FINITE p-GROUPS WITH HOMOCYCLIC GENTRAL FACTORS

JOSEPH A. GALLIAN

1. If G has nilpotence class $c(G)=c$, let $G=L_{1}(G)>L_{2}(G)>\ldots>$ $L_{c+1}(G)=1$ and $1=Z_{0}(G)<Z_{1}(G)<\ldots<Z_{c}(G)=G$ denote the lower central series and upper central series of G, respectively. When there is no possibility of confusion we use L_{i} for $L_{i}(G)$ and Z_{i} for $Z_{i}(G)$. Throughout the paper we assume that G is a finite p-group of class greater than two. Let $B\left(c, p^{r}\right)$ denote the collection of all G of class c for which L_{i} / L_{i+1} is cyclic of order p^{r} for $i=2, \ldots, c$ and $U C\left(c, p^{r}\right)$ the collection of all G of class c for which Z_{i} / Z_{i-1} is cyclic of order p^{r} for $i=1, \ldots, c-1$. In Section 2 we generalize some of the results obtained by Blackburn in [2] about members of $B(c, p)$ to the class $B\left(c, p^{r}\right)$ and in Section 3 we show how the two classes $B\left(c, p^{r}\right)$ and $U C\left(c, p^{r}\right)$ are related. We also find conditions on G which guarantee that the upper central series and the lower central series of G coincide.
2. Lemma 2.1. If G belongs to $B\left(c, p^{r}\right)$ and $i<c-1$, then $Z_{i} \cap L_{c-i}=$ L_{c-i+1}.

Proof. For $i=0$ the result is obvious. It is clear that $Z_{1} \cap L_{c-1} \geqq L_{c}$. Let $L_{c-1}=\left\langle x, L_{c}\right\rangle$ and suppose $\left.Z_{1} \cap L_{c-1}\right\rangle L_{c}$. Then $Z_{1} \cap L_{c-1}=\left\langle x^{p^{k}}, L_{c}\right\rangle$ for some k with $0<k<r$. For any $g \in G,[g, x]^{p^{k}}=\left[g, x^{p^{k}}\right]=1[\mathbf{2}, \mathrm{p} .49]$. But $L_{c}=\left[L_{c-1}, G\right]=\langle[x, G]\rangle$ so that $\exp L_{c}=p^{k}$ with $k<r$. This contradicts the assumption that L_{c} is cyclic of order p^{r}. Thus the lemma holds for $i=1$.

Inductively, suppose $Z_{i} \cap L_{c-i}=L_{c-i+1}$. We will show $Z_{i+1} \cap L_{c-i-1}=$ L_{c-i}. If H is any subgroup of G, we let H^{*} denote the image of H under the canonical mapping from G to G / L_{c-i+1}. Since $\left[G, Z_{i+1} \cap L_{c-i-1}\right] \leqq Z_{i} \cap$ $L_{c-i}=L_{c-i+1}$ we have

$$
\left(Z_{i+1} \cap L_{c-i-1}\right)^{*} \leqq Z\left(G^{*}\right) \cap L_{c-i-1}\left(G^{*}\right)
$$

Because G^{*} belongs to $B\left(c-i, p^{r}\right)$ we have

$$
Z\left(G^{*}\right) \cap L_{c-i-1}\left(G^{*}\right)=L_{c-i}\left(G^{*}\right)=\left(L_{c-i}(G)\right)^{*}
$$

Hence $Z_{i+1} \cap L_{c-i-1} \leqq L_{c-i}$. The other inclusion follows from a well-known theorem [5, p. 262].

Theorem 2.1. If G belongs to $B\left(c, p^{r}\right)$, then $Z_{i} \cap L_{2}=L_{c+1-i}$ for $i=0$, $1, \ldots, c-1$.

[^0]Proof. We proceed by induction on $j=c+1-i$. For $j=2$ we have $i=$ $c-1$ and $Z_{c-1} \cap L_{2}=L_{2}$ because $L_{2} \leqq Z_{c-1}$. Assume $Z_{i} \cap L_{2}=L_{c+1-i}$ holds. Clearly, $L_{c+1-i}=Z_{i} \cap L_{2} \geqq Z_{i-1} \cap L_{2}$ so that $Z_{i-1} \cap L_{c+1-i} \geqq$ $Z_{i-1} \cap L_{2}$. Thus, according to Lemma 2.1, $L_{c+2-i} \geqq Z_{i-1} \cap L_{2}$. The other inclusion follows as before.

We remark that Example 4.2 shows there is a class $3 p$-group for which L_{2} / L_{3} and L_{3} are cyclic but $Z_{1} \cap L_{2}>L_{3}$ so the requirement in Theorem 2.1 that the cyclic factors have the same order is essential.

