A COMPARISON OF EIGENVALUES OF TWO STURM-LIOUVILLE PROBLEMS

BY
YISONG YANG

Abstract

We compare, under some assumptions on mass density, the eigenvalues of the Sturm-Liouville problems satisfying homogeneous Dirichlet and Neumann boundary condition.

1. Introduction. We consider in this note the following two eigenvalue problems satisfying the Dirichlet and the Neumann boundary condition respectively

$$
\begin{equation*}
\phi^{\prime \prime}(x)+\lambda p(x) \phi(x)=0 \text { in }(-1,1), \quad \phi(-1)=\phi(1)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi^{\prime \prime}(x)+\mu p(x) \psi(x)=0 \text { in }(-1,1), \quad \psi^{\prime}(-1)=\psi^{\prime}(1)=0 \tag{2}
\end{equation*}
$$

where $p(x)>0$ is continuous over $[-1,1]$. We have two countable sets of eigenvalues $0<\lambda_{1}<\lambda_{2}<\cdots$ and $0=\mu_{1}<\mu_{2}<\cdots$ with $\lambda_{n}, \mu_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and

$$
\begin{equation*}
\mu_{n}<\lambda_{n}, \quad n=1,2, \cdots \tag{3}
\end{equation*}
$$

The recent work of Bandle and Philippin [1] sharpens the inequality (3) which states that for the mass density $p(x)$ satisfying $p(-x)=p(x)$ and $p(x)$ increasing in $(-1,0)$, we have

$$
\mu_{n} \leq \lambda_{n}-2 \lambda_{1}, \quad n=2,3, \cdots .
$$

The aim of the present note is to continue their work and study another aspect of the problem: we establish the comparison inequality $\lambda_{n} \leq \mu_{n+2}-2 \mu_{2}$, for $n=1,2, \cdots$. It is interesting to compare our condition on $p(x)$ below with that in [1] stated above.
2. Main Result. In the following three preliminary lemmas we assume $p(x) \in$ $C^{1}[-1,1]$.

LEMMA 1. Let $n \geq 2$. If $\left(\psi_{n}, \mu_{n}\right)$ is the n-th eigenpair of the problem (2), then $\left(v_{n-1}, \mu_{n}\right)$ is the $(n-1)$-st eigenpair of

$$
\begin{equation*}
\left(\frac{v^{\prime}}{p}\right)^{\prime}+\mu v=0 \text { in }(-1,1), \quad v(-1)=v(1)=0 \tag{4}
\end{equation*}
$$

Received July 21, 1987, revised August 16, 1989.
AMS subject classification: 34B25.
(c) Canadian Mathematical Society 1990.
where

$$
\begin{equation*}
v_{n-1}(x)=\int_{-1}^{x} p(s) \psi_{n}(s) d s \tag{5}
\end{equation*}
$$

Proof. Substituting (ψ_{n}, μ_{n}) into (2) and integrating, we get

$$
\begin{equation*}
\psi_{n}^{\prime}(x)+\mu_{n} \int_{-1}^{x} p(s) \psi_{n}(s) d s=0 \tag{6}
\end{equation*}
$$

that is,

$$
\left(\frac{v_{n-1}^{\prime}}{p}\right)^{\prime}+\mu_{n} v_{n-1}=0
$$

The boundary condition of v_{n-1} follows obviously from Eq. (6).
It is an elementary fact that $\left\{v_{n}\right\}$ forms an orthogonal basis of $L^{2}(-1,1)$.
LEMMA 2. Let $\left(v_{1}, \mu_{2}\right)$ and $\left(v_{n}, \mu_{n+1}\right)$ be the first and the n-th eigenpairs of the problem (4). Then $w_{n}=v_{n} / v_{1}, \sigma_{n}=\mu_{n+1}-\mu_{2}$ is the n-th eigenpair of the singular boundary value problem

$$
\begin{equation*}
\left(\frac{v_{1}^{2} w^{\prime}}{p}\right)^{\prime}+\sigma v_{1}^{2} w=0 \text { in }(-1,1), \quad \lim _{x \rightarrow-1^{+}} w^{\prime}(x)=\lim _{x \rightarrow 1^{-}} w^{\prime}(x)=0 . \tag{7}
\end{equation*}
$$

Proof. It is easily checked that w_{n} satisfies the equation in (7) over $(-1,1)$ with $\sigma=\sigma_{n}$.

For $x \rightarrow 1^{-}$, using L'Hôpital's rule, (4), and (5), we have

$$
\lim _{x \rightarrow 1^{-}} w_{n}^{\prime}(x)=\lim _{x \rightarrow 1^{-}} \frac{v_{n}^{\prime} v_{1}-v_{n} v_{1}^{\prime}}{v_{1}^{2}}=\frac{1}{2 v_{1}^{\prime}(1)^{2}} \lim _{x \rightarrow 1^{-}}\left(v_{n}^{\prime} v_{1}-v_{n} v_{1}^{\prime}\right)^{\prime \prime}=0
$$

Similarly, $w_{n}^{\prime}(x) \rightarrow 0$ for $x \rightarrow-1^{+}$.
Conversely, from the equality

$$
\int_{-1}^{1} f w_{n} v_{1}^{2} d x=\int_{-1}^{1}\left(f v_{1}\right) v_{n} d x, \quad f \in L^{2}\left((-1,1), v_{1}^{2} d x\right), \quad n=1,2, \cdots,
$$

we can verify that $\left\{w_{n}\right\}$ forms an orthogonal basis of $L^{2}\left((-1,1), v_{1}^{2} d x\right)$.
The observations given above lead us to the conclusion that $\left\{\left(w_{n}, \sigma_{n}\right)\right\}$ is a complete set of eigenpairs of the singular boundary value problem (7).

