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Abstract

A projective moving average {Xt , t ∈ Z} is a Bernoulli shift written as a backward
martingale transform of the innovation sequence. We introduce a new class of nonlinear
stochastic equations for projective moving averages, termed projective equations,
involving a (nonlinear) kernel Q and a linear combination of projections of Xt on
‘intermediate’ lagged innovation subspaces with given coefficients αi and βi,j . The
class of such equations includes usual moving average processes and the Volterra series
of the LARCH model. Solvability of projective equations is obtained using a recursive
equality for projections of the solution Xt . We show that, under certain conditions on
Q,αi, and βi,j , this solution exhibits covariance and distributional long memory, with
fractional Brownian motion as the limit of the corresponding partial sums process.

Keywords: Projective stochastic equation; long memory; LARCH model; Bernoulli shift;
invariance principle

2010 Mathematics Subject Classification: Primary 60G10
Secondary 60F17; 60H25

1. Introduction

A discrete-time second-order stationary process {Xt, t ∈ Z} is called a long memory process
if its covariance γ (k) = cov(X0, Xk) decays slowly with the lag in such a way that its
absolute series diverges:

∑∞
k=1 |γ (k)| = ∞. In the converse case when

∑∞
k=1 |γ (k)| < ∞

and
∑∞
k=−∞γ (k) �= 0 the process {Xt } is called a short memory process. Long memory pro-

cesses have different properties from short memory (in particular, independent and identically
distributed (i.i.d.)) processes. Long memory processes have been found to arise in a variety of
physical and social sciences. See, e.g. the monographs [2], [8], [10], and the references therein.

Probably the most important model of long memory processes is the linear, or moving
average, process

Xt =
∑
s≤t

bt−sζs, t ∈ Z, (1)

where {ζs, s ∈ Z} is a standardized i.i.d. sequence, and the moving average coefficients bj
decay slowly so that

∑∞
j=0 |bj | = ∞ and

∑∞
j=0 b

2
j < ∞. The last condition guarantees that

the series in (1) converges in mean square and satisfies EXt = 0 and EX2
t = ∑∞

j=0b
2
j < ∞.

In the literature it is often assumed that the coefficients regularly decay as

bj ∼ κjd−1 as j → ∞ for κ > 0 and d ∈ (
0, 1

2

)
. (2)
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Projective equations and nonlinear long memory 1085

Condition (2) guarantees that

γ (k) =
∞∑
j=0

bjbk+j ∼ κ2B(d, 1 − 2d)k2d−1 as k → ∞, (3)

and, hence,
∑∞
k=1 |γ (k)| = ∞. The parameter d in (2) is called the long memory parameter

of {Xt }. A particular case of the linear process in (1)–(2) is the parametric class of fractional
integrated, autoregressive, moving average, ARFIMA(p, d, q), in which case d ∈ (0, 1/2) is
the order of fractional integration. An important property of the linear process in (1)–(2) is the
fact that its (normalized) partial sums process Sn(τ) := ∑[nτ ]

j=1Xj ,τ ≥ 0, tends to a fractional
Brownian motion (see [4]), namely,

n−d−1/2Sn(τ) →D[0,1] σ(d)BH (τ), (4)

where H = d + 1
2 is the Hurst parameter, σ(d)2 := κ2B(d, 1 − 2d)/d(1 + 2d) > 0 and

‘→D[0,1]’ denotes the weak convergence of random processes in the Skorokhod spaceD[0, 1].
On the other hand, the linear model (1) has its drawbacks and sometimes is not capable of

incorporating empirical features (‘stylized facts’) of some observed time series. The ‘stylized
facts’ may include typical asymmetries, clusterings, and other nonlinearities which are often
observed in financial data, together with long memory.

In the present paper we introduce a new class of nonlinear processes which generalize the
linear model in (1)–(2) and enjoy similar long memory properties to (3) and (4). These processes
are defined through solutions of the so-called projective stochastic equations. Here the term
‘projective’ refers to the fact that these equations contain linear combinations of projections, or
conditional expectations, of theXt on lagged innovation subspaces which enter the equation in
a nonlinear way.

Let us explain the main idea of our construction. We call a projective moving average a
random process {Xt } of the form

Xt =
∑
s≤t

gs,t ζs, t ∈ Z, (5)

where {ζs} is a sequence of standardized i.i.d. random variables as in (1), gt,t ≡ g0 is a
deterministic constant, and gs,t , s < t, are random variables depending only on ζs+1, . . . , ζt
such that

gs,t = gt−s(ζs+1, . . . , ζt ), s < t, (6)

where gj : R
j → R, j = 1, 2, . . . , are nonrandom functions satisfying

∑
s≤t

Eg2
s,t =

∑
s≤0

Eg2−s(ζs+1, . . . , ζ0) < ∞. (7)

It follows easily that, under condition (7), the series in (5) converges in mean square; define a
stationary process with zero mean and finite variance EX2

t = ∑
s≤t Eg2

s,t . A natural question
to ask is how to choose the ‘coefficients’ gs,t in (6) so that they depend on Xt and behave like
(2) when j = t − s → ∞.

A particularly simple choice for the gs,t to achieve the above goals is

gs,t = bt−sQ(E[s+1,t]Xt), s ≤ t, (8)
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1086 I. GRUBLYTĖ AND D. SURGAILIS

where the bj are as in (2), Q : R → R is a given deterministic kernel, and E[s+1,t]Xt :=
E[Xt | ζv, s + 1 ≤ v ≤ t] is the projection of Xt onto the subspace of L2 generated by the
innovations ζv, s + 1 ≤ v ≤ t (the conditional expectation). The corresponding projective
stochastic equation has the form

Xt =
∑
s≤t

bt−sQ(E[s+1,t]Xt)ζs. (9)

Note that, when s → −∞,E[s+1,t]Xt → Xt by a general property of the conditional expec-
tation and then gs,t ∼ bt−sQ(Xt ) if Q is continuous. This means that the gs,t in (8) feature
both the long memory in (2) and the dependence on the ‘current’ value Xt through Q(Xt). In
particular, forQ(x) = max(0, x), the behavior of gs,t in (8) strongly depends on the sign ofXt
and the trajectory of (9) appears very asymmetric (see the top diagram of Figure 3 in Section 5).

Let us briefly describe the remaining sections. Section 2 contains basic definitions and
properties of projective processes. In Section 3 we introduce a general class of projective
stochastic equations, (9) being a particular case. We obtain sufficient conditions for solvability
of these equations, and a recurrent formula for the computation of the ‘coefficients’ gs,t
(Theorem 1). In Sections 4 and 5 we present some examples and simulated trajectories and
histograms of projective equations. It turns out that the LARCH model studied in [12] and
elsewhere is a particular case of projective equations corresponding to the linear kernel Q(x)
(Section 4). Some modifications of projective equations are discussed in Section 6. In Section 7
we deal with long memory properties of stationary solutions of stochastic projective equations.
We show that, under some additional conditions, these solutions have long memory properties
similar to (3) and (4).

Finally, we note that ‘nonlinear long memory’ is a general term and that other time series
models different from ours for such behavior were proposed in the literature. Among them,
probably the most studied class are subordinated processes of the form {Q(Xt)}, where {Xt } is
a Gaussian or linear long memory process and Q : R → R is a nonlinear function. See [10],
[16], and [22] for a detailed discussion. A related class of Gaussian subordinated stochastic
volatility models is studied in [20]. Doukhan et al. [7] discussed a class of long memory
Bernoulli shifts. Baillie and Kapetanios [1] considered the fractionally integrated process with
nonlinear autoregressive innovations. A general invariance principle for fractionally integrated
models with weakly dependent innovations satisfying the projective dependence condition of
Wu [23] is established in [25]. See also [24] and Remark 5 below.