Theorem 2.1 will be used in Section 3 to show how the classes $B\left(c, p^{r}\right)$ and $U C\left(c, p^{r}\right)$ are related and to obtain a necessary and sufficient condition for members of $B\left(c, p^{r}\right)$ to have coincident upper and lower central series. Another consequence of Theorem 2.1 is that many of the results which Blackburn obtained about members of $B(c, p)$ can be generalized to the class $B\left(c, p^{r}\right)$. Blackburn remarks [2, p. 62] that some of his results could be generalized to nilpotent groups with cyclic central factors of arbitrary order, but he refrained from doing this because "the results are rather complicated and the price of generality is a very considerable loss of clarity". However, we show below that if one narrows his attention to the class $B\left(c, p^{r}\right)$ a greater number of Blackburn's results can be generalized and it can be done without complication or loss of clarity. We refer the reader to [3] for additional results of this type.

Let $C\left(L_{i}: L_{i+2}\right)=\left\{x \in G \mid\left[x, L_{i}\right] \leqq L_{i+2}\right\}$. Also let $L_{1}{ }^{*}=C\left(L_{2}: L_{4}\right)$ and $L_{i}^{*}=L_{i}$ for $i=2, \ldots, c+1$. If G belongs to $B\left(c, p^{r}\right)$, we say G has degree of commutativity greater than 0 if $\left[L_{i}{ }^{*}, L_{j}{ }^{*}\right] \leqq L_{i+j+1}$ for $i, j=1,2, \ldots, c-1$.

Theorem 2.2 (cf. [5, p. 363]). If G belongs to $B\left(c, p^{r}\right)$, then the following are equivalent:
(a) $\left[L_{1}{ }^{*}, L_{i}{ }^{*}\right] \leqq L_{i+2}$ for $i=1,2, \ldots, c-1$;
(b) G has degree of commutativity greater than 0 ;
(c) the abelian factor groups $L_{i} / L_{i+2}(2 \leqq i \leqq c-1)$ of order $p^{2 r}$ are pairwise isomorphic as G-groups;
(d) $C\left(L_{2}: L_{4}\right)=C\left(L_{i}: L_{i+2}\right)$ for $i=2,3, \ldots, c-1$.

Proof. Blackburn's proof in the case $r=1$ is based on a series of lemmas which depend on the facts that the factors of the lower central series are cyclic and $Z_{i} \cap L_{2}(G)=L_{c+1-i}(G)$ both of which are true for members of $B\left(c, p^{r}\right)$. Thus his proof, with minor modifications, is valid for the case that G belongs to $B\left(c, p^{r}\right)$.

Lemma 2.2. If G belongs to $B\left(c, p^{r}\right)$, then there is an element s in G with the property that

$$
\left|s C\left(L_{2}: L_{4}\right)\right|=p^{r}=\left|s C\left(L_{c-1}\right)\right|
$$

Proof. By a result of Blackburn [2, p. 54], $G / C\left(L_{2}: L_{4}\right)$ is cyclic of order p^{r} so if $C\left(L_{2}: L_{4}\right)=C\left(L_{c-1}\right)$ the result is trivial. Hence we mayassume $C\left(L_{2}: L_{4}\right) \neq C\left(L_{c-1}\right)$. We claim that there is an element y in $G \backslash C\left(L_{c-1}\right)$ such that $\left|y C\left(L_{2}: L_{4}\right)\right|=p^{\gamma}$.

Let $G=\left\langle x, C\left(L_{2}: L_{4}\right)\right\rangle$. If $x \notin C\left(L_{c-1}\right)$, the claim is established. Thus we may assume $x \in C\left(L_{c-1}\right)$. By a result of Blackburn [2, p. 54], $C\left(L_{2}: L_{4}\right)$ and $C\left(L_{c-1}\right)$ have the same order so let $u \in C\left(L_{2}: L_{4}\right) \backslash C\left(L_{c-1}\right)$. Let $y=x u$. Then $\left|y C\left(L_{2}: L_{4}\right)\right|=\left|x u C\left(L_{2}: L_{4}\right)\right|=\left|x C\left(L_{2}: L_{4}\right)\right|=p^{r}$ and $y \notin C\left(L_{c-1}\right)$. This proves the claim.

