 47A30, 40G05.
(© Canadian Mathematical Society 1992.

410

https://doi.org/10.4153/CMB-1992-054-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1992-054-2

bvp-NORMS 411

PrROOF. ForanyN =0,1,...,

N|r N r
DI @k — anar )| = 20 D (Ank — Gnerp)
n=0lk=0 n=0k=0
r N
=3 (A — narp)
k=0n=0
r
= > (agk — an+1x)
k=0
r
= apo — AaN+1,k
k=0
< ag,
and ||A|| S apo.
On the other hand,
oo | 0 ) )
AL > D012 0@k — ane1 )| = D (@no — ans1,0) = aoo.
n=0k=0 n=0

As a corollary of Theorem 1 we obtain the norm result for certain Norlund matrices.
A Norlund matrix is a lower triangular matrix with non-zero entries of the form a,; =
Pn—k/ Pn, Where {p,} is a real or complex sequence such that P, := 3} p; # O for
each n.

COROLLARY 1. Let A be a Norlund matrix generated by a positive monotone de-
creasing sequence {p,}. Then ||A|| = 1.

PROOF. A is a triangle with row sums 1. Since {p,} is monotone decreasing, P, >
(n+ 1)p, and p,/P, — 0. Thus @y = pnt/Pn < Pu—k/Pn—k and A has zero column
limits.

~ "\ (Pnk _ Pn+l-k

D (A — Anarg) = Z( == ‘;,;—
k=0 k=0 n+l
1

2

P,
P > Pnk —Prri—i) >0,
n+l k=0

and the result follows from Theorem 1.

THEOREM 2. Let A be a lower triangular matrix with entries ap, 1= cpt” * for 0 <
k < n where 0 <t < 1and {c,,} is a non-negative, decreasing sequence such that
{(n+ ey} is also decreasing. Then ||A|| = co.

PROOE. A has non-negative entries and zero column limits. For any 0 < r < n,

r r
—k 1,k
Z(ank - an+1,k) = Z(C,,t" — Cpnt " )
k=0 k=0
2 k
= Ztn_ (cn — tene1)
k=0

r
> 3 "7 Hew —enen) 2 0.
k=0
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The result will follow from Theorem 1 upon showing that the row sums are decreasing.
For0<:<1, y y
= A2
=0 n+1D(A -1
and it will be sufficient to show that g(¢) := ¢, —cp+1 — ™ 4y 12 > 0for0 <t < 1.
This is true since g is decreasing in ¢ and g(1) = 0.
For ¢t = 1 the row sums are (n + 1)cy, wh_ich decrease in n by hypothesis.
As corollaries of Theorem 2 we obtain norm results for three classes of matrices,
introduced by Rhaly [11]-[13], which are generalizations of the Cesaro matrix of order 1.
The first family is referred to as the Rhaly generalized Cesaro matrices, and are lower
triangular matrices with non-zero entries a,;, = "~ / (n+1),0 <t < 1. We shall consider
only the cases when ¢ < 1, since the case ¢ = 1 is the Cesaro matrix.

COROLLARY 2. The Rhaly generalized Cesaro matrices have norm 1.
COROLLARY 3. The Rhaly p-Cesaro matrices have norm 1.
These matrices are lower triangular matrices with non-zero entries

. 1
C(n+ P’

COROLLARY 4. The Rhaly terraced matrices have norm ay.

bnk p> 1.

The terraced matrices are lower triangular matrices with non-zero entries d,; = ay,
where {a,} is a monotone decreasing sequence with limit O such that {(n + 1)a,} is
monotone decreasing.

Each corollary is proved by observing that the corresponding matrix satisfies the con-
ditions of Theorem 2.

Our next class of matrices to be considered are generalized Hausdorff matrices. In
1921 Hausdorff [8] defined a class of matrices which form the commutant of C, the
Cesaro matrix of order 1. In 1958, K. Endl [4] and A. Jakimovski [5] independently
defined a generalization of the Hausdorff matrices. Hausdorff himself [9] had previously
defined a different generalization, involving a sequence {),}, satisfying the conditions
that 0 = Mg < A\ < -+ < )\, < 00,and ¥ 1/)\,, = 00, in connection with a uniform
approximation problem. Jakimovski [6], in 1959, extended the work of Hausdorff to the
case in which A\p > 0. In 1981, in joint work D. Borwein [3], he obtained a further
substantial generalization by removing the restriction that the \, be distinct.