We expect that the results of this paper can be extended in several directions, e.g. projective
equations with initial conditions, continuous-time processes, random field setups, and infinite
variance processes. For applications, a major challenge is the estimation of the ‘parameters’ of
projective equations. We plan to study some of these issues in the future.

2. Projective processes and their properties

Let {ζt , t ∈ Z} be a sequence of i.i.d. random variables with Eζ0 = 0 and Eζ 2
0 = 1. For

any integers s ≤ t, we define F[s,t] := σ {ζu : u ∈ [s, t]} to be the sigma-algebra generated
by ζu, u ∈ [s, t], F(−∞,t] := σ {ζu : u ≤ t}, and F := σ {ζu : u ∈ Z}. For s > t , we
define F[s,t] := {∅, 	} as the trivial sigma-algebra. Let L2[s,t], L2

(−∞,t], and L2 be the spaces
of all square-integrable random variables ξ measurable with respect to F[s,t],F(−∞,t], and F ,
respectively. For any s, t ∈ Z, let

E[s,t][ξ ] := E[ξ | F[s,t]], ξ ∈ L2,
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be the conditional expectation. Then ξ �→ E[s,t][ξ ] is a bounded linear operator inL2; moreover,
E[s,t], s, t ∈ Z, is a projection family satisfying E[s2,t2]E[s1,t1] = E[s2,t2]∩[s1,t1] for any intervals
[s1, t1], [s2, t2] ⊂ Z. From the definition of the conditional expectation, it follows that if
gu : R → R, u ∈ Z, are arbitrary measurable functions with Eg2

u(ζu) < ∞, [s2, t2] ⊂ Z is a
given interval, and ξ = ∏

u∈[s2,t2] gu(ζu) is a product of independent random variables, then,
for any interval [s1, t1] ⊂ Z,

E[s1,t1]
∏

u∈[s2,t2]
gu(ζu) =

∏
u∈[s1,t1]∩[s2,t2]

gu(ζu)
∏

v∈[s2,t2]\[s1,t1]
E[gv(ζv)].

In particular, if Egu(ζu) = 0, u ∈ Z, then

E[s1,t1]
∏

u∈[s2,t2]
gu(ζu) =

{∏
u∈[s1,t1] gu(ζu), [s2, t2] ⊂ [s1, t1],

0, [s2, t2] �⊂ [s1, t1].

Any random variable Yt ∈ L2
(−∞,t] can be expanded as the orthogonal series Yt = EYt +∑

s≤tPs,tYt ,wherePs,tYt := (E[s,t] − E[s+1,t])Yt .Note that {Ps,tYt ,Fs,t , s ≤ t} is a backward
martingale difference sequence and EY 2

t = (EYt )
2 + ∑

s≤tE(Ps,tYt )2.

Definition 1. A projective process is a random sequence {Yt ∈ L2
(−∞,t], t ∈ Z} of the form

Yt = EYt +
∑
s≤t

gs,t ζs, (10)

where the gs,t are random variables satisfying the following conditions:

(i) gs,t is F[s+1,t]-measurable for all s, t ∈ Z, s < t; gt,t is a deterministic number;

(ii)
∑
s≤t Eg2

s,t < ∞ for all t ∈ Z.

In other words, a projective process has the property that the projections E[s,t]Yt = EYt +∑t
i=s Pi,tYt = EYt + ∑t

i=sζigi,t , s ≤ t, form a backward martingale transform with respect to
the nondecreasing family {F [s,t], s ≤ t} of sigma-algebras for each fixed t ∈ Z. A consequence
of the last fact is the following moment inequality which is an easy consequence of Rosenthal’s
inequality (see [14, p. 24]). See also [10, Lemma 2.5.3].

Proposition 1. Let {Yt } be a projective process of the form (10). Assume that μp := E|ζ0|p <
∞ and

∑
s≤t (E|gs,t |p)2/p < ∞ for some p ≥ 2. Then E|Yt |p < ∞. Moreover, there exists a

constant Cp < ∞ depending only on p and such that

E|Yt |p ≤ Cp

(
|EYt |p + μp

(∑
s≤t
(E|gs,t |p)2/p

)p/2)
.

Definition 2. A projective moving average is a projective process of the form (10) such that
the mean EYt = μ is constant, and there exist a number g0 ∈ R and nonrandom measurable
functions gj : R

j → R, j = 1, 2, . . . , such that

gs,t = gt−s(ζs+1, . . . , ζt ) almost surely for any s ≤ t, s, t ∈ Z.
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1088 I. GRUBLYTĖ AND D. SURGAILIS

By definition, a projective moving average is a stationary Bernoulli shift (see [6, p. 21]), i.e.

Yt = μ+
∑
s≤t

ζsgt−s(ζs+1, . . . , ζt ) (11)

with mean μ and covariance

cov(Ys, Yt ) =
∑
u≤s

E[gs−u(ζu+1, . . . , ζs)gt−u(ζu+1, . . . , ζt )]

=
∑
u≤0

E[g−u(ζu+1, . . . , ζ0)gt−s−u(ζu+1, . . . , ζt−s−u)], s ≤ t. (12)

These facts together with the ergodicity of Bernoulli shifts (implied by a general result in [21,
Theorem 3.5.8]) are summarized in the following corollary.

Corollary 1. A projective moving average is a strictly stationary and ergodic stationary process
with finite variance and covariance given in (12).

Remark 1. If the coefficients gs,t are nonrandom, a projective moving average is a linear
process Yt = μ+ ∑

s≤t gt−sζs, t ∈ Z.

Proposition 2. Let {Yt } be a projective process of the form (10), and let {aj , j ≥ 0} be
a deterministic sequence with

∑∞
j=0 |aj | < ∞ and

∑∞
j=0 |aj ||EYt−j | < ∞. Then {ut :=∑∞

j=0 ajYt−j , t ∈ Z} is a projective process ut = Eut + ∑
s≤t ζsGs,t with Eut =∑∞

j=0 ajEYt−j and coefficients Gs,t := ∑t−s
j=0 ajgs,t−j .

Proof. The proof easily follows by the Cauchy–Schwarz inequality and is thus omitted.

Proposition 3. If {Yt } is a projective process of the form (10) then, for any s ≤ t,

E[s,t]Yt = EYt +
∑
s≤u≤t

ζugu,t , Ps,tYt = (E[s,t] − E[s+1,t])Yt = ζsgs,t . (13)

Representation (10) is unique: if (10) and Yt = ∑
s≤t g′

s,t ζs are two representations, with g′
s,t

satisfying conditions (i) and (ii) of Definition 1, then g′
s,t = gs,t for all s ≤ t.

Proof. Equation (13) is immediate by definition of the projective process. From (13), it
follows that ζsg′′

s,t = 0, where g′′
s,t := gs,t − g′

s,t is independent of ζs . The relation Eζ 2
s = 1

implies that P(|ζs |2 > ε) > 0 for all small enough ε > 0. Hence, 0 = P(|ζsg′′
s,t | > ε) ≥

P(|ζs | > √
ε, |g′′

s,t | >
√
ε) = P(|ζs | > √

ε)P(|g′′
s,t | >

√
ε), implying that P(|g′′

s,t | >
√
ε) = 0

for any ε > 0.