If $\left|y C\left(L_{c-1}\right)\right|=p^{r}$, the theorem is proved. Thus we may assume that $\left|y C\left(L_{c-1}\right)\right|=p^{k}$ with $0<k<r$. By suitably modifying the proof given by Blackburn [2, p. 55] for the case $r=1$, it can be shown [3, p. 11] that $C\left(L_{2}: L_{4}\right) / C\left(L_{1}: L_{3}\right)$ is cyclic of order p^{r}, so let $C\left(L_{2}: L_{4}\right)=\left\langle v, C\left(L_{1}: L_{3}\right)\right\rangle$. If $C\left(L_{c-1}\right) \cap C\left(L_{2}: L_{4}\right) \neq C\left(L_{1}: L_{3}\right)$, then

$$
C\left(L_{c-1}\right) \cap C\left(L_{2}: L_{4}\right)=\left\langle v^{p n}, C\left(L_{1}: L_{3}\right)\right\rangle
$$

for some n with $0<n<r$. Also $G=\left\langle y, v, C\left(L_{1}: L_{3}\right)\right\rangle$ and $m=\max (k, n)<r$. Since $v^{p n}$ and $y^{p^{k}}$ belong to $C\left(L_{c-1}\right)$ we have $\left[v^{p^{n}}, L_{c-1}\right]=\left[v, L_{c-1}\right]^{p n}=1$ and $\left[y^{p^{k}}, L_{c-1}\right]=\left[y, L_{c-1}\right]^{p^{k}}=1[\mathbf{2}, \mathrm{p} .49]$. Therefore, since $C\left(L_{1}: L_{3}\right) \leqq C\left(L_{c-1}\right)$ [2, p. 47] we have $\left[G, L_{c-1}\right]^{p m}=1$. But $\left[G, L_{c-1}\right]=L_{c}$ and L_{c} is cyclic of exponent p^{r}, a contradiction. Therefore, we may assume $C\left(L_{c-1}\right) \cap C\left(L_{2}: L_{4}\right)=$ $C\left(L_{1}: L_{3}\right)$.

With y and v defined as above let $s=y v$. Then $\left|s C\left(L_{2}: L_{4}\right)\right|=\left|y C\left(L_{2}: L_{4}\right)\right|=$ p^{r}. Now $y^{p r-1} \in C\left(L_{c-1}\right)$ and $s^{p^{r-1}}=y^{p^{r-1}} v^{p^{p-1}}\left(\bmod L_{2}\right)$ so if $s^{p^{r-1}} \in C\left(L_{c-1}\right)$ then

$$
v^{p r-1} \in C\left(L_{c-1}\right) \cap C\left(L_{2}: L_{4}\right)=C\left(L_{1}: L_{3}\right) .
$$

But $\left|v C\left(L_{1}: L_{3}\right)\right|=p^{r}$ so that $s^{p r-1} \notin C\left(L_{c-1}\right)$. Thus $\left|s C\left(L_{c-1}\right)\right|=p^{r}$ also and the result is proved.

Let $E B\left(c, p^{r}\right)$ denote the class of groups G which belong to $B\left(c, p^{r}\right)$ and have $\exp \left(G / L_{2}\right)=p^{\tau}$. If G belongs to $B\left(c, p^{\tau}\right)$, then the minimum order of G is $p^{(c+1) r}$. Hence we adopt the notation $M B\left(c, p^{r}\right)$ for members of $B\left(c, p^{r}\right)$ which have order $p^{(c+1) r}$. When $r=1$ members of $M B\left(c, p^{r}\right)$ are commonly called p-groups of maximal class.

Theorem 2.3. Suppose G belongs to $E B\left(c, p^{r}\right)$ and, when $c>4, G / L_{c}$ has degree of commutativity greater than 0 . Then G possesses a subgroup K which belongs to $M B\left(c-1, p^{r}\right)$, and $L_{i}{ }^{*}(K)=L_{i+1}(G)$ for $i=1,2, \ldots, c-1$.

Proof. By Lemma 2.2 there is an element s of G with the property that $\left|s C\left(L_{c-1}\right)\right|=\left|s C\left(L_{2}: L_{4}\right)\right|=p^{r}$. By modifying the proofs of Blackburn for the case $r=1$ [2, pp. 55-56], it can be shown [3, pp. 11-13] that $C\left(L_{1}: L_{3}\right)=$ $Z_{c-1}(G)$ and $C\left(L_{2}: L_{4}\right) / C\left(L_{1}: L_{3}\right)$ is cyclic of order p^{r}. So let s_{1} and $Z_{c-1}(G)$ generate $C\left(L_{2}(G): L_{4}(G)\right)$ and for $i=2, \ldots, c$, let $s_{i}=\left[s_{i-1}, s\right]$. It follows from a well-known theorem [5, p. 258] that $L_{i+1}(G)$ and s_{i} generate $L_{i}(G)$ for $i=2, \ldots, c-1$. This is also true for $i=c$; for $L_{c-1}=\left\langle s_{c-1}, L_{c}\right\rangle$ so if $\left[s_{c-1}, s\right]^{p^{k}}=1$ then $\left[s, L_{c-1}\right]^{p^{k}}=\left[s^{p^{k}}, L_{c-1}\right]=1$ and therefore $s^{p^{k}}$ is in $C\left(L_{c-1}\right)$ so $k \geqq r$ by choice of s.