We shall consider this latter class of generalized Hausdorff matrices, which are lower
triangular with entries

RS f(@)dz
"2mi I M\ —2) O — 2)

Ak = —Xgal = A + 64,

when Q is a simply connected region that contains every positive A,; ', is a positively
sensed Jordan contour lying in € and enclosing every )\, € Q; and §; = f(\g) if k = 0
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and )\, ¢ Q, and &; = 0 otherwise. We adopt the usual convention that \,; -+ - A, = 1
when k = n. As in [1] we shall assume that the function f satisfies the conditions

(=1)fPx) >0forr=0,1,2... andx >,

and the region €, in which f is holomorphic, satisfies the condition Q D (c, 00). In
addition, we shall assume that

x 1
x5 =
that ¢ = 0if Ay > 0, and that c = —¢ for some ¢ > 0 if Ay = 0. Then H will have

non-negative entries, zero column limits and the entries will satisfy the recursion formula
(see, e.g. (18) of [3])

2) Ak = Anrtk = ket ML gsl — MeAne1 )/ Anal

Let {s,} be any sequence, a, := s,_1, s—1 = 0. Then, for any integer r > 0, using
(2),

Z Ansl g Akl = Z At g MSk — 2 Anel g MkSk—1
=0

r—1
= Z Mtk MSk = 2 Mol Anel ka1 5k
=0 =0

r—1
= M AnslrSr + D Anel k Ak
k=0

r—1 r—1
= et 2 Ak — Anet )OSk — D M1 Sk
=0 =0

r—1
= /\r)\n+1,rsr — Ansl E(Ank - /\n+1,k)sk-
k=0

Setag = 1, a, = 0 for k > 0. Then s, = 1 for all n and the above equation becomes

r—1
MoAns1,0 = ArAnetr — Anet 20 ik — A1 )

k=0
or, replacing r with r + 1 yields
r 1
(3) Zo\nk - )\n+l,k) = )\_[Ar+lkn+l,r+l - A0>\n+l,0]-
k=0 n+l1
If Ay = 0 and the generalized Hausdorff matrix has zero column limits, then it follows
from (3) and (1) that
00
l|H|| = sup Z |A,,,|
r>0in= r

Thus for Hausdorff matrices ||H|| = po and Lemma 2 of [10] is a special case of this
fact.
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THEOREM 3. Let H be a generalized Hausdorff matrix satisfying the above condi-
tions and the condition that there exists an N > 0 such that

<0 forO0<n<Nandeachr,

) Ardnstr = AoAne1 0 { >0 forn > N and each .

Then HH” - 2M1 — Mo,
1
M, ::/0 |da(t)| — 8 c(0)],
where 6 = 0if \o =0andé = 1if Ay > 0.

PROOF. The conditions on H imply that it has zero column limits and non-negative
entries.

Let N be the smallest positive integer for which (3) is satisfied, and let S, := S} A
From Theorems 1 and 2 of [3] {S,} is monotone increasing in n, and has limit M.

Forr <N,
oo | r r—1 N 00 r
D pCHESHIREY 20D 3RS o | CHES
n=01k=0 n=0 n=r n=N+1/ k=0
r—1 N r
= E |Sn - Sn+l1 + Z Z(/\nﬂ,k — /\nk)
n=0 n=rk=0
o0 r
+ > Mk — A1 p)
n=N+1 k=0
r r r
=8 =80+ D Avrik— 2 Ak + 2 Anwik
k=0 k=0 k=0
< 28n+1 — So.
Forr > N,
oo | r r—1| r oo | r
DDk = At )] = 20100 Ok — Ar)| + 20122 Ok — Anrik)
n=01k=0 n=0lk=0 n=rik=0
=8 —S+S,
=25, — 8.

Since S, is monotone increasing in r and Sy = g, the result follows.
If, in (4) it is the case that A\, A\p 10 — AoAne1o > O for all r,n > 0O then the result
remains valid.

The author takes this opportunity to thank the referee for his careful reading of the
manuscript and for providing Theorems 1 and 2, which yield more efficient proofs of
Corollaries 1-4.
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