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SUMMARY

Capture–recapture analysis has been used to evaluate infectious disease surveillance. Violation

of the underlying assumptions can jeopardize the validity of the capture–recapture estimates

and a tool is needed for cross-validation. We re-examined 19 datasets of log-linear model

capture–recapture studies on infectious disease incidence using three truncated models for

incomplete count data as alternative population estimators. The truncated models yield

comparable estimates to independent log-linear capture–recapture models and to parsimonious

log-linear models when the number of patients is limited, or the ratio between patients registered

once and twice is between 0.5 and 1.5. Compared to saturated log-linear models the truncated

models produce considerably lower and often more plausible estimates. We conclude that for

estimating infectious disease incidence independent and parsimonious three-source log-linear

capture–recapture models are preferable but truncated models can be used as a heuristic tool to

identify possible failure in log-linear models, especially when saturated log-linear models are

selected.

INTRODUCTION

Surveillance of infectious diseases is an essential part

of public health. Mandatory notification is one of the

mechanisms to carry out such surveillance but under-

notification has been widely reported. For meaningful

interpretation of the number of patients with infec-

tious diseases the completeness of notification should

be estimated. This can be done through a statistical

technique called capture–recapture analysis. Based on

certain assumptions, capture–recapture methods use

information on the overlap of linked disease registers

to estimate the number of patients unknown to

all registers and thus the estimated total number of

patients [1]. Completeness of notification can then be

assessed relative to the estimated total number of

patients. In biomedical sciences capture–recapture

analysis is frequently used for estimating the number
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of accidents and injuries [2] and patients with mostly

chronic diseases such as congenital deformities [3],

insulin-dependent diabetes mellitus [4], cancer [5],

neurological conditions [6] or rheumatological dis-

eases [7]. Less frequently it has been used for evalu-

ating infectious disease surveillance, especially when

record-linkage is based on more than two registers.

The validity of capture–recapture estimates de-

pends on possible violations of the underlying as-

sumptions: cases can be uniquely identified (i.e.

registers have a perfect positive predictive value),

perfect record-linkage (i.e. no misclassification of

records), a closed population (i.e. no immigration or

emigration in the time period studied) and a homo-

geneous population [i.e. no subgroups with markedly

different (re)capture probabilities]. In two-source

capture–recapture methods one must also assume in-

dependence between registers [i.e. the probability of

being observed in one register is not affected by being

(or not being) observed in the other registers]. In the

three-source capture–recapture approach pairwise

dependencies, i.e. dependencies between two registers,

can be identified and accounted for in a log-linear

model [1, 8–11]. The three-way (highest-order) inter-

action, however, i.e. dependency between all three

registers, cannot be incorporated in the model and its

absence must be assumed.

In epidemiological studies violation to some degree

of most of the underlying capture–recapture assump-

tions is unavoidable. This and other limitations of

capture–recapture analysis are described elsewhere in

more detail [10, 12–19]. Infectious diseases carry an

elevated risk that some capture–recapture analysis

assumptions are violated. Especially absence of de-

pendence between the available registers, including

three-way interaction, and heterogeneity among the

patients cannot be excluded and should be expected.

Consequently, the validity of two-source and three-

source capture–recapture studies requires critical

scrutiny.

Sometimes, it becomes evident that a capture–

recapture model breaks down and produces erratic

results. While performing three-source log-linear

model capture–recapture studies on the completeness

of notification of tuberculosis in The Netherlands

[20] and England we were confronted with unex-

pected and unrealistic estimates of tuberculosis inci-

dence, despite using well-described procedures for

finding the best log-linear model [21]. In this context,

solely relying on three-source capture–recapture

analysis without any cross-validation seems to be

inappropriate. We suggest that three-source cap-

ture–recapture analyses should be complemented by

alternative methods to arrive at, and cross-validate,

estimates of population size. Alternative models re-

lated to capture–recapture analysis have been de-

scribed and offer the opportunity to cross-validate

outcomes. The aim of this study is to re-examine the

data of published and current three-source log-linear

model capture–recapture studies on infectious disease

incidence with various truncated models for incom-

plete count data and describe the apparent agreement

or discrepancy of the estimates.