Now let K be the group generated by $L_{2}(G)$ and s. Then $|K|=p^{c r}$. Also s_{2} and s are in K and $\left[s_{2}, s, \ldots, s\right]=s_{c} \neq 1$. Thus $c(K) \geqq c-1$. Since K is generated by s and $L_{2}(G)$ we have $L_{2}(K)=\left[K, L_{2}(G)\right] \leqq L_{3}(G)[\mathbf{2}, \mathrm{p} .52]$ and therefore $L_{i}(K) \leqq L_{i+1}(G)$ for $i \geqq 2$. In particular, $L_{c}(K)=1$ so that $c(K)=c-1$. Now since $\left|s_{c}\right|=p^{r}$ and s_{c} is in $L_{c-1}(K)$ we have \exp $\left(L_{i}(K) / L_{i+1}(K)\right) \geqq p^{r}[\mathbf{2}, \mathrm{p} .49]$ for $i=1,2, \ldots, c-1$. Since $|K|=p^{c r}$, $\exp \left(L_{i}(K) / L_{i+1}(K)\right) \geqq p^{r}$ and $c(K)=c-1$ we must have $L_{i}(K) / L_{i+1}(K)$ is cyclic of order p^{r} for $i=2, \ldots, c-1$. Thus for $i \geqq 2,\left|L_{i}(K)\right|=\left|L_{i+1}(G)\right|$ and therefore $L_{i}(K)=L_{i+1}(G)$ for $i \geqq 2$. Also

$$
\left[L_{2}(G), L_{2}(K)\right]=\left[L_{2}(G), L_{3}(G)\right] \leqq L_{5}(G)=L_{4}(K)
$$

so that $L_{2}(G) \leqq C\left(L_{2}(K): L_{4}(K)\right)=L_{1}{ }^{*}(K)$. Since these two groups have the same order they are equal. Finally, since $\left|K / L_{2}(K)\right|=p^{2 r}$ and $L_{i}(K) / L_{i+1}(K)$ is cyclic of order p^{r} for $i=2, \ldots, c-1$ we have K belongs to $M B\left(c-1, p^{r}\right)$. This proves the theorem.

Lemma 2.3. Suppose $G=\langle a\rangle \oplus\langle b\rangle$ where $|a|=|b|=p^{r}(p \neq 2)$ and G contains a subgroup C of order p^{r} such that $|a C|=p^{r}$. Let $A=\langle a\rangle$ and $B=$ $\langle b\rangle$. Then there is a cyclic subgroup D of G of order p^{r} with the property that $A \cap D=B \cap D=C \cap D=1$.

Proof. It is not difficult to show that one of $\langle a b\rangle$ or $\left\langle a b^{2}\right\rangle$ satisfies the conclusion.

Theorem 2.4. Suppose G belongs to $E B\left(c, p^{r}\right)$ and, when $c>4, G / L_{c}$ has degree of commutativity greater than 0 . If $3 \leqq c \leqq p$, then G / L_{c} and L_{2} have exponent p^{r}. If $c<p$, the elements of G of order at most p^{r} form a characteristic subgroup of index at most p^{r}.

Proof. Let s be an element with the property specified in Lemma 2.2 and let S be the centralizer of s in G. By modifying Blackburn's proofs [2, p. 63] it can be shown [3, pp. 20-22] that $S \cap L_{2}=L_{c}$ and that there is a subset T of S with the property that $Z_{c-1}=\left\langle T, L_{2}\right\rangle$. Then $s^{p r}$ and for each t in T, $t^{p r}$ are elements of $S \cap L_{2}$. Hence $s^{p^{r}}$ and $t^{p^{r}}$ are elements of L_{c}. By applying Lemma 2.3 to G / Z_{c-1} we see that there is an element s^{\prime} of G which also has the property specified in Lemma 2.2 and $\langle s\rangle \cap\left\langle s^{\prime}\right\rangle=1\left(\bmod Z_{c-1}\right)$. Therefore, as before, $s^{\prime p^{r}}$ belongs to L_{c}. Since $\langle s\rangle \cap\left\langle s^{\prime}\right\rangle=1\left(\bmod Z_{c-1}\right)$ and L_{2} is contained in the Frattini subgroup [5, p. 272] we have G is generated by s, s^{\prime} and T. Thus G / L_{c} is generated by a set of elements of order p^{r}. Since $c\left(G / L_{c}\right)<p, G / L_{c}$ is a regular p-group and therefore G / L_{c} is of exponent p^{τ}.