The following invariance principle is due to Dedecker and Merlevède [5, Corollary 3]; see
also [23, Theorem 3 (i)].

Proposition 4. Let {Yt } be a projective moving average of the form (10) such that μ = 0 and

	(2) :=
∞∑
t=0

‖g0,t‖ < ∞, (14)

where ‖ξ‖ = E
1/2[ξ2], ξ ∈ L2. Then

n−1/2
[nτ ]∑
t=1

Yt →D[0,1] cYB(τ), (15)

where B is a standard Brownian motion and c2
Y := ‖ ∑∞

t=0 g0,t‖2 = ∑
t∈Z

E[Y0Yt ].

https://doi.org/10.1239/aap/1418396244 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396244


Projective equations and nonlinear long memory 1089

3. Projective stochastic equations

Let Qs,t = Qs,t (xu,v, s < u ≤ v ≤ t), s, t ∈ Z, s < t, be some given measurable
deterministic functions depending on (t − s)(t − s + 1)/2, s < t, real variables xu,v, and let
μt ,Qt,t , t ∈ Z, be some given constants. A projective stochastic equation has the form

Xt = μt +
∑
s≤t

ζsQs,t (E[u,v]Xv, s < u ≤ v ≤ t). (16)

Definition 3. By a solution of (16) we mean a projective process {Xt, t ∈ Z} satisfying∑
s≤t

E[Q2
s,t (E[u,v]Xv, s < u ≤ v ≤ t)] < ∞

and (16) for any t ∈ Z.

Proposition 5. Assume that μt = μ does not depend on t ∈ R, that the functions Qs,t =
Qt−s , s ≤ t, in (16) depend only on t − s, and that {Xt } is a solution of (16). Then {Xt } is a
projective moving average of the form (11) with EXt = μ and gn : R

n → R, n = 0, 1, . . . ,
defined recursively by

gn(x−n+1, . . . , x0) := Qn

(
μ+

v∑
k=u

xkgv−k(xu+1, . . . , xv), −n < u ≤ v ≤ 0

)
, n ≥ 1,

(17)
and g0 := Q0. Moreover, such a solution is unique.

Proof. From (16) and the uniqueness of (10) (Proposition 3), we haveXt = μ+∑
s≤t gs,t ζs,

where gs,t = Qt−s(E[u,v]Xv, s < u ≤ v ≤ t). For s = t, this yields gt,t = Q0 = g0 for all
t ∈ Z as in (17). Similarly, gt−1,t = Q1(E[t,t]Xt) = Q1(μ + g0ζt ) = g1(ζt ), where g1 is
defined in (17). Assume by induction that

gt−m,t = gm(ζt−m+1, . . . , ζt ) for all t ∈ Z, (18)

with gm defined in (17), holds for any 0 ≤ m < n and some n ≥ 1; we need to show that (18)
holds for m = n, too. Using (18), (13), and (17), we obtain

gt−n,t = Qn(E[u,v]Xv, t − n < u ≤ v ≤ t)

= Qn

(
μ+

v∑
k=u

ζkgv−k(ζu+1, . . . , ζv), t − n < u ≤ v ≤ t

)

= gn(ζt−n+1, . . . , ζt ).

This proves the induction step n − 1 → n and, hence, the proposition, since the uniqueness
follows trivially.

Clearly, the choice of possible kernels Qs,t in (16) is very large. In this paper we focus on
the following class of projective stochastic equations:

Xt = μ+
∑
s≤t

ζsQ

(
αt−s +

∑
s<u≤t

βt−u,u−s(E[u,t]Xt − E[u+1,t]Xt)
)
. (19)
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Here {αi, i ≥ 0} and {βi,j , i ≥ 0, j ≥ 1} are given arrays of real numbers,μ ∈ R is a constant,
and Q = Q(x) is a measurable function of a single variable x ∈ R. Two modifications of (19)
are briefly discussed below; see (41) and (44). Particular cases of (19) are

Xt =
∑
s≤t

ζsQ(αt−s + βt−sE[s+1,t]Xt) (20)

and

Xt = μ+
∑
s≤t

ζsQ

(
αt−s +

∑
s<u≤t

βu−s(E[u,t]Xt − E[u+1,t]Xt)
)
, (21)

corresponding to βi,j = βi+j and βi,j = βj , respectively.
Next, we study the solvability of the projective equation (19). We assume that Q satisfies

the following dominating bound: there exists a constant cQ > 0 such that

|Q(x)| ≤ cQ|x| for all x ∈ R. (22)

Define

KQ :=
∞∑
i=0

α2
i

∞∑
k=0

c2k+2
Q

∞∑
j1=1

β2
i,j1

· · ·
∞∑
jk=1

β2
i+j1+···+jk−1,jk

. (23)

The main result of this section is the following theorem.

Theorem 1. (i) Assume that condition (22) holds and that

KQ < ∞. (24)

Then there exists a unique solution {Xt } of (19), which is written as a projective moving average
of the form (10) with coefficients gt−k,t recursively defined as

gt−k,t :=

⎧⎪⎪⎨
⎪⎪⎩
Q

(
αk +

k−1∑
i=0

βi,k−iζt−igt−i,t
)
, k = 1, 2, . . . ,

Q(αk), k = 0.

(25)

More explicitly,

Xt = μ+Q(α0)ζt +Q(α1 + β0,1ζtQ(α0))ζt−1

+Q(α2 + β0,2ζtQ(α0)+ β1,1ζt−1Q(α1 + β0,1ζtQ(α0)))ζt−2 + · · · .

(ii) In the case of the linear function Q(x) = cQx, condition (24) is also necessary for the
existence of a solution to (19).

Proof. (i) Let us show that the gk−t,t as defined in (25) satisfy
∑∞
k=0 Eg2

t−k,t < ∞. From
(22) and (25), we have the recurrent inequality

Eg2
t−k,t ≤ c2

QE

(
αk +

k−1∑
i=0

βi,k−iζt−igt−i,t
)2

= c2
Q

(
α2
k +

k−1∑
i=0

β2
i,k−iEg2

t−i,t
)
. (26)
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Iterating (26) we obtain

Eg2
t−k,t ≤ c2

Q

(
α2
k + c2

Q

k−1∑
i=0

β2
i,k−i

(
α2
i +

i−1∑
j=0

β2
j,i−jEg2

t−j,t
))

= c2
Qα

2
k + c4

Q

k−1∑
i=0

α2
i β

2
i,k−i + c6

Q

k−1∑
i=0

α2
i

k−1−i∑
j1=1

β2
i,j1
β2
i+j1,k−i−j1

+ · · · , (27)

and, hence,

∞∑
k=0

Eg2
t−k,t ≤ c2

Q

∞∑
i=0

α2
i + c4

Q

∞∑
i=0

α2
i

∞∑
j1=1

β2
i,j1

+ c6
Q

∞∑
i=0

α2
i

∞∑
j1=1

β2
i,j1

∞∑
j2=1

β2
i+j1,j2

+ · · ·

= KQ

< ∞ (28)

according to (24). Therefore, Xt = μ + ∑
s≤t gs,t ζs is a well-defined projective moving

average. The remaining statements about Xt follow from Proposition 5.
(ii) Similarly to (26), and (28) in the case Q(x) = cQx we obtain

Eg2
t−k,t = c2

QE

(
αk +

k−1∑
i=0

βi,k−iζt−igt−i,t
)2

= c2
Q

(
α2
k +

k−1∑
i=0

β2
i,k−iEg2

t−i,t
)
,

and, hence, var(Xt ) = ∑∞
k=0 Eg2

t−k,t = KQ. This proves (ii), completing the proof.