METHODS

Data sources

Data sources used were 19 datasets in 16 published

or current three-source log-linear model capture–

recapture studies on infectious disease incidence

known to us.

Truncated population estimators

The data sources were re-examined with three

alternative population estimators: a truncated bi-

nomial model, a truncated Poisson mixture model

(Zelterman) [22] and a truncated Poisson model

(Chao) [23, 24]. Out of the many possible methods we

have chosen this combination of truncated models

because they have been described as an alternative to

capture–recapture methods [10, 25], can be used on

the same data that is needed for the three-source log-

linear model and are easy to apply [26, 27].

In epidemiology, truncated estimators are usually

applied to frequency counts of observations of in-

dividuals in a single data source [28]. They aim to

estimate the number of unobserved persons (falling in

the zero-frequency class) based upon information on

the number of times a person has been observed.

Technically, one assumes a specific truncated distri-

bution of the observed data, e.g. Poisson or binomial,

and then extrapolates from the observed series to

the unobserved number of people never seen [10].

Observed frequency distributions may not be strictly

Poisson and to relax this assumption Zelterman based

his model on a Poisson mixture distribution, allegedly

allowing greater flexibility and applicability on real-

life data [28]. Conceptual aspects of the Zelterman

and Chao models have been discussed in some detail

elsewhere [27, 29–31]. The simple truncated esti-

mators do not need statistical packages. In the social
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sciences truncated models have been employed to es-

timate the size of hidden populations such as crimi-

nals [26, 32], illegal residents [33] and illicit drug users

and homeless persons [27–29, 34]. To our knowledge,

truncated estimators have not been used before to

estimate the number of infectious disease patients.

As with capture–recapture analysis, the validity

of the estimates of truncated models depends on

the possible violation of the underlying assumptions.

These assumptions are similar to the capture–

recapture assumptions described earlier but in ad-

dition equiprobability (i.e. equal ascertainment prob-

abilities of all registers) should be assumed when

using multiple sources [10]. Some truncated models

are arguably more robust to population heterogeneity

because they are partly based upon the lower fre-

quency classes, and the people seen rarely are as-

sumed to have a greater resemblance with the people

never seen. This relative insensitivity to violation of

the homogeneity assumption of some truncated esti-

mators is supported mathematically and through

simulation studies but these can occasionally under-

estimate the true population size in the presence of

heterogeneity [22, 29].

Frequency counts

It is possible to extract frequency counts for the

truncated models from multiple-source capture–

recapture data, allowing us to use the reported data

from the log-linear studies for the truncated models.

The ratio between the number of patients registered

once ( f1) and registered twice ( f2) plays an important

role in the truncated models. When ‘1’ represents

being known to a register and ‘0’ represents being

unknown to a register, and three linked registers are

used, frequency count f1 is the sum of the cells 100,

010 and 001 in the 2r2r2 contingency table and

frequency count f2 corresponds to the sum of the cells

110, 101 and 011. Similarly, patients observed in all

three registers, f3, are denoted as 111. For all 19

datasets the number of patients in these seven cells are

shown later. We use the f1/f2 ratio to examine a poss-

ible relationship between this ratio and the perform-

ance of truncated models vis-à-vis the log-linear

models.

RESULTS

Table 1 (available in the online version of the paper)

shows the various three-source log-linear model

capture–recapture studies of infectious disease inci-

dence and completeness of notification with the

number of patients observed and their frequency

counts, the objective of the study, the data sources

used and the selected log-linear model. The studies

involved eight infectious diseases and were performed

at the local, regional or national level. One study

collected data over a 4-months period, the other stud-

ies over 1- to 5-year periods. The observed number

of patients varied from 33 to 28 678. Notification,

laboratory and hospital registers were the most con-

ventional data sources used. The distribution of the

patients over three linked registers in the various

three-source capture–recapture studies of infectious

diseases is shown in Table 2 (available online).

