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UNIFORMLY LIPSCHITZIAN SEMIGROUPS 
IN HILBERT SPACE 

BY 

D A V I D J. D O W N I N G A N D W I L L I A M O. RAY ( 1 ) 

ABSTRACT. Let K be a closed, bounded, convex, nonempty sub
set of a Hilbert Space $?. It is shown that if 0" is a left reversible, 
uniformly fc-lipschitzian semigroup of mappings of K into itself, 
with fc < J2, then & has a common fixed point in K. 

1. Introduction. Let ^ = { T j a e A be a semigroup of mappings of a metric 
space (M, d) into itself. Such a semigroup is said to have a common fixed point 
if there exists x0eM with Toc(x0) = x0 for all a e A ; ÏÏ is said to be uniformly 
k-lipschitzian semigroup if, for each x, y e M and a e A, 

d(T a(x),T a(y))<fcd(x,y). 

Uniformly k-lipschitzian semigroups were introduced (in a slightly more gen
eral form) by K. Goebel, W. A. Kirk, and R. L. Thele in [2], and they also 
assumed that the semigroup ÏÏ was left reversible (i.e., every two right ideals in 
ST have non-empty intersection). This latter is automatically fulfilled if, for 
example ÏÏ is commutative, and in particular if ^ = {Ts}SG[0oo). The basic result 
of [2] asserts that if E is a uniformly convex Banach space then there is a k 0 > 1 
such that, whenever K ç E is a closed, bounded, convex set and £T is a left 
reversible uniformly k-lipschitzian semigroup of mappings from K into K with 
k < k0, then ST has a common fixed point in K. Precisely how large k0 may be 
taken to be remains, even in Hilbert space, an open question; the estimate 
provided for Hilbert space in [2] was V5/2, with an upper bound of 2. In the 
special case where ÏÏ consists of iterates of a single mapping T:K^> K, T is 
said to be uniformly k-lipschitzian mapping. These mappings were first studied 
by K. Goebel and W. A. Kirk in [1]. In [4], E. Lifschitz proved, using a 
technique different from the one we employ below, that in Hilbert space a 
uniformly fc-lipschitzian mapping with k<-j2 has a fixed point. Our main 
purpose in this note, accomplished in Section 2, is to show that the estimate of 
V2 is valid under the more general semigroup assumptions. 
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2. Uniformly fc-Lipschitzian semigroups. The main result of this note may 
be stated as follows: 

THEOREM 1. Let X be a Hilbert space and let K be a nonempty, closed, 
convex, bounded subset of %£. Let ^ = {T a } a e A be a left reversible semigroup of 
mappings: Ta:K^K for each aeA. If ST is uniformly k-lipschitzian with 
k <y]2, then there exists x0eK with Ta(x0) = x0 for oil aeA. 

The basic idea of our proof is the same as the proof of Theorem 2.1 in [2], 
and we include many of the details only for the sake of completeness; our 
result requires, however, somewhat more refined bounds on the quantity d(x) 
defined below. These bounds, in turn, are motivated by a result of N. 
Routledge [5] (cf., [3], page 192) which asserts that, in Hilbert space, the 
diameter of a set is equal to V2 times the optimal Chebyshev radius of the set. 

Proof of Theorem 1. We may assume fc>l. For each aeA, let 3'OL = 
{ T a o T : T e f } and for each xeK, let STCi(x) = {T(x):TeSro}. In addition set 
d(x) = infaeA{sup||x-Tx||:Te£Ta}. It will suffice to show d(xo) = 0 for some 
x0eK. For suppose this is the case; since ST is left reversible, the family 
{T«}«6A forms a directed set under the relation: 

(1) ^ « ^ ^ 3 if and only if y a c y 3 . 

Now if x a G^ a (x 0 ) for each aeA, the fact that d(xo) = 0 yields that the net 
{*«LeA converges to x0; and thus, iî Te ST, {Tx a} a e A converges to Tx0. But for 
Te ST, {T^(xo)} a e A is a subset of {^a(x0)} and TxaeT3~a(x0) for all aeA. 
This implies that the net {Tx a} a e A converges to x0, whence Tx0 = Xo for all 
TeST. 

Now to see d(xo) = 0 for some x0eK, fix xeK. Let R(x) = 
{r>0:5^(x)cB(y; r) for some aeA and yeK} and let r0(x) = r0 = inf JR(x). 
Note that if r<r0(x) and zeK, then for all aeA, there exists TeST^ with 

(2) \\z-Tx\\>r. 