Remark 2. From recurrent relation (25), the gt−k,t can be expressed as functions of ζt−k+1,

. . . , ζt via the so-called nested Volterra series (see the extended version of this paper available
at http://arxiv.org/abs/1312.1938v1).

In the case of (20) and (21), condition (24) can be simplified; see below. Note that, for
A2 := ∑∞

i=0 α
2
i = 0, the equations in (25) admit the trivial solution gt−k,t = 0 sinceQ(0) = 0

by (22), leading to the constant process X = μ in (19).

Proposition 6. (i) Let A2 > 0, βi,j = βi+j , i ≥ 0, j ≥ 1, and B2 := ∑∞
i=0 β

2
i . Then

KQ < ∞ is equivalent to A2 < ∞ and B2 < ∞.

(ii) Let A2 > 0, βi,j = βj , i ≥ 0, j ≥ 1, and B2 := ∑∞
i=1 β

2
i . Then KQ < ∞ is equivalent

to A2 < ∞ and c2
QB

2 < 1. Moreover, KQ = c2
QA

2/(1 − c2
QB

2).

Proof. (i) By definition,

KQ =
∞∑
k=0

c2k+2
Q

∞∑
i=0

α2
i

∞∑
j1=1

β2
i+j1

· · ·
∞∑
jk=1

β2
i+j1+···+jk−1+jk

=
∞∑
k=0

c2k+2
Q

∑
0≤i<j1<···<jk<∞

α2
i β

2
j1

· · ·β2
jk

≤
∞∑
k=0

c2k+2
Q A2B2

1 · · ·B2
k ,
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1092 I. GRUBLYTĖ AND D. SURGAILIS

where B2
k := ∑∞

j=k β2
j . Since B2 < ∞ entails limk→∞ B2

k = 0, for all ε > 0, there exists
K ≥ 1 such that B2

k < ε/c2
Q for all k > K . Hence,

KQ ≤ c2
QA

2
( K∑
k=0

(c2
QB

2)k +
∞∑
k=K

εk
)
< ∞.

Therefore, A2 < ∞ and B2 < ∞ imply that KQ < ∞. The converse implication is obvious.
(ii) The proof follows from

KQ =
∞∑
k=0

c2k+2
Q

∞∑
i=0

α2
i

∞∑
j1=1

β2
j1

· · ·
∞∑
jk=1

β2
jk

=
∞∑
k=0

c2k+2
Q A2(B2)k = c2

QA
2

1 − c2
QB

2
.

Remark 3. It is not difficult to show that conditions on the βi,j in Proposition 6(i) and (ii)
are part of the following more general condition: lim supi→∞

∑∞
j=1 c

2
Qβ

2
i,j < 1, which also

guarantees that KQ < ∞.

In the following proposition we obtain a sufficient condition for the existence of higher
moments E|Xt |p < ∞, p > 2, of the solution of projective equation (19). The proof of the
proposition is based on a recurrent use of the Rosenthal-type inequality of Proposition 1, which
contains an absolute constant Cp depending only on p. For p ≥ 2, define

KQ,p := C
2/p
p

∞∑
i=0

α2
i

∞∑
k=0

(cQC
1/p
p μ

1/p
p )2k+2

∞∑
j1=1

β2
i,j1

· · ·
∞∑
jk=1

β2
i+j1+···+jk−1,jk

, (29)

where (recall) μp = E|ζ0|p. Note that C2 = μ2 = 1; hence, KQ,2 = KQ coincides with (23).

Proposition 7. Assume that the conditions of Theorem 1 hold and that KQ,p < ∞ for some
p ≥ 2. Then E|Xt |p < ∞.

Proof. The proof is similar to that of Theorem 1(i). By Proposition 1,

(E|Xt |p)2/p ≤ C
2/p
p

(
|EXt |p + μp

(∑
s≤t
(E|gs,t |p)2/p

)p/2)2/p

= C
2/p
p μ

2/p
p

∑
s≤t
(E|gs,t |p)2/p.

Using condition (22), Proposition 1, and the inequality (a + b)q ≤ aq + bq, 0 < q ≤ 1, we
obtain the following recurrent inequality:

(E|gs,t |p)2/p ≤
(
c
p
QE

∣∣∣∣αt−s +
∑
s<u≤t

βt−u,u−sζugu,t
∣∣∣∣
p)2/p

≤ c2
QC

2/p
p

(
|αt−s |p + μp

( ∑
s<u≤t

(|βt−u,u−s |pE|gu,t |p)2/p
)p/2)2/p

.

≤ c2
QC

2/p
p

(
|αt−s |2 + μ

2/p
p

∑
s<u≤t

β2
t−u,u−s(E|gu,t |p)2/p

)
.

Iterating the last inequality as in the proof of Theorem 1 we obtain (E|Xt |p)2/p ≤ KQ,p < ∞,
with KQ,p given in (29).

https://doi.org/10.1239/aap/1418396244 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396244


Projective equations and nonlinear long memory 1093

Finally, let us consider the case in whichXt of (19) satisfies the weak dependence condition
in (14) for the invariance principle.

Proposition 8. Let {Xt } satisfy the conditions of Theorem 1, and let 	(2) be defined in (14).
Then

	(2) ≤
∞∑
i=0

|αi |
∞∑
k=0

ck+1
Q

∞∑
j1=1

|βi,j1 | · · ·
∞∑
jk=1

|βi+j1+···+jk−1,jk |. (30)

In particular, if the quantity on the right-hand side of (30) is finite, {Xt } satisfies the functional
central limit theorem in (15).

Proof. The proof follows from (27) and the inequality | ∑ xi |1/2 ≤ ∑ |xi |1/2.

4. Examples

4.1. Finitely dependent projective equations.

Consider equation (19), where αi = βi,j = 0 for all i > m and some m ≥ 0. Since
Q(0) = 0, we have the corresponding equation

Xt = μ+
∑

t−m<s≤t
ζsQ

(
αt−s +

∑
s<u≤t

βt−u,u−s(E[u,t]Xt − E[u+1,t]Xt)
)
, (31)

where the right-hand side is F[t−m+1,t]-measurable. In particular, {Xt } of (31) is an m-
dependent process. We may ask if the above process can be represented as a moving average
of length m with respect to some i.i.d. innovations. In other words, we may ask if there exists
an i.i.d. standardized sequence {ηs, s ∈ Z} and coefficients cj , 0 ≤ j < m, such that

Xt =
∑

t−m<s≤t
ct−sηs, t ∈ Z. (32)

To construct a negative counterexample to the above question, consider the simple case of
(31) with m = 2, μ = 0, α1 = 0, β0,1 = 1, and Q(α0) = 1:

Xt = ζtQ(α0)+ ζt−1Q(α1 + β0,1E[t,t]Xt) = ζt + ζt−1Q(ζt ). (33)

Assume that EQ(ζt ) = 0. Then EXtXt−1 = 0 and EX2
t = 1 + EQ2(ζ0). On the other hand,

from (32) withm = 2 we obtain 0 = EXtXt−1 = c0c1, implying that {Xt } is an i.i.d. sequence.
Let us show that the last conclusion contradicts the form of Xt in (33) under general

assumptions on Q and the distribution of ζ = ζ0. Assume that ζ is symmetric, ∞ > Eζ 4 >

(Eζ 2)2 = 1, and that Q is antisymmetric. Then

cov(X2
t , X

2
t−1) = EQ2(ζ ){(Eζ 4 − 1)+ (Eζ 2Q2(ζ )− EQ2(ζ ))}.