The log-linear and truncated model estimates with

their respective confidence and prediction intervals

are shown in Table 3 (available online), as well as the

f1/f2 ratio among the observed patients and the coef-

ficient of variation of the data source probabilities

(see Discussion). The capture–recapture studies

varied in estimated number of patients from 46 to

42 969. A second truncated Poisson estimator, Chao’s

bias-corrected homogeneity model,

est(N)=obs(N)+[( f1
2xf1)=(2( f2x1))],

gave similar estimates as Chao’s heterogeneity model

[35]. A second truncated binomial estimator,

est(N)=obs(N)=[1x(1=(1+f2=f1))
3],

gave similar estimates as the truncated binomial

model used (data not shown).

f1/f2 ratio

On the basis of the f1/f2 ratio the studies can be div-

ided in four categories :

(a) f1/f2<0.5 (dataset 7). In this study all estimates

were similar but the number of observed patients

was small.

(b) 0.5<f1/f2<1.5 (datasets 1, 2, 6, 8–10, 13a, 13b, 14,

16a, 16b). In these studies the truncated binomial

model and Zelterman’s model gave similar results

as the independent (without interactions) or par-

simonious log-linear model while Chao’s model

estimates were slightly higher. When a saturated

log-linear model (with all two-way interactions)

was selected the truncated estimates were con-

siderably lower than the log-linear model esti-

mates.
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(c) 1.5<f1/f2<3.5 (datasets 5, 11, 12, 15). In the first

study the results of all truncated models were

similar to the parsimonious log-linear model esti-

mate but the number of observed patients was

small. In the second study the estimates of

Zelterman’s and Chao’s truncated models were

lower but within the 95% confidence interval

(CI) of the parsimonious log-linear model esti-

mate while the truncated binomial model estimate

was considerably lower. In the third study all

truncated model estimates were considerably

lower than the saturated log-linear model esti-

mate, the truncated binomial estimate again being

lowest. In the fourth study all truncated model

estimates were lower than the saturated log-linear

model estimate but fell within the broad 95% CI,

the truncated binomial model estimates again

lowest.

(d ) f1/f2>3.5 (datasets 3a, 3b, 4). In all studies the

truncated model estimates were considerably

higher than the parsimonious log-linear model

estimates, especially the Zelterman and Chao

models.

Selected log-linear model

On the basis of the selected log-linear model the

studies can be divided in three categories :

(a) Independent log-linear model (datasets 1, 2). In

these studies the truncated models produce simi-

lar estimates as the log-linear model.

(b) Parsimonious log-linear model (datasets 3–11). In

the 11 studies with a parsimonious log-linear

model selected three observations can be made:

. In the three studies with f1Af2 (datasets 3, 4) the

truncated binomial model estimates a higher

number of patients than the log-linear model

while the truncated Poisson and Poisson mix-

ture models estimate a considerably higher

number of patients.

. In the three studies (datasets 5–7) with a small

number of observed patients the estimates of

the log-linear model and truncated Poisson,

Poisson mixture and binomial models are

comparable.

. In the studies with the f1/f2 ratio between 0.5

and 1.5 (datasets 8–10, 13b) the truncated

model estimates are similar to the log-linear

model but the Chao models can be relatively

higher and in one study the truncated Poisson

mixture estimate was relatively low.

(c) Saturated log-linear model (datasets 12–16, apart

from 13b). In all but one of the studies with a

saturated model selected (datasets 12, 13a, 14, 16)

the truncated models gave considerable lower and

mutually comparable estimates.

DISCUSSION

Main findings

In three-source log-linear model capture–recapture

studies of infectious disease incidence with an inde-

pendent log-linear model selected, truncated models

yield comparable estimates. The truncated models

also give similar results when parsimonious log-linear

models are selected and the number of patients is

limited or the f1/f2 ratio is between 0.5 and 1.5. When

f1Af2 truncated models give considerable higher

estimates than parsimonious log-linear models.

Compared to saturated log-linear models the trunc-

ated models produce considerably lower and often

more plausible estimates.

