
Canad. Math. Bull. Vol. 33 (4), 1990 

A COMPARISON OF EIGENVALUES 
OF TWO STURM-LIOUVILLE PROBLEMS 

BY 

YISONG YANG 

ABSTRACT. We compare, under some assumptions on mass den
sity, the eigenvalues of the Sturm-Liouville problems satisfying homoge
neous Dirichlet and Neumann boundary condition. 

1. Introduction. We consider in this note the following two eigenvalue problems 
satisfying the Dirichlet and the Neumann boundary condition respectively 

(1) <j)"(x) + Xp(x)(t)(x) = 0 in (-1,1), (H- l ) = </>(l) = 0 

and 

(2) \l)"{x) + iip(x)i){x) = 0 in (-1,1), I A ' ( - I ) = ^ ' 0 ) = 0 

where p(x) > 0 is continuous over [—1,1]. We have two countable sets of eigenvalues 
0 < Ai < À2 < • • • and 0 = /zi < /i2 < • • • with Xn, \in —> oo as n —-> oo and 

(3) [in < \n, n = 1,2, •••. 

The recent work of Bandle and Philippin [1] sharpens the inequality (3) which states 
that for the mass density p(x) satisfying p(—x) = p(x) and/?(x) increasing in (— 1,0), we 
have 

M«<An —2Aj, n = 2,3, •••. 

The aim of the present note is to continue their work and study another aspect of the 
problem: we establish the comparison inequality \n < p,n+2 — 2/X2, for n = 1,2, • • •. It 
is interesting to compare our condition onp(x) below with that in [1] stated above. 

2. Main Result. In the following three preliminary lemmas we assume p(x) G 
C ' t - U ] . 

LEMMA 1. Let n>2. If(ipn, M«) ^ ^e n-th eigenpair of the problem (2), then (v„_i, /xn) 
is the (n — \)-st eigenpair of 

(4) ( - / + /xv = 0 in (-1,1), v( - l ) = v(l) = 0 
P 
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where 

(5) v„_i(*) = J p(s)\l)n(s)ds. 

PROOF. Substituting (t/;„, fin) into (2) and integrating, we get 

( 6 ) %/jn (x) + M* / _ P(s)^n(s) ds = 0 , 

that is, 

(l^ziy + ZX^-, = 0 . 
P 

The boundary condition of vn_i follows obviously from Eq. (6). 
It is an elementary fact that { vn} forms an orthogonal basis of L2(—1,1). 

LEMMA 2. Let (vi, /X2) and (vn, p,n+\ ) be the first and the n-th eigenpairs of the problem 
(4). Then wn = vnj v\, <J„ = /xw+i — /12 w f/ie n-f/i eigenpair of the singular boundary 
value problem 

2 / 

(7) ( — ) ' + ov\w = 0 in (-1,1), lim w'(x) = lim W'(JC) = 0. 11: 
p ' ^ x^-\+ ^ ' x-+\~ 

PROOF. It is easily checked that wn satisfies the equation in (7) over (—1,1) with 
a = an. 

For x —» 1~, using L'Hôpital's rule, (4), and (5), we have 

lim Wn(x) = lim ^ " ^ i = — ^ lim (v>! - vnv
,
1)

,/ = 0. 
J f — » 1 ~ J Ï — » 1 " V\ Z V j ( I ) z x-+\-

Similarly, w'n(x) —> 0 for x —• —1+ . 
Conversely, from the equality 

f_xfwnv\dx = f_<jvx)vndx, f e L 2 ( ( - l , 1), v]dx), n = 1,2, • • •, 

we can verify that { wn} forms an orthogonal basis of L2((—1,1), v\ dx}. 
The observations given above lead us to the conclusion that {(vvn, crn)} is a complete 

set of eigenpairs of the singular boundary value problem (7). 

LEMMA 3. un = v\\v'n+x/ p, ln = /in+2 — 1[ii (n > 1) is a solution of the singular 
eigenvalue problem 

v' D'V' 

(8) u - [2{—f - ^—j-]u + lpu = 0 in (-1,1), lim u(x) = lim u(x) = 0. 
Vl pV\ x-^-\+ x-*\-

The verification of this lemma is straightforward. 
Now we can state our main result of this note: 
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THEOREM 1. Ifp(x) satisfies (i) p(—x) — p(x) and (ii) p(x) is increasing in (0,1), then 

(9) Xn < pn+2 - 2/i2, n= 1,2, • • •. 