Assume, in addition, that Q is monotone nondecreasing on [0,∞). Then Eζ 2Q2(ζ ) ≥
Eζ 2

EQ2(ζ ) = EQ2(ζ ), implying that cov(X2
t , X

2
t−1) > 0. As a consequence, (33) is not

a moving average of length 2 in some standardized i.i.d. sequence.
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4.2. Linear kernel Q.

For the linear kernel Q(x) = cQx, the solution of (19) can be written explicitly as Xt =
μ+ ∑∞

k=1X
(k)
t , where X(1)t = cQ

∑∞
i=0 αiζt−i is a linear process and

X
(k+1)
t = ck+1

Q

∞∑
i=0

αi

∞∑
j1,...,jk=1

βi,j1 · · ·βi+j1+···+jk−1,jk ζt−iζt−i−j1 · · · ζt−j1−···−jk

for k ≥ 1 is a Volterra series of order k + 1 (see [6, p. 22]), which are orthogonal in the sense
that EX

(k)
t X

()
s = 0, t, s ∈ Z, k,  ≥ 1, k �= .

Let H 2
(−∞,t] ⊂ L2

(−∞,t] be the subspace spanned by products 1, ζs1 · · · ζsk , s1 < · · · < sk ≤
t, k ≥ 1. Clearly, the above Volterra series Xt,X

(k)
t ∈ H 2

(−∞,t] for all t ∈ Z (corresponding to
linear Q) constitutes a very special class of projective processes. For example, the process in
(33) cannot be expanded as such a series unless Q is linear. To show the last fact, decompose
(33) as Xt = Yt + Zt , where Yt := ζt + αζt−1ζt ∈ H 2

(−∞,t], α := EζQ(α), and Zt :=
ζt−1(Q(ζt )− αζt ) is orthogonal to H 2

(−∞,t], Zt �= 0; hence, Xt �∈ H 2
(−∞,t].

4.3. The LARCH model.

The linearARCH (LARCH) model, introduced by Robinson [19], is defined by the equations

rt = σtζt , σt = α +
∞∑
j=1

βj rt−j , (34)

where {ζt } is a standardized i.i.d. sequence and the coefficientsβj satisfyB := {∑∞
j=1 β

2
j }1/2 <

∞. The LARCH model was studied in [3], [9], [11], [12], [13], and other papers. In financial
modeling, the rt are interpreted as (asset) returns and σt as volatilities. Of particular interest
is the case when the βj in (34) are proportional to ARFIMA coefficients, in which case it is
possible to rigorously prove long memory of the volatility and the (squared) returns. It is well
known [9] that a second-order strictly stationary solution {rt } to (34) exists if and only if

B < 1, (35)

in which case it can be represented by the convergent orthogonal Volterra series

rt = σtζt , σt = α

(
1 +

∞∑
k=1

∞∑
j1,...,jk=1

βj1 · · ·βjk ζt−j1 · · · ζt−j1−···−jk
)
.

Clearly, the last series is a particular case of the Volterra series of the previous example. We
conclude that, under condition (35), the volatility process {Xt = σt } of the LARCH model
satisfies the projective equation (21) with linear function Q(x) = x and αj = αβj . Note that
(35) coincides with the condition c2

QB
2 < 1 of Proposition 6(ii) for the existence of a solution

to (21).
From Proposition 7, the following new result about the existence of higher-order moments

of the LARCH model is derived.

Corollary 2. Assume that

C
1/p
p μ

1/p
p B < 1, (36)
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Figure 1: Trajectories of solutions of (39) for p = 10. Left: Q(x) = 1(x > 0). Right: Q(x) = 1(0 <
x < 2).

where μp = E|ζ0|p and Cp is the absolute constant from Proposition 1, p ≥ 2. Then E|rt |p =
μpE|σt |p < ∞. Moreover,

E|σt |p ≤ α2C
4/p
p μ

2/p
p B2

1 − C
2/p
p μ

2/p
p B2

. (37)

Proof. The proof follows from Proposition 7 and the easy fact that, for the LARCH model,
KQ,p of (29) coincides with the right-hand side of (37).

Condition (36) can be compared with the sufficient condition for E|rt |p < ∞, p = 2, 4, . . . ,
in [12, Lemma 3.1]:

(2p − p − 1)1/2μ1/p
p B < 1. (38)

Although the best constantCp in Rosenthal’s inequality is not known, (36) seems much weaker
than (38), especially whenp is large. See, e.g. [15], where it is shown thatC1/p

p = O(p/ logp)
as p → ∞.

4.4. Projective ‘threshold’ equations.

Consider the projective equation

Xt = ζt +
p∑
j=1

ζt−jQ(E[t−j+1,t]Xt), (39)

where 1 ≤ p < ∞ and Q is a bounded measurable function with Q(0) = 1. If Q is a step
function, Q(x) = ∑q

k=1 ck1(x ∈ Ik), where
⋃q
k=1 Ik = R is a partition of R into disjoint

intervals Ik, 1 ≤ k ≤ q, the process in (39) follows different ‘moving average regimes’ in the
regions E[t−j+1,t]Xt ∈ Ik, 1 ≤ j ≤ p, exhibiting a ‘projective threshold effect’. See Figure 1,
in which we plot a trajectory with a single threshold at x = 0 in the left-hand graph, and a
trajectory with two threshold points at x = 0 and x = 2 in the right-hand graph.

5. Simulations

Solutions of projective equations can be easily simulated using a truncated expansionX(M)t =∑
t−M≤s≤t gs,t ζs instead of the infinite series in (5). We chose the truncation level M equal

to the sample size M = n = 3000 in the subsequent simulations. The coefficients gs,t of the
projective equations are computed very fast from recurrent formula (25) and simulated values
ζs, −M ≤ s ≤ n. The innovations were taken standard normal. For better comparisons, we
used the same sequence ζs, −M ≤ s ≤ n, in all simulations.

The stationary solution of (21) was simulated for three different choices of Q and two
choices of the coefficients αj and βj . The first choice of coefficients was αj = 0.5j and

https://doi.org/10.1239/aap/1418396244 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396244
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βj = c 0.9j , corresponding to a short memory process {Xt }. The second choice was αj =
�(d + j)/�(d)�(j + 1) and βj = cαj with d = 0.4, corresponding to a long memory
process {Xt } with coefficients as in ARFIMA(0, d, 0). The value of c > 0 was chosen so that
c2
QB

2 = 0.9 < 1. The latter condition guarantees the existence of a stationary solution to (21);
see Proposition 6.

The simulated trajectories and (smoothed) histograms of marginal densities strongly depend
on the kernel Q. We used the following functions:

Q1(x) = x, Q2(x) = max(0, x), Q3(x) =

⎧⎪⎨
⎪⎩
x, x ∈ [0, 1],
2 − x, x ∈ [1, 2],
0, otherwise.