Capture–recapture analysis and chronic diseases

For human diseases capture–recapture analysis has

predominantly been applied to estimate the preva-

lence, incidence or completeness of registers of specific

groups of diseases, often diseases with a chronic

character as mentioned earlier. Apparently the

characteristics of most of these diseases, their patients

and their registers best fulfil criteria for feasibility

of capture–recapture studies as well as validity of the

underlying assumptions. Perhaps with the exemption

of some neurological and rheumatological conditions

the case-definition is probably unambiguous and

uniform over the various registers. Arguably, for

these categories of diseases sufficient registers are

available and possible relationships between these

registers, e.g. clinical registers, laboratory registers,

health insurance registers or patient support and

advocacy group registers, be they positive or negative,

could be avoided by source selection or source

merging or accounted for in a log-linear model, thus

limiting violation of the independent registers as-

sumption. The permanent character of most of these

conditions can reduce violation of the closed popu-

lation assumption.
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Capture–recapture analysis and infectious diseases

For infectious diseases the number of available regis-

ters for record-linkage, usually notification-, labora-

tory- or hospital-based registers, is often limited and

(strong) positive interaction between these registers

should be expected as a result of the characteristics

of infectious disease diagnosis and treatment, and

public health regulations. Infectious disease control

and surveillance is often organized around close

collaboration between clinicians, microbiologists

and public health professionals, such as infectious

disease and tuberculosis physicians and nurses. Only

two of the 19 datasets studied selected the indepen-

dent log-linear model and 11 datasets selected parsi-

monious log-linear models incorporating one or two

pairwise dependencies. However, six datasets selected

the saturated log-linear model, i.e. including all two-

way interactions and assuming absence of the three-

way interaction [16, 36]. Our studies of tuberculosis

incidence in England and, before correction for sug-

gested imperfect record-linkage and remaining false-

positive hospital cases, in The Netherlands both

selected a saturated model, resulting in unexpectedly

and unrealistically high estimates of the number of

tuberculosis patients. The two previous three-source

log-linear model capture–recapture studies of tu-

berculosis incidence resulted in a parsimonious model

and both produced plausible estimates within the

range of prior expectations [37, 38]. According to

Hook & Regal, if the saturated model is selected by

any criterion the investigator should be particularly

cautious about using the associated outcome [10].

At the time of our studies on tuberculosis incidence

all but one of the published three-source log-linear

capture–recapture studies of infectious incidence

used independent or parsimonious log-linear models

(studies 1–11). The one published study selecting a

saturated log-linear model (study 12) gave a much

higher estimate (n=1314) of the number of hepatitis

A patients in an outbreak in Taiwan than later

established by serology results (n=545) [19]. Recently

a three-source log-linear model capture–recapture

study of meningococcal disease incidence also selected

a saturated log-linear model and resulted in relatively

high estimates (study 16) [39]. Perhaps confidence

in the validity of capture–recapture results may

reflect publication bias in favour of apparently

successful capture–recapture studies [40]. The un-

expectedly high estimates of the saturated log-linear

model capture–recapture studies do not result from

violation of the ‘absent three-way interaction’ as-

sumption. In the case of infectious disease registers,

existing three-way interaction is almost certainly

positive, causing a capture–recapture estimate biased

downwards [39]. The reason for the high estimates

must, therefore, be violation of (a combination of)

the other underlying assumptions. After correction

for possible false-positive records and possible im-

perfect record-linkage the capture–recapture studies

on tuberculosis and meningococcal disease in The

Netherlands (studies 13 and 16) produced much lower

and lower estimates, respectively. Compared to an

initial saturated log-linear model, a covariate log-

linear capture–recapture model, reducing violation of

the homogeneity assumption, also resulted in a

much lower estimate of 886 (95% CI 827–1022)

Legionnaires’ disease patients in The Netherlands

(study 15).

Truncated estimators and infectious diseases

Infectious disease studies where an independent log-

linear model was selected produce estimates very

similar with the truncated models, which can be partly

explained by the independent register assumption

underlying the truncated models when applied to

three registers. That truncated estimators perform

well when data are sparse is demonstrated in studies

5, 6 and 7 as the estimates of the log-linear and the

various truncated models are similar. The truncated

models also give similar results as the log-linear

models when 0.5<f1/f2<1.5 but give considerably

higher estimates when f1Af2. In the case of saturated

log-linear models (studies 12–16), with unexpectedly

high estimates of infectious disease incidence, the

lower truncated model estimates are more plausible

but are they also preferable? We have two arguments

to support the view they might be:

(1) In study 12 the saturated log-linear model esti-

mated 1314 patients with hepatitis A infection

in an outbreak in Taiwan while the truncated

models estimate between 500 and 600 patients.