PROOF. First we assume p(x) G C[[— 1,1]. Since vj satisfies the problem 

(10) ( - ) ' + p2v = 0 in (-1,1), v ( - l ) = v(l) = 0 
P 

where p(—x) = p(x) and the solution space of (10) is one-dimensional, we can conclude 
that v\(—x) = v\(x). In particular v'^0) = 0. Consequently, from (10) follows: 

v\ (x) rx 

(11) ^ = - M 2 / V{(s)ds. 
p(x) Jo 

As the first eigenfunction of the problem (4), vi is of constant sign in the interval (—1,1); 
so (11) gives us v\/ v\ < 0 forx > 0. Under the hypothesis, that/?(;t) is increasing in 
(0,1), we have p'v\ /v\<0 for x > 0. By symmetry, we obtain p'v\ / v\ < 0 for x < 0. 
In particular, 

(12) 2(-î-)2 - y—± > 0 in (-1,1). 
vi pv\ 

Because (8) is a singular boundary value problem, we cannot apply the classical mono-
tonicity theorem (cf., e.g., [2, p. 174]) directly to the problems (1) and (8) and using (12) 
to conclude that 

(13) ln >A„, n= 1,2,- ••, 

and hence (9). But, still, the inequality (13) can be established by imitating the argument 
in the proof of the classical monotonicity theorem ([2, p. 174]). 

In fact, it follows from the well-known oscillation theorem ([2, p. 174]) that, as the 
n-th eigenfunction of (4), vn has exactly n — 1 zeros in (—1,1). Hence so does wn. Con
sequently, w'n(x) has at least max(rc — 2,0) zeros in (—1,1). This proves that un has at 
least n + 1 zeros on [—1,1]. 

Suppose, otherwise, ln < Xn for some n > 1. Let <j>n be the n-th eigenfunction of 
the problem (1) and a < (5 two consecutive zeros of un. We claim that there ex
ists at least one zero of (f>n in (a, /? ). Otherwise we can find two consecutive zeros 
a\ < /3\ of (f>n such that (a,/3) C («i,/3i). Since <j>n is the first eigenfunction of (1) 
over (au/3\), we have, by virtue of (8) and the standard minimax principle for regular 
eigenvalue problems, the inequality 

In = f ((u'nf + [ 2 Â 2 - ^H)dx/ f pal dx 

> inf 

> inf 
KeWj'2(cri,0i) 

pv\ 

it. 
pv\ 

J<*\ V Vi pV\ ' I JOL\ J 

rPi , 2 I rP\ 2 1 
/ (u) dx/ pu dx) 

JCt\ / J(X\ J 
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This achieves a contradiction. 
Now, since un has at least n + 1 zeros on [—1,1], <j)n has at least n zeros in (—1,1). 

This contradicts the assertion of the oscillation theorem ([2, p. 174]) that <j>n has exactly 
n — 1 zeros in (—1,1). 

Therefore the inequality (13) is proved for p(x) G C1 [— 1,1]. 
If p{x) G C°[- l , 1], we can approximate p in C°[- l , 1] by a suitable sequence of 

functions {PJ}°1{ taken from C1 [— 1,1]. The continuous dependence of A„ and p,n on 
p again yields the inequality (13) (cf. [1]). 

The proof of Theorem 1 is complete. 

3. A More General Theorem. We can also apply Theorem 1 to some other prob
lems. 

First observe that the theorem holds on any interval [a, b] provided we assume that 
p{x) is even about the point x = (a+b)/ 2 and increasing over the interval ({a+b)/ 2, b). 

Consider the problems 

(14) (p(x)$f(x))' + \q(x)$(x) = 0 i n ( - l , 1), </>(-!) = </>(l) = 0 

and 

(15) (p{xW{x))' + tiq(x)tl>(x) = 0 in (-1,1), i / / ( - l ) = i/>'(l) = 0 

THEOREM 2. Ifp(-x) = p(x), q(—x) = q(x) andp(x)q{x) is increasing in (0,1), then 
the inequality (9) still holds. Here we keep the assumption p,q > 0. 

PROOF. Under the change of variables: 

r* ds r /-i ds 
J-\ p(s) J-\ p(s) 

the problems (14) and (15) become 

(16) ^ -y + \p(x(t))q(x(t))<t) = 0 in (0,L), 0(0) = 0(L) = 0 

and 

(17) ^ + fip(x(t))q(x(t))i; = 0 in (0,L), V>'(0) = V>U) = 0. 

Now since p is even with respect to x = 0, so x — 0 corresponds to t — Lj 2. 
Because (pq)(x(tf) is even with respect to t — Lj 2 and increasing in (L/ 2, L), applying 
Theorem 1 to (16) and (17) we see immediately that A„, \in satisfy (9). 
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COROLLARY 1. Under the assumption of Theorem 2, we have /X3 > 2/i2-

COROLLARY 2. Under the assumption of Theorem 2, we have the following lower 
bound estimate for the gap of the first two nonzero eigenvalues of the Neumann problem 
(15): 

M - fl2 > Ai +/X2. 
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