(40)

Clearly, Qi, i = 1, 2, 3, in (40) satisfy (22) with cQ = 1 and the Lipschitz condition (48)
below. Note that Q3 is bounded and supported in the compact interval [0, 2], while Q1 and
Q2 are unbounded, the latter being bounded from below. Also, note that, for βj ≡ 0 and the
choice of αj above, the projective process {Xt } of (21) agrees with AR(0.5) for αj = 0.5j and
with ARFIMA(0, 0.4, 0) for αj = �(d + j)/�(d)�(j + 1) in all three cases in (40)

A general impression from our simulations is that in all cases of Q in (40), the coefficients
αj account for the persistence and βj for the clustering of the process. We observe that as the
βj values increase, the process becomes more asymmetric and its empirical density diverges
from the normal density (plotted as dashed lines in Figures 2–4 with parameters equal to the
empirical mean and variance of the simulated series). In the case of unbounded Q = Q1,Q2
and long memory ARFIMA coefficients, the marginal distribution seems strongly skewed to
the left with a very light left tail and a much heavier right tail. On the other hand, in the
case of geometric coefficients, the density for Q = Q1,Q2 seems rather symmetric although
heavy tailed. The caseQ = Q3 corresponding to boundedQ seems to result in an asymmetric
distribution with light tails.

Figure 2: Trajectories and (smoothed) histograms of solutions to projective equation (21) with Q(x) =
Q1(x) = x. Top: αj = (0.5)j and βj = c(0.9)j . Bottom: αj = (0.5)j and βj = 0.
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Figure 3: Trajectories and (smoothed) histograms of solutions to projective equation (21) with Q(x) =
Q2(x) = max(x, 0). Top: αj = ARFIMA(0, 0.4, 0) and βj = cαj . Bottom: αj = ARFIMA(0, 0.4, 0)

and βj = 0.

Figure 4: Trajectories and (smoothed) histograms of solutions to projective equation (21) with Q(x) =
Q3(x) = the ‘triangle function’ in (40). Top: αj = (0.5)j and βj = c(0.9)j . Bottom: αj =

ARFIMA(0, 0.4, 0) and βj = cαj

6. Modifications

Equation (19) can be modified in several ways. The first modification is obtained by taking
the αt−s ‘outside of Q’, i.e.

Xt = μ+
∑
s≤t

ζsαt−sQ
( ∑
s<u≤t

βt−u,u−s(E[u,t]Xt − E[u+1,t]Xt)
)
, (41)

where αi, βi,j , andQ satisfy similar conditions as in (19). However, note that (22) implies that
Q(0) = 0 in which case (41) has the trivial solution Xt ≡ μ. To avoid the last eventuality,
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condition (22) must be changed. Instead, we assume thatQ is a measurable function satisfying

Q(x)2 ≤ c2
0 + c2

1x
2, x ∈ R, (42)

for some c0, c1 ≥ 0. Define

K̃Q := c2
0

∞∑
k=0

c2k
1

∞∑
i=0

α2
i

∞∑
j1=1

α2
i+j1

β2
i,j1

· · ·
∞∑
jk=1

α2
i+j1+···+jkβ

2
i+j1+···+jk−1,jk

.

Proposition 9 below can be proved similarly to Theorem 1 and its proof is thus omitted.

Proposition 9. (i) Assume that condition (42) holds and that

K̃Q < ∞. (43)

Then there exists a unique solution {Xt } of (41), which is written as a projective moving average
of the form (10) with coefficients gt−k,t recursively defined as

gt−k,t := αkQ

(k−1∑
i=0

βi,k−iζt−igt−i,t
)
, k = 1, 2, . . . , gt,t := α0Q(0).

(ii) In the case of the linear functionQ(x) = c0 + c1x, condition (43) is also necessary for the
existence of a solution to (41).

Remark 4. Let A2
k := ∑∞

i=k α2
i and |βi,j | ≤ β̄. Then

K̃Q ≤ c2
0

∞∑
k=0

(c1β̄)
2k

∞∑
i=0

α2
i

∞∑
j1=1

α2
i+j1

· · ·
∞∑
jk=1

α2
i+j1+···+jk ≤ c2

0

∞∑
k=0

(c1β̄)
2kA2

0A
2
1 · · ·A2

k.

Hence, A2 = A2
0 < ∞ and β̄ < ∞ imply that K̃Q < ∞ for any c0, c1, and β̄; see the proof of

Proposition 6.

Projective stochastic equations (19) and (41) can be further modified by including projections
of lagged variables. Consider the following extension of (19):

Xt = μ+
∑
s≤t

ζsQ

(
αt−s +

t−1∑
u=s+1

βt−1−u,u−s(E[u,t−1]Xt−1 − E[u+1,t−1])Xt−1

)
. (44)

Here αi, βi,j , and Q are the same as in (19) and the only new feature is that t is replaced by
t − 1 in the inner sum on the right-hand side of the equation. This fact allows us to study
nonstationary solutions of (44) with a given projective initial condition Xt = X0

t , t ≤ 0, and
the convergence of Xt to the equilibrium as t → ∞; however, we will not pursue this topic in
the present paper. The following proposition is a simple extension of Theorem 1 and its proof
is thus omitted.

Proposition 10. Letαi, βi,j ,andQ satisfy the conditions ofTheorem 1, including (22) and (24).
Then there exists a unique solution {Xt } of (44), which is written as a projective moving average
of the form (10) with coefficients gt−k,t recursively defined as gt−k,t := Q(αk), k = 0, 1, and

gt−k,t := Q

(
αk +

k−2∑
i=0

βi,k−1−iζt−1−igt−1−i,t−1

)
, k ≥ 2.
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Finally, consider projective equation (16) with μt ≡ 0 and kernels Qs,t = Qt−s(xs+1,t−1,

. . . , xs+1,s) depending on t − s real variables, where Q0 = 1 and

Qj(x1, . . . , xj ) = d(x1)

1

d(x2)+ 1

2

d(x3)+ 2

3
· · · d(xj )+ j − 1

j
, j ≥ 1, (45)

where d(x), x ∈ R, is a measurable function taking values in the interval (− 1
2 ,

1
2 ). More

explicitly,

Xt =
∞∑
j=0

Qj(E[t−j+1,t−1]Xt−1,E[t−j+1,t−2]Xt−2, . . . ,E[t−j+1,t−j ]Xt−j )ζt−j , (46)

where E[t−j+1,t−j ]Xt−j = EXt = 0. Note that, when d(x) = d is constant, {Xt } in (46)
is a stationary ARFIMA(0, d, 0) process. Time-varying fractionally integrated processes with
deterministic coefficients of the form (45) were studied in [17] and [18]. We expect that (46)
features a ‘random’ memory intensity depending on the values of the process. A rigorous study
of the long memory properties of this model does not seem easy. On the other hand, solvability
of (46) can be established similarly to the previous cases (see below).

Proposition 11. Let d(x) be a measurable function taking values in (− 1
2 ,

1
2 ) and such that

supx∈R d(x) ≤ d̄ , where d̄ ∈ (0, 1
2 ). Then there exists a unique stationary solution {Xt } of

(46), which is written as a projective moving average of the form (10) with coefficients gs,t
recursively defined as gt,t := 1 and

gs,t := Qt−s
( ∑
s<u≤t−1

ζugu,t−1,
∑

s<u≤t−2

ζugu,t−2, . . . , 0

)
, s < t, (47)

with Qt−s defined at (45).