The National Quarantine Service of Taiwan, on

the basis of serology tests, later concluded that

the true number of infected persons was about

545, making this one of the few capture–recapture

datasets where later a true number of patients was

established [19].

(2) A saturated log-linear model in dataset 13a gave

an implausible estimate of 2053 (95% CI 1871–

2443) tuberculosis patients in The Netherlands in

18 N. A. H. van Hest and others
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1998, while truncated models estimated between

1600 and 1675 patients. The implausible estimate

caused the investigators to have a critical look at

the data again and make further corrections for

probable imperfect record-linkage and possible

remaining false-positive records in the hospital

register. The parsimonious log-linear model of

dataset 13b fitted the adjusted data well and gave

an estimate of 1547 (95% CI 1513–1600) tu-

berculosis patients and corresponding truncated

model estimates. The initial truncated model es-

timates came relatively close to the final log-linear

model estimate.

The equiprobability and number of data source

assumptions

The truncated binomial model assumes that all

sources have the same probability of capturing a case.

In addition the truncated Poisson model assumes

an infinite number of sources, although in our data

the number of sources was limited to three. On this

argument the truncated binomial model for three

data sources is a more realistic alternative esti-

mator. However, any departure from equiprobability

results in an estimation error, which analytically

is overestimation (see Appendix). Realistic estimates

of this error can be obtained from the data. In Table 3

the last column shows the coefficients of variation,

a measure of variability in the coverages of the

three data sources for each study. This is calculated as

the standard deviation divided by the mean from

the three quantities N1 (number of cases known on

source 1), N2 (number of cases known on source 2)

and N3 (number of cases known on source 3). We

demonstrate the possible effect of violation of the

equiprobability assumption by studies 4 and 11. For

study 4, which has a high coefficient of variation

(0.86), if the sources were truly independent, the

number of unobserved cases would be 702, calculated

by fitting the log-linear model with main effects only.

Our truncated binomial estimator gives 1325 cases,

nearly twice as large. For study 11, with a low co-

efficient of variation (0.06), independence implies

that there are 155 unobserved cases, while the trunc-

ated binomial estimate is 212, an overestimation by

about 30%. Studies 3 and 4 indicate that the high f1/f2
ratios result from violation of the equiprobability as-

sumption, producing overestimates by the truncated

models.

Two-source validation

Any three-source study can be used to test two-source

estimation by treating one source as though it were a

complete list of cases and extract a complete 2r2

table. We demonstrate this for two studies, numbers

4 and 11, which we chose above for their coefficients

of variation and took register 3 as the complete set.

Validation was by comparing the Petersen estimator

(N10 N01/N11) [1] and the truncated binomial estimator,

which for two lists is f1
2/(4f2), on the 2r2 table

with the known ‘unlisted’ number. For study 4 there

were 451 ‘unlisted’ cases, i.e. on neither of registers

1 and 2. The Petersen estimator is 37 and the trunc-

ated binomial estimator 42. The two estimators are

similar because registers 1 and 2 have approximately

equal coverage but both are far short of the true

figure (Zelterman and Chao models estimates are 79

and 84, respectively). For study 11 there were 161

‘unlisted’ cases and the two estimators were 57 and

64. Again the estimators agree but are short of the

true figure. Now the Zelterman and Chao model es-

timates are 107 and 130, respectively, and perform

slightly better. However, we had some hesitation

in extracting 2r2 tables from three-source capture-

recapture data, more specifically from capture–

recapture studies on infectious disease incidence. As

explained earlier, (positive) interdependencies be-

tween the three conventional registers used for such

studies should be expected. Extracting 2r2 tables

ignores possible conditional dependence confounding

the results thus obtained. The log-linear model in

study 4 included one interaction term for pairwise

dependencies and the log-linear model in study 11

included two such interaction terms, which may ex-

plain the underestimation in the Petersen and trunc-

ated estimators. We therefore also validated the two

studies with independent log-linear models (studies 1

and 2).We took register 2 as the complete set for study

1 and register 3 as the complete set for study 2. For

study 1 there were 73 ‘unlisted’ cases. The Petersen

estimator, 43, is a little low, but the truncated bi-

nomial estimator, at 201, is too high (Zelterman and

Chao model estimates are 397 and 401, respectively).