If $c<p, G$ itself is regular p-group. Thus the elements of order at most p^{r} form a subgroup E_{r} of G. Let $P_{r}=\left\langle g^{p^{r}}: g \in G\right\rangle$. Then $\left|G / E_{r}\right|=\left|P_{r}\right|[\mathbf{5}, \mathrm{p} .327]$. Since G / L_{c} is of exponent p^{r} we have $P_{r} \leqq L_{c}$ and therefore $\left|P_{r}\right| \leqq p^{r}$. Hence $\left|G / E_{r}\right| \leqq p^{\tau}$. Finally, $P_{r} \leqq L_{c} \leqq Z_{1}$ implies $L_{2} \leqq E_{r}[5$, p. 327$]$ so that L_{2} is of exponent p^{r}.

If $c=p$ we let K be the subgroup of G defined in Theorem 2.3. If $p>3$, we have $\exp L_{2}(K)=p^{r}$ since $c(K)=p-1$ satisfies $3 \leqq c(K)<p$ which is a case handled above. If $p=3$, then $L_{3}(K)=1$ and therefore $L_{2}(K)$ is cyclic of order p^{r} so has exponent p^{r}. Thus $L_{2}(K)$ has exponent p^{r} for any p which satisfies the hypothesis and therefore, by Theorem $2.3, L_{3}(G)$ has exponent p^{r}. Let G be generated by s, s_{1} and $C\left(L_{1}(G): L_{3}(G)\right)$. Then $L_{2}(G)$ is generated by $s_{2}=\left[s_{1}, s\right]$ and $L_{3}(G)[\mathbf{5}, \mathrm{p} .258]$. Let x belong to $L_{2}(G)$. Then $x=s_{2}{ }^{m} u$ where u belongs to $L_{3}(G)=L_{\mathbf{2}}(K)$. Since s_{2} and u belong to $K, c(K)=p-1$ and $\exp L_{2}(K)=p^{r}$ it follows from regularity that $x^{p r}=\left(s_{2}{ }^{m}\right)^{p^{r}}$. Thus in order to show $\exp L_{2}(G)=p^{r}$ it is sufficient to show that $s_{2}{ }^{p r}=1$. But $s_{2}=s_{1}^{-1} s^{-1} s_{1} s=$ $\left(s^{-1}\right)^{s_{1}} s$ so that $s_{2}^{p^{r}}=\left(\left(s^{-1}\right)^{s_{1}} s\right)^{p^{r}}$. Since $\left(s^{-1}\right)^{s_{1}}$ and s belong to K and \exp $L_{2}(K)=p^{r}$ we have by regularity

$$
\left(\left(s^{-1}\right)^{s_{1}} s\right)^{p^{r}}=\left(\left(s^{-1}\right)^{s_{1}}\right)^{p^{r}} s^{p r}=\left(s^{-p r}\right)^{s_{1}} s^{p^{r}} .
$$

By the first part of the theorem $s^{-p^{r}}$ is in the center of G so that $s_{2}{ }^{p r}=s^{-p^{r}} s^{p^{r}}=$ 1. This proves the theorem.

Lemma 2.4. If G belongs to $E B\left(c, p^{r}\right)$, then G has a subgroup H with the properties that H belongs to $M B\left(c, p^{r}\right)$ and $L_{i}(H)=L_{i}(G)$ for $i=2, \ldots$, $c+1$.

Proof. Let y and v be defined as in proof of Lemma 2.2 so that $G=\left\langle y, v, C\left(L_{1}: L_{3}\right)\right\rangle$. If we let $H=\langle y, v\rangle$ we have $G=H C\left(L_{1}: L_{3}\right)$ and a theorem of Blackburn [2, p. 48] shows $L_{i}(H)=L_{i}(G)$ for $i=2, \ldots, c+1$. Clearly, H has the proper order.

Example 4.1 shows that for every choice of c, p and r there are members of $B\left(c, p^{r}\right)$ with the property that L_{i} is cyclic for all $i \geqq 2$. The next theorem shows that if any one of $L_{2}, L_{3}, \ldots, L_{c-1}$ is cyclic then they all are.