Proof. Note that supx1,...,xj∈R |Qj(x1, . . . , xj )| ≤ �(d̄ + j)/�(d̄)�(j) =: ψj and∑∞
j=0 ψ

2
j < ∞. Therefore, the gs,t in (47) satisfy

∑
s≤t Eg2

s,t < ∞ for any t ∈ Z. The
rest of the proof is analogous as the case of Theorem 1.

7. Long memory

In this section we study the long memory properties (the decay of covariance and partial
sums limits) of projective equations (19) and (41) in the case when the coefficients αj decay
slowly as jd−1, 0 < d < 1

2 .

Theorem 2. Let {Xt } be the solution of projective equation (19) satisfying the conditions of
Theorem 1, and let μ = EXt = 0. Assume, in addition, thatQ is a Lipschitz function, namely,
there exists a constant cL > 0 such that

|Q(x)−Q(y)| < cL|x − y|, x, y ∈ R, (48)

and that there exist κ > 0 and 0 < d < 1
2 such that

bj := Q(αj ) ∼ κjd−1 as j → ∞
and

β̄j := max
0≤i<j |βi,j−i | = o(bj ) as j → ∞. (49)
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Then, as t → ∞,

EX0Xt ∼
∞∑
k=0

bkbt+k ∼ κ2
d t

2d−1, (50)

where κ2
d := κ2B(d, 1 − d) and B(d, 1 − d) is the beta function. Moreover, as n → ∞,

n−1/2−d
[nτ ]∑
t=1

Xt →D[0,1] cκ,dBH (τ), (51)

whereBH is a fractional Brownian motion with parameterH = d+ 1
2 and variance EB2

H (t) =
t2H , and c2

κ,d := κ2B(d, 1 − d)/d(1 + 2d).

Proof. Let us note that statements (50) and (51) are well known when βi,j ≡ 0, in which
case Xt coincides with the linear process Yt := ∑

s≤t bt−sζs . See, e.g. [10, Proposition 3.2.1
and Corollary 4.4.1].

The natural idea of the proof is to approximate {Xt } by the linear process {Yt }. For t ≥ 0
and k ≥ 0, define

rXt := EX0Xt =
∑
s≤0

E[gs,0 gs,t ], rYt := EY0Yt =
∑
s≤0

b−sbt−s ,

φt−k,t := gt−k,t − bk = Q

(
αk +

k−1∑
i=0

βi,k−iζt−igt−i,t
)

−Q(αk).

Then

rXt − rYt =
∑
s≤0

E[(b−s + φs,0)(bt−s + φs,t )− b−sbt−s]

=
∑
s≤0

b−sE[φs,t ] +
∑
s≤0

bt−sE[φs,0] +
∑
s≤0

E[φs,0 φs,t ]

=:
3∑
i=1

ρi,t .

Using (48), we obtain
|Eφt−k,t |2 ≤ Eφ2

t−k,t

≤ c2
LE

(k−1∑
i=0

βi,k−iζt−igt−i,t
)2

= c2
L

(k−1∑
i=0

β2
i,k−iEg2

t−i,t
)

≤ β̄2
k c

2
L

( ∞∑
i=0

Eg2
t−i,t

)

≤ β̄2
k c

2
LKQ.

This and condition (49) imply that

|Eφt−k,t | + E
1/2φ2

t−k,t ≤ δkk
d−1 for all t, k ≥ 0,
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where δk → 0 (k → ∞). Therefore, for any t ≥ 1,

|ρ1,t | ≤ C

∞∑
k=1

kd−1(t + k)d−1δt+k ≤ Cδ′t t2d−1,

|ρ2,t | ≤ C

∞∑
k=1

kd−1δk(t + k)d−1 ≤ Cδ′t t2d−1,

|ρ3,t | ≤
∑
s≤t

E
1/2[φ2

s,0] E
1/2[φ2

s,t ] ≤ C

∞∑
k=1

kd−1(t + k)d−1δkδt+k ≤ Cδ′t t2d−1,

where δ′k → 0 (k → ∞). This proves (50).
To show (51), considerZt := Xt−Yt = ∑

u≤t φu,t ζu, t ∈ Z.By the stationarity of {Zt }, for
any s ≤ t, we have cov(Zt , Zs) = ∑

u≤0 E[φu,0 φu,t−s] ≤ ∑
u≤0 E

1/2[φ2
u,0] E

1/2[φ2
u,t−s] =

o((t − s)2d−1) (see above) and, therefore, E(
∑n
t=1 Zt)

2 = o(n2d+1), implying that

n−d−(1/2)
[nτ ]∑
t=1

Xt = n−d−1/2
[nτ ]∑
t=1

Yt + op(1).

Therefore, partial sums of {Xt } and {Yt } tend to the same limit cκ,dBH (τ), in the sense of weak
convergence of finite-dimensional distributions. The tightness inD[0, 1] follows from (50) and
the Kolmogorov criterion. This completes the proof.

A similar but somewhat different approximation by a linear process applies in the case of
projective equations of (41). Let us discuss a special case of βi,j :

βi,j = 1 for all i = 0, 1, . . . and j = 1, 2, . . . . (52)

Note that, for such βi,j ,
∑
s<u≤t βt−u,u−s(E[u,t] − E[u+1,t])Xt = E[s+1,t]Xt, s < t, and the

corresponding projective equation (41) with μ = 0 and αi = bi coincides with (9). Recall
that, for bounded βi,j as in (52), condition (42) on Q together with

∑∞
i=0 α

2
i < ∞ guarantees

the existence of the stationary solution {Xt } (see Remark 4). We will also need the following
additional condition:

E(Q(E[s,0]X0)−Q(X0))
2 → 0 as s → −∞. (53)

Since E(E[s,0]X0 − X0)
2 → 0 as s → −∞, (53) is satisfied if Q is Lipschitz; otherwise,

conditions (53) and (42) allow Q to be discontinuous. Define

c2
Q,d := (E[Q(X0)])2B(d, 1 − d).

Theorem 3. Let {Xt } be the solution of projective equation (41) with μ = 0, βi,j as in (52),
Q satisfying (42), and

αk ∼ kd−1 as k → ∞ for 0 < d < 1
2 . (54)

In addition, let (53) hold. Then

EX0Xt ∼ c2
Q,d t

2d−1 as t → ∞ (55)

and

n−1/2−d
[nτ ]∑
t=1

Xt →D[0,1] c′Q,dBH (τ), c′Q,d := cQ,d

(d(1 + 2d))1/2
. (56)
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Proof. Similarly as in the proof of the previous theorem, let Yt := ∑
s≤t bt−sζs , bk :=

αkE[Q(X0)], rXt := EX0Xt, and rYt := EY0Yt , t ≥ 0. Relation (55) follows from

rXt − rYt = o(t2d−1) as t → ∞. (57)

We have Xt = ∑
s≤t gs,t ζs, gs,t = αt−sQ(E[s+1,t]Xt), EX2

t = ∑
s≤t Eg2

s,t < ∞, and
E[Q(E[s+1,t]Xt)2] ≤ c2

0 +c2
1E(E[s+1,t]Xt)2 ≤ c2

0 +c2
1EX2

t < C.Decompose rXt = rX1,t +rX2,t ,
where

rX1,t :=
∑
s≤0

αsαt+sE[Q(E[s+1,0]X0)]E[Q(E[1,t]Xt)], rX2,t :=
∑
s≤0

αsαt+sγs,t ,

and where

|γs,t | := |E[Q(E[s+1,0]X0){Q(E[s+1,t]Xt)−Q(E[1,t]Xt)}]| ≤ γ̃
1/2
1,s γ̃

1/2
2,s,t .