LEMMA 3. $u_{n}=v_{1} w_{n+1}^{\prime} / p, \gamma_{n}=\mu_{n+2}-2 \mu_{2} \quad(n \geq 1)$ is a solution of the singular eigenvalue problem

$$
\begin{equation*}
u^{\prime \prime}-\left[2\left(\frac{v_{1}^{\prime}}{v_{1}}\right)^{2}-\frac{p^{\prime} v_{1}^{\prime}}{p v_{1}}\right] u+\gamma p u=0 \text { in }(-1,1), \quad \lim _{x \rightarrow-1^{+}} u(x)=\lim _{x \rightarrow 1^{-}} u(x)=0 . \tag{8}
\end{equation*}
$$

The verification of this lemma is straightforward.
Now we can state our main result of this note:

THEOREM 1. If $p(x)$ satisfies (i) $p(-x)=p(x)$ and (ii) $p(x)$ is increasing in $(0,1)$, then

$$
\begin{equation*}
\lambda_{n} \leq \mu_{n+2}-2 \mu_{2}, \quad n=1,2, \cdots . \tag{9}
\end{equation*}
$$

Proof. First we assume $p(x) \in C^{1}[-1,1]$. Since v_{1} satisfies the problem

$$
\begin{equation*}
\left(\frac{v^{\prime}}{p}\right)^{\prime}+\mu_{2} v=0 \text { in }(-1,1), \quad v(-1)=v(1)=0 \tag{10}
\end{equation*}
$$

where $p(-x)=p(x)$ and the solution space of (10) is one-dimensional, we can conclude that $v_{1}(-x)=v_{1}(x)$. In particular $v_{1}^{\prime}(0)=0$. Consequently, from (10) follows:

$$
\begin{equation*}
\frac{v_{1}^{\prime}(x)}{p(x)}=-\mu_{2} \int_{0}^{x} v_{1}(s) d s \tag{11}
\end{equation*}
$$

As the first eigenfunction of the problem (4), v_{1} is of constant sign in the interval ($-1,1$); so (11) gives us $v_{1}^{\prime} / v_{1}<0$ for $x>0$. Under the hypothesis, that $p(x)$ is increasing in $(0,1)$, we have $p^{\prime} v_{1}^{\prime} / v_{1} \leq 0$ for $x>0$. By symmetry, we obtain $p^{\prime} v_{1}^{\prime} / v_{1} \leq 0$ for $x<0$. In particular,

$$
\begin{equation*}
2\left(\frac{v_{1}^{\prime}}{v_{1}}\right)^{2}-\frac{p^{\prime} v_{1}^{\prime}}{p v_{1}} \geq 0 \text { in }(-1,1) . \tag{12}
\end{equation*}
$$

Because (8) is a singular boundary value problem, we cannot apply the classical monotonicity theorem (cf., e.g., [2, p. 174]) directly to the problems (1) and (8) and using (12) to conclude that

$$
\begin{equation*}
\gamma_{n} \geq \lambda_{n}, n=1,2, \cdots, \tag{13}
\end{equation*}
$$

and hence (9). But, still, the inequality (13) can be established by imitating the argument in the proof of the classical monotonicity theorem ([2, p. 174]).
In fact, it follows from the well-known oscillation theorem ([2, p. 174]) that, as the n-th eigenfunction of (4), v_{n} has exactly $n-1$ zeros in $(-1,1)$. Hence so does w_{n}. Consequently, $w_{n}^{\prime}(x)$ has at least $\max (n-2,0)$ zeros in $(-1,1)$. This proves that u_{n} has at least $n+1$ zeros on $[-1,1]$.
Suppose, otherwise, $\gamma_{n}<\lambda_{n}$ for some $n \geq 1$. Let ϕ_{n} be the n-th eigenfunction of the problem (1) and $\alpha<\beta$ two consecutive zeros of u_{n}. We claim that there exists at least one zero of ϕ_{n} in (α, β). Otherwise we can find two consecutive zeros $\alpha_{1}<\beta_{1}$ of ϕ_{n} such that $(\alpha, \beta) \subset\left(\alpha_{1}, \beta_{1}\right)$. Since ϕ_{n} is the first eigenfunction of (1) over (α_{1}, β_{1}), we have, by virtue of (8) and the standard minimax principle for regular eigenvalue problems, the inequality