The discrepant (over)estimate by the truncated

models can be explained by the different coverages of

registers 1 and 3, i.e. violation of the equiprobability

assumption. In study 2 the coefficient of variation was

low and the coverage of registers 1 and 2 similar. For

study 2 there were 22 ‘unlisted’ cases. The Petersen

estimator and the truncated binomial estimator are
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both 25 and similar to the known ‘unlisted’ number,

explained by almost absent violation of both the in-

dependent sources and equiprobability assumptions.

The Zelterman and Chao model estimates are 43 and

51, respectively and the discrepancy with the trunc-

ated binomial model estimate can be explained by

violation of the ‘ infinite number of sources ’ assump-

tion.

Alternative models

As an alternative to log-linear capture–recapture

models a structural source model has been proposed

[36]. Whereas log-linear models only partly identify

and incorporate dependencies between registers, the

structural source model models potential inter-

dependencies of the registers and heterogeneity of the

population, partly based on prior knowledge, and es-

timates the probabilities of conditions that produce

these interactions between the registers. However,

the published data of the capture–recapture studies

were insufficient to re-examine these studies with

a structural source model.

CONCLUSION

We have indicated conditions where estimates of in-

fectious disease incidence from log-linear models

are similar or dissimilar to alternative truncated

models for incomplete count data. Our results

suggest that for estimating infectious disease inci-

dence and completeness of notification indepen-

dent and parsimonious three-source log-linear

capture–recapture models are preferable. When satu-

rated models are selected as best-fitting model and

the estimates are unexpectedly high and seem im-

plausible, first, the data should be re-examined with

truncated models as a heuristic tool, in the absence

of a gold standard, to identify possible failure in

the saturated log-linear model when the truncated

models produce a lower estimated number of infec-

tious disease patients. Second, in case of such dis-

crepancy between the log-linear and the truncated

model estimates, the data should be re-examined

for possible violation of the underlying capture–

recapture assumptions, such as imperfect record-

linkage, false-positive records or heterogeneity,

corrected and the capture–recapture analysis re-

peated on the corrected data. When after repeated

capture–recapture analysis the discrepancy between

the log-linear and the truncated model estimates re-

mains or no violation of the underlying assumptions

can be identified, the investigator should be cautious

about using the associated outcome [10]. Using

truncated model estimates as an early alert could

prevent flawed capture–recapture estimates finding

their way into the scientific literature. The role of the

f1/f2 ratio in the agreement or disagreement between

three-source log-linear capture–recapture and trunc-

ated model estimates for the number of infectious

disease patients, especially when a parsimonious log-

linear model is selected, should be the subject of fur-

ther mathematical or statistical studies.

APPENDIX

Equations for the truncated population estimators

Truncated binomial model :

est(N)=obs(N)+( f1)
2=3f2:

Truncated Poisson mixture model :

est(N)=obs(N)=[1xexp(x2f2=f1)]:

Truncated Poisson heterogeneity model :

est(N)=obs(N)+( f1)
2=2f2:

Equiprobability

If the truncated binomial model is true, i.e. if the

sources are independent and equiprobable with

probability of capturing any case=p, our estimator

(f1)
2/(3f2) is correct in the sense that the expected

number of unlisted cases is given by

Ef0=Nq3=
(Ef1)

2

3Ef2
: (1)

If we introduce a small departure from equiprob-

ability so that the list probabilities are (pxh, p, p+h)

instead of (p, p, p), the estimation error can be de-

fined as

g(h, p)=
(Ef1)

2

3Ef2
xEf0: (2)

Differentiating with respect to h, we find that

g(0, p)=
@g

@h
(0, p)=0;

@2g

@h2
(0, p)=

2N(1xp)

3p2
, (3)

so that we overestimate, at least for small h. The same

happens if we consider an asymmetrical departure
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(pxh, p, p). In that case,

g(0, p)=
@g

@h
(0, p)=0;

@2g

@h2
(0, p)=

2N(1xp)

9p2
, (4)

and there is again an overestimate.
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