Here γ̃1,s := E[Q2(E[s+1,0]X0)] ≤ C (see above), while

|γ̃2,s,t | := E[(Q(E[s+1,t]Xt)−Q(E[1,t]Xt))2]
= E[(Q(E[s+1−t,0]X0)−Q(E[1−t,0]X0))

2]
→ 0 as t → ∞, (58)

uniformly in s ≤ 0, according to (53). Hence, from (54), it follows that

|rX2,t | = o(t2d−1) as t → ∞. (59)

Accordingly, it suffices to prove (57) with rXt replaced by rX1,t . We have

rX1,t = rYt +
∑
s≤0

αsαt+sφ1,s,t +
∑
s≤0

αsαt+sφ2,s,t +
∑
s≤0

αsαt+sφ3,s,t ,

where the ‘remainders’

φ1,s,t := E[Q(X0)]{E[Q(E[s+1,0]X0)] − E[Q(X0)]},
φ2,s,t := E[Q(X0)]{E[Q(E[1−t,0]X0)] − E[Q(X0)]},

and φ3,s,t := (E[Q(E[s+1,0]X0)] − E[Q(X0)])(E[Q(E[1−t,0]X0)] − E[Q(X0)])
can be estimated similarly to (58), leading to the asymptotics in (59) for each of the three sums
in the above decomposition of rX1,t . This proves (55).

Let us prove (56). Consider the convergence of one-dimensional distributions for τ = 1,
namely,

n−d−1/2SXn → N (0, σ 2), σ = c′Q,d, (60)

where SXn := ∑n
t=1Xt . Then (60) follows from

E(SXn − SYn )
2 = o(n1+2d), (61)

where SYn := ∑n
t=1 Yt and Yt is as above. We have

E(SXn − SYn )
2 = E

(∑
s≤n

ζs

n∑
t=1∨s

αt−sQ̃s,t

)2

=
∑
s≤n

n∑
t1,t2=1∨s

αt1−sαt2−sE[Q̃s,t1Q̃s,t2 ], (62)

https://doi.org/10.1239/aap/1418396244 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396244


Projective equations and nonlinear long memory 1103

where Q̃s,t := Q(E[s+1,t]Xt)− E[Q(X0)]. Let us prove that, uniformly in s ≤ t1,

E[Q̃s,t1Q̃s,t2 ] = o(1) as t2 − t1 → ∞. (63)

We have, for s ≤ t1 ≤ t2,

E[Q̃s,t1Q̃s,t2 ] = E[Q̃s,t1{Q(E[s+1,t2]Xt2)− E[Q(X0)]}]
= E[Q̃s,t1 ]{E[Q(E[t1+1,t2]Xt2)] − E[Q(X0)]}

+ E[Q̃s,t1{Q(E[s+1,t2]Xt2)−Q(E[t1+1,t2]Xt2)}]
=: ψ ′

s,t1,t2
+ ψ ′′

s,t1,t2
,

where we have used the fact that Q̃s,t1 and Q(E[t1+1,t2]Xt2) are independent. Here, thanks to
(53), we see that

|ψ ′
s,t1,t2

| ≤ E
1/2[Q̃2

s,t1
]E1/2[{Q(E[t1−t2+1,0]X0)−Q(X0)}2]

≤ CE
1/2[{Q(E[t1−t2+1,0]X0)−Q(X0)}2]

→ 0

uniformly in s ≤ t1 ≤ t2 as t2 − t1 → ∞. The same is true for |ψ ′′
s,t1,t2

| since it is completely
analogous to (58). This proves (63). Next, with (62) in mind, split E(SXn − SYn )

2 =: Tn =
T1,n + T2,n, where

T1,n :=
∑
s≤n

n∑
t1,t2=1∨s

1(|t1 − t2| > K) . . . , T2,n :=
∑
s≤n

n∑
t1,t2=1∨s

1(|t1 − t2| ≤ K) . . . ,

where K is a large number. By (63), for any ε > 0, we can find K > 0 such that

sup
{s≤t1<t2 : t2−t1>K}

|E[Q̃s,t1Q̃s,t2 ]| < ε

and, therefore,

|T1,n| < ε
∑
s≤n

n∑
t1,t2=1∨s

|αt1−sαt2−s | ≤ Cε

n∑
t1,t2=1

|r̄t1−t2 | ≤ Cεn1+2d

holds for all large enough n > 1, where r̄t := ∑∞
i=0 |αiαt+i | = O(t2d−1) in view of (54). On

the other hand, |T2,n| ≤ CKn = o(n1+2d) for any fixed K < ∞. Then (61) follows, implying
the finite-dimensional convergence in (56). The tightness in (56) follows from (55) and the
Kolmogorov criterion, similarly as in the proof of Theorem 2. This completes the proof.

Remark 5. Shao and Wu [25] discussed partial sums limits of fractionally integrated nonlinear
processes Yt = (1 − L)−dut , t ∈ Z, where LXt = Xt−1 is the backward shift, (1 − L)d =∑∞
j=0 ψj (d)L

j , d ∈ (−1, 1), is the fractional differentiation operator, and {ut } is a causal
Bernoulli shift, i.e.

ut = F(. . . , ζt−1, ζt ), t ∈ Z, (64)

in i.i.d. random variables {ζt , t ∈ Z}. The weak dependence condition on {ut } in (64), analogous
to (14) and guaranteeing the weak convergence of normalized partial sums of {Yt } towards a
fractional Brownian motion, is written in terms of projections P0ut = (E[0,t] − E[1,t])ut :

	(q) :=
∞∑
t=1

‖P0ut‖q < ∞. (65)
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Here ‖ξ‖q := E
1/q |ξ |q and q = 2 for 0 < d < 1

2 ; see [25, Theorem 2.1], and also [23]
and [24]. The above-mentioned papers verify (65) for several classes of Bernoulli shifts. It
is of interest to verify (65) for projective moving averages. For Xt of (5) and 0 < d < 1

2 ,
ut := (1 −L)dXt = ∑

s≤t ζsGs,t is a well-defined projective moving average with coefficients

Gs,t :=
∑
s≤v≤t

ψt−v(d)gs,v, s ≤ t;

see Proposition 2. For concreteness, let gs,t = ψt−s(−d)Q(E[s+1,t]Xt) as in Theorem 3 with
αj = ψj (−d). We have 	(2) = ∑∞

t=1‖G0,t‖2, where

‖G0,t‖2
2 = E

[ t∑
v=0

ψt−v(d)ψv(−d)Q(E[1,v]Xv)
]2

= E

[ t−1∑
v=0

ψt−v(d)ψv(−d)Qv,t

]2

, (66)

whereQv,t := Q(E[1,v]Xv)−Q(E[1,t]Xt) and we used
∑t
v=0ψt−v(d)ψv(−d) = 0, t ≥ 1, in

the last equality. Note thatψt−v(d)ψv(−d) < 0 have the same sign andQv,t ≈ Q(Xv)−Q(Xt)
are not negligible in (66). Therefore, we conjecture that

‖G0,t‖2
2 = O

( t−1∑
v=0

|ψt−v(d)ψv(−d)|
)2

= O(t−2(1−d))

and, hence, 	(2) = ∞ for 0 < d < 1
2 . The above argument suggests that projective moving

averages posses a different ‘memory mechanism’ from the fractionally integrated processes in
[25].
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