Theorem 2.5. If G belongs to $B\left(c, p^{r}\right)$ and L_{c-1} is cyclic, then L_{2} is also cyclic. If G belongs to $E B\left(c, p^{r}\right)$ then L_{c-1} is cyclic if and only if $p=2$ and $r=1$.

Proof. If L_{c-1} is cyclic, then by Theorem 2.1, $Z_{2} \cap L_{2}$ is cyclic and we conclude by a result of P . Hall $[\mathbf{5}, \mathrm{p} .306]$ that L_{2} is cyclic. If G belongs to $E B\left(c, p^{r}\right)$ Lemma 2.4 shows we may assume G belongs to $M B\left(c, p^{r}\right)$. It follows from the proof of Theorem 2.3 that $\left|G / Z_{c-1}\right|=p^{2 r}$ so that $Z_{c-1}=L_{2}$.

Therefore, by Theorem 2.1, $Z_{2}=Z_{2} \cap L_{2}=L_{c-1}$. If $L_{c-1}=Z_{2}$ is cyclic, then $p=2$ and G has a cyclic subgroup of index $2[\mathbf{5}, \mathrm{p} .305]$. It follows from Theorems 4.4 and 4.3 in [4, pp. 191-193] that $r=1$. Finally, if G belongs to $M B(c, 2)$ then Theorems 4.5 and 4.3 in [4, pp. 191-194] show that L_{2} is cyclic.
3. Theorem 3.1 [$\mathbf{1}, \mathrm{p} .533]$. If G belongs to $U C\left(c, p^{r}\right)$, then $\left[G, Z_{i}\right]=Z_{i-1}$ for $i=1, \ldots, c-1$.

Theorem 3.2. Let G belong to $U C\left(c, p^{r}\right)$. Then $Z_{c+1-i} \geqq L_{i}>Z_{c-i}$ for $i=1, \ldots, c$.

Proof. This is clearly true when $i=1$. Suppose $Z_{c+1-i} \geqq L_{i}>Z_{c-i}$. Then, by Theorem 3.1, $Z_{c-i} \geqq L_{i+1} \geqq Z_{c-i-1}$ and in any nilpotent group $L_{i+1} \neq$ Z_{c-i-1}.

Theorem 3.3. Let G belong to $B\left(c, p^{r}\right)$. Then G belongs to $M B\left(c, p^{r}\right)$ if and only if the upper central series and the lower central series of G coincide.

Proof. Suppose G belongs to $M B\left(c, p^{r}\right)$. Clearly $Z_{i}=L_{c+1-i}$ for $i=c$. By the remark made in the proof of Theorem 2.3, $C\left(L_{1}: L_{3}\right)=Z_{c-1}$ and $\left|G / C\left(L_{1}: L_{3}\right)\right|=p^{2 r}$. Thus $Z_{i}=L_{c+1-i}$ for $i=c-1$ also. If $i<c-1$, then $Z_{i}<Z_{c-1}=L_{2}$ so that $Z_{i}=Z_{i} \cap L_{2}=L_{c+1-i}$ by Theorem 2.1. Hence the two series coincide. Now assume that $Z_{i}=L_{c-1-i}$ for all i. In particular, $Z_{c-1}=L_{2}$. Since $\left|G / Z_{c-1}\right|=p^{2 r}$ for any member of $B\left(c, p^{r}\right)$, it follows that G belongs to $M B\left(c, p^{r}\right)$.

We remark that Example 4.3 shows there exists a finite p-group with the property that the upper central series and the lower central series of G coincide and $\left|L_{i} / L_{i+1}\right|=p^{2}$ for $i=2, \ldots, c$ but L_{i} / L_{i+1} is not cyclic for $i=2, \ldots, c$.

Theorem 3.3 shows that members of $M B\left(c, p^{r}\right)$ also belong to $U C\left(c, p^{r}\right)$. The next theorem shows that

$$
B\left(c, p^{r}\right) \cap U C\left(c, p^{s}\right)=M B\left(c, p^{r}\right) .
$$

Theorem 3.4. A group G belongs to $B\left(c, p^{r}\right)$ and $U C\left(c, p^{s}\right)$ if and only if G belongs to $M B\left(c, p^{r}\right)$.

Proof. If G belongs to $M B\left(c, p^{r}\right)$, then by Theorem 3.3 the lower central series of G and the upper central series of G coincide. Now suppose that G belongs to $B\left(c, p^{r}\right)$ and $U C\left(c, p^{s}\right)$. Then, by Theorem $3.2, L_{2} \geqq Z_{1}$ and, by Theorem 2.1, $Z_{1} \cap L_{2}=L_{c}$. Thus $Z_{1}=L_{c}$. It follows that $r=s$ and $L_{i}=$ Z_{c+1-i} for $i=1, \ldots, c+1$ so that G belongs to $M B\left(c, p^{r}\right)$.