Let e > 0 and set 
D(r0,a,e)= f| B(Tx;r0 + e ) n K 

T<=2ra 

Clearly for each e > 0 , there exists aeA with D(r0, a, e) £ 0. Also, for fixed e, 
the family {D(r0, a, e )} a e A is an increasing net when directed as in (1). Thus if 
Ce = {JaeAD(r0,a,e), Ce is nonempty and convex. It then follows that if 
C = n e >o (clCe n K ) , C is also nonempty. Let g(x)eC. We may assume r 0 > 0 ; 
for if ro = 0, then for each e > 0 there exists aeA with | |g(x)-Tx| |<e for all 
TeST^. Thus for each Te3~a, 

||g(x) - Tg(x)|| < ||g(x) - T2x|| +1| T2x - Tg(x)|| 

< e + fc||Tx-g(x)|| 

< e ( l + k) 
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and so d(g(x)) = 0. Fix e > 0 , e<min{r0/2, d(g(x))/2}, and À G[0,1] . Choose 
a G A so that 

(3) | |g (x)-T a (g(x)) |M(g(x)) + e, 

and choose |3 G A with 

| |g(x)-Tx| |<r 0 + e for all TeST^. 

Now, since £T is a semigroup, Ta ° T3 = TT for some 7 G A. Let JUL G A so that 
T ^ G ^ H ^ ; then J ^ c ^ n ^ . If T e ^ , there exists T G ^ with T = 
Ta o f. This yields for TeJ^ 

( 4 ) | |Ta(g(x))-Kc|| = ||Ta(g(x))-TaoTSc|| 

<fc| |g(x)-fx| |<fc(r0 + e), 

and since ïï^ ç 5"p, 

(5) | | g (x ) -Tx | |< r 0 +8 

for all TeST^. Finally, by (2), we may choose T0e2r^ with 

(6) | |(l-A)Ta(g(x)) + Ag(x)-To(x) | |>r 0 -6 . 

Set u = g(x)-T0x, v = Ta(g(x))-T0x, so u - u = g(x)-T a(g(x)) . By (6), 
||ÀU + ( 1 —À)u||>r0 —e and so by (4) and (5) we have 

(r0- e)2<| |Aw4-(l-A)i; | |2<A2(ro + 8)2 + 2A(l-AKM ,D) + k 2 ( l -A) 2 ( ro+£) 2 

thus 

( r 0 -8 ) 2 -A 2 ( r 0 + e ) 2 - fc 2 ( l -A) 2 ( r 0 +8) 2 <2A( l -AK M , t ; ) 
or 

-2{u>V}^ Mï^ô • 

Using this, we obtain 

| | u -u | | 2 <(r 0 + £)2-2<u, v) + k2(r0 + e)2 

,2 , - ( r 0 + e)2 + A2(r0 + e)2+fc2(l-X)2(r0 + e)2 , , 2 , 
-.{r0+eY+ 77:—CI +kz(r0 + eY 

( 7 ) A( l -A) 

A(l-A)(r0 + e ) 2 - ( r o - £ ) 2 + A2(r0 + e ) 2 + fc2(l-A)2(r0 + 6)2 

= +K(l-K)k2(r0+ef 

A(l -A) 

By (3), 

(d(g(x)) + e ) 2 s | | u - « | | 2 
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Combining this inequality with (7) above and taking the limit as e —> 0, 

., , ^^(l-\)r2-r2 + \2r2 + k2(l-k)2r2 + \(l-k)k2r2 

digix)) s W^x) 
_ A ( l - À ) r g - ( l - À 2 ) r g + fc2(l-À)2rg + À(l-À)fc2rg 

A( l -A) 

\rl-(l + \)rl + k2(l-k)rl + \k2rl 

A 

Letting A —» 1, 

d(g(x))2^(k2-l)rl or d(g(x))<V(fe2-Dr0 

It is clear that r0(x)<d(x) and that 

| |g(x)-x| |^r0(x) + d(x)<2d(x). 

Thus, for some £ < 1 (£ = V(k2 -1 ) ) and for each x e K , w e have shown that there 
exists g(x) G K with 

d(g(x))<£d(x), | |g(x)-x| |<2d(x). 

Define a sequence {xn} in X by fixing x0eK and letting xn+1 = g(xn) for 
n = 0 , 1 , 2, If foCO or d(xn) = 0 for any n, we are done. Otherwise note 

| | x n + 1 - x n | | < 2 d ( x n ) < 2 r d ( x 0 ) , 

so that {xn} is a Cauchy sequence. Therefore ^ ^ z e K a s n ^ o o . Let {em} be 
a sequence of positive numbers with em —» 0, and for each n, choose a G A so 
that 

| |x n-Tx n | |<d(x n) + 8n for all TeSTan. 

Then for TeST^, 

| | z -Tz | | < | | z -x n | | + | |xn-Txn | | + | |Txn-Tz| | 

< ( l - k ) | | z - x n | | + d(xn) + 8n. 

This quantity can be made arbitrarily small, hence d(z) = 0. 
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