$$
\begin{aligned}
\gamma_{n} & =\int_{\alpha}^{\beta}\left(\left(u_{n}^{\prime}\right)^{2}+\left[2\left(\frac{v_{1}^{\prime}}{v_{1}}\right)^{2}-\frac{p^{\prime} v_{1}^{\prime}}{p v_{1}}\right] u_{n}^{2}\right) d x / \int_{\alpha}^{\beta} p u_{n}^{2} d x \\
& \geq \inf _{u \in W_{0}^{12}\left(\alpha_{1}, \beta_{1}\right)}\left\{\int_{\alpha_{1}}^{\beta_{1}}\left(\left(u^{\prime}\right)^{2}+\left[2\left(\frac{v_{1}^{\prime}}{v_{1}}\right)^{2}-\frac{p^{\prime} v_{1}^{\prime}}{p v_{1}}\right] u^{2}\right) d x / \int_{\alpha_{1}}^{\beta_{1}} p u^{2} d x\right\} \\
& \geq \inf _{u \in W_{0}^{12}\left(\alpha_{1}, \beta_{1}\right)}\left\{\int_{\alpha_{1}}^{\beta_{1}}\left(u^{\prime}\right)^{2} d x / \int_{\alpha_{1}}^{\beta_{1}} p u^{2} d x\right\} \\
& =\lambda_{n} .
\end{aligned}
$$

This achieves a contradiction.
Now, since u_{n} has at least $n+1$ zeros on $[-1,1], \phi_{n}$ has at least n zeros in $(-1,1)$. This contradicts the assertion of the oscillation theorem ([2, p. 174]) that ϕ_{n} has exactly $n-1$ zeros in $(-1,1)$.

Therefore the inequality (13) is proved for $p(x) \in C^{1}[-1,1]$.
If $p(x) \in C^{0}[-1,1]$, we can approximate p in $C^{0}[-1,1]$ by a suitable sequence of functions $\left\{p_{j}\right\}_{j=1}^{\infty}$ taken from $C^{1}[-1,1]$. The continuous dependence of λ_{n} and μ_{n} on p again yields the inequality (13) (cf. [1]).

The proof of Theorem 1 is complete.
3. A More General Theorem. We can also apply Theorem 1 to some other problems.

First observe that the theorem holds on any interval $[a, b]$ provided we assume that $p(x)$ is even about the point $x=(a+b) / 2$ and increasing over the interval $((a+b) / 2, b)$.

Consider the problems

$$
\begin{equation*}
\left(p(x) \phi^{\prime}(x)\right)^{\prime}+\lambda q(x) \phi(x)=0 \text { in }(-1,1), \quad \phi(-1)=\phi(1)=0 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(p(x) \psi^{\prime}(x)\right)^{\prime}+\mu q(x) \psi(x)=0 \text { in }(-1,1), \quad \psi^{\prime}(-1)=\psi^{\prime}(1)=0 \tag{15}
\end{equation*}
$$

THEOREM 2. If $p(-x)=p(x), q(-x)=q(x)$ and $p(x) q(x)$ is increasing in $(0,1)$, then the inequality (9) still holds. Here we keep the assumption $p, q>0$.

Proof. Under the change of variables:

$$
t=\int_{-1}^{x} \frac{d s}{p(s)}, \quad L=\int_{-1}^{1} \frac{d s}{p(s)},
$$

the problems (14) and (15) become

$$
\begin{equation*}
\frac{d^{2} \phi}{d t^{2}}+\lambda p(x(t)) q(x(t)) \phi=0 \text { in }(0, L), \quad \phi(0)=\phi(L)=0 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} \psi}{d t^{2}}+\mu p(x(t)) q(x(t)) \psi=0 \text { in }(0, L), \quad \psi^{\prime}(0)=\psi^{\prime}(L)=0 . \tag{17}
\end{equation*}
$$

Now since p is even with respect to $x=0$, so $x=0$ corresponds to $t=L / 2$. Because $(p q)(x(t))$ is even with respect to $t=L / 2$ and increasing in $(L / 2, L)$, applying Theorem 1 to (16) and (17) we see immediately that λ_{n}, μ_{n} satisfy (9).

Corollary 1. Under the assumption of Theorem 2, we have $\mu_{3}>2 \mu_{2}$.
COROLLARY 2. Under the assumption of Theorem 2, we have the following lower bound estimate for the gap of the first two nonzero eigenvalues of the Neumann problem (15):

$$
\mu_{3}-\mu_{2} \geq \lambda_{1}+\mu_{2} .
$$

Acknowledgements. The author wishes to thank Professor George Knightly for helpful conversations and the referee for valuable comments.

References

1. C. Bandle and G. Philippin, An inequality for eigenvalues of Sturm-Liouville problems, Proc. Amer. Math. Soc. 100 (1987) 34-36.
2. H. F. Weinberger, A First Course in Partial Differential Equations, Xerox College Pub., Lexington, Massachusetts, Toronto, 1965.

Department of Mathematics and Statistics
University of Massachusetts
Amherst, MA 01003

Current address:

Department of Mathematics and Statistics
University of New Mexico
Albuquerque, NM 87131
U. S. A.