Theorem 3.5. If G belongs to $U C\left(c, p^{r}\right)$ and $Z_{c+1-i}=L_{i}$ for some i with $2 \leqq i \leqq c$, then G belongs to $M B\left(c, p^{r}\right)$.

Proof. By Theorem 3.1, $Z_{c+1-j}=L_{j}$ for all $j \geqq i$. We show $Z_{c+2-i}=L_{i-1}$. Clearly $\left|L_{i-1} / L_{i}\right| \leqq\left|Z_{c+2-i} / Z_{c+1-i}\right|$. Also

$$
\begin{aligned}
& \left|L_{i-1} / L_{i}\right| \geqq \exp \left(L_{i-1} / L_{i}\right) \geqq \exp \left(L_{i} / L_{i+1}\right) \\
& \quad=\exp \left(Z_{c+1-i} / Z_{c-i}\right) \geqq \exp \left(Z_{c+2-i} / Z_{c+1-i}\right) \\
& \quad=\left|Z_{c+2-i} / Z_{c+1-i}\right| .
\end{aligned}
$$

Here we have used [5, Satz 2.13, p. 266]. Thus $Z_{c+2-i}=L_{i-1}$. It follows the lower central series of G and the upper central series of G coincide so that, by Theorem 3.3, G belongs to $M B\left(c, p^{r}\right)$.

Theorem 3.6. Suppose G / Z_{c-1} has exponent $p^{r},\left|L_{i} / L_{i+1}\right|=p^{r}$ for all i with $2 \leqq i \leqq c$ and $Z_{c+1-j}=L_{,}$for some j with $2 \leqq j \leqq c$. Then G belongs to $B\left(c, p^{r}\right)$.

Proof. First we show $Z_{c-j}=L_{j+1}$. Since

$$
\begin{aligned}
p^{r}= & \exp \left(Z_{c} / Z_{c-1}\right) \leqq \exp \left(Z_{c+1-j} / Z_{c-j}\right) \leqq\left|Z_{c+1-j} / Z_{c-j}\right| \\
& \leqq\left|L_{j} / L_{j+1}\right|=p^{r},
\end{aligned}
$$

it follows that $Z_{c-j}=L_{j+1}$. Repeating this argument the appropriate number of times we obtain $Z_{1}=L_{c}$. Since $p^{r} \leqq \exp Z_{1}=\exp L_{c} \leqq\left|L_{c}\right|=p^{r}$, we have $\exp L_{c}=p^{\tau}$. Also $\exp \left(L_{i} / L_{i+1}\right) \geqq p^{r}=\left|L_{i} / L_{i+1}\right|$. Thus L_{i} / L_{i+1} is cyclic for all $i \geqq 2$ and therefore G belongs to $B\left(c, p^{r}\right)$.

Example 4.3 also shows that the hypotheses of Theorem 3.6 cannot be weakened by replacing $\exp \left(G / Z_{c-1}\right)=p^{r}$ by $\exp \left(G / Z_{c-1}\right) \leqq p^{r}$ nor by replacing $\left|L_{i} / L_{i+1}\right|=p^{r}$ by $\exp \left(L_{i} / L_{i+1}\right)=p^{r}$.

Corollary. Suppose G / L_{2} has exponent p^{r} and $\left|L_{i} / L_{i+1}\right|=p^{r}$ for $i=2$, \ldots, c. Then G belongs to $M B\left(c, p^{r}\right)$ if and only if $Z_{c-1}=L_{2}$.

Proof. If G belongs to $M B\left(c, p^{r}\right)$, then $Z_{c-1}=L_{2}$ by Theorem 3.3. If $Z_{c-1}=$ L_{2}, then by Theorem 3.6, G belongs to $B\left(c, p^{r}\right)$ and since for any G in $B\left(c, p^{r}\right)$, $\left|G / Z_{c-1}\right|=p^{2 r}$ the result follows.

Theorem 3.7. Suppose G / Z_{c-1} and G / L_{2} have exponent $p^{r}, L_{i} / L_{i+1}$ is cyclic for $i=2, \ldots, c$ and $Z_{c+1-j}=L_{j}$ for some j with $2 \leqq j \leqq c$. Then G belongs to $B\left(c, p^{r}\right)$.

Proof. Since $\exp \left(Z_{c} / Z_{c-1}\right)=p^{r}$ we have $\left|Z_{i} / Z_{i-1}\right| \geqq p^{r}$ for all i with $1 \leqq i \leqq c$. Hence $\left|L_{j}\right|=\left|Z_{c+1-j}\right| \geqq p^{(c+1-j) r}$. Also $p^{r}=\exp \left(G / L_{2}\right) \geqq \exp$ $\left(L_{i} / L_{i+1}\right)=\left|L_{i} / L_{i+1}\right|$ for $i \geqq 2$. Thus $\left|L_{j}\right| \leqq p^{(c+1-j) r}$. It follows that $\left|L_{j}\right|=$ $p^{(c+1-j) r}$ and $\left|L_{c}\right|=p^{r}$. Therefore, because $\exp \left(G / L_{2}\right)=\exp L_{c}=p^{r}$ we have $\exp \left(L_{i} / L_{i+1}\right)=p^{r}$ for all i and the result follows.

Corollary. Suppose G / L_{2} has exponent p^{r} and L_{i} / L_{i+1} is cyclic for $i=2$, \ldots, c. Then G belongs to $M B\left(c, p^{r}\right)$ if and only if $Z_{c-1}=L_{2}$.

Proof. If G belongs to $M B\left(c, p^{r}\right)$, then $Z_{c-1}=L_{2}$ by Theorem 3.3. If $Z_{c-1}=$ L_{2} then, by Theorem 3.7, G belongs to $B\left(c, p^{r}\right)$ and therefore, by the corollary to Theorem 3.6, G belongs to $M B\left(c, p^{r}\right)$.
4. In this section we give an example which shows for every choice of c, p and r the class $B\left(c, p^{r}\right)$ is not empty and the two examples referred to in the previous sections.

Example 4.1. Let $A=\langle a\rangle$ where $|a|=p^{c r}$. The map which sends a^{n} to $a^{n\left(1+p^{r}\right)}$ defines an automorphism of A. Thus there exists a group $G=\langle x, a\rangle$ where $x^{-1} a x=a^{1+p^{r}}$. Then $L_{i}(G)=\left\langle a^{p(i-1) r}\right\rangle$ for $i=2, \ldots, c+1$ and therefore G belongs to $B\left(c, p^{r}\right)$.

Example 4.2. Let $A=\langle a\rangle \oplus\langle b\rangle$ where $|a|=p^{4}$ and $|b|=p^{6}$. The map which sends $a^{n} b^{m}$ to $a^{n+m} b^{n p^{4}+m}$ defines an automorphism of A. Thus there exists a finite p-group G and an element x such that $G=\langle x, A\rangle$ where $x^{-1} a x=$
$a b^{p^{4}}$ and $x^{-1} b x=a b$. Then $L_{2}=\left\langle a, b^{p^{4}}\right\rangle, L_{3}=\left\langle b^{p^{4}}\right\rangle$ and $L_{4}=1$. Since $b^{p^{4}}$ and $a^{p^{2}}$ belong to $Z_{1}(G)$ we have $L_{2}(G) \cap Z_{1}(G)>L_{3}(G)$. Thus the remark following Theorem 2.1 is verified.

Example 4.3. Let $A=\left\langle a_{1}\right\rangle \oplus\left\langle a_{2}\right\rangle \oplus\left\langle a_{3}\right\rangle \oplus\left\langle a_{4}\right\rangle$ where $\left|a_{1}\right|=\left|a_{2}\right|=p^{2}$ and $\left|a_{3}\right|=\left|a_{4}\right|=p$ with p an odd prime. The map which sends

$$
a_{1}{ }^{n_{1}} a_{2}^{n_{2}} a_{3}^{n_{3}} a_{4}^{n_{4}} \quad \text { to } \quad a_{1}^{n_{1}+p n_{3}} a_{2}{ }^{n_{2}+p n_{4}} a_{3}{ }^{n_{1}+n_{3}} a_{4}^{n_{2}+n_{4}}
$$

defines an automorphism of A. Thus there exists a finite p-group G and an element x such that $G=\langle x, A\rangle$ where $|x|=p$,

$$
x^{-1} a_{1} x=a_{1} a_{3}, \quad x^{-1} a_{2} x=a_{2} a_{4}, \quad x^{-1} a_{3} x=a_{3} a_{1}{ }^{p}, \quad x^{-1} a_{4} x=a_{4} a_{2}{ }^{p} .
$$

Then $L_{2}=\left\langle a_{1}{ }^{p}, a_{2}{ }^{p}, a_{3}, a_{4}\right\rangle, L_{3}=\left\langle a_{1}{ }^{p}, a_{2}{ }^{p}\right\rangle, L_{4}=1$ and G has the following properties:
(i) $\exp \left(L_{i} / L_{i+1}\right)=p$ for $i=1,2, \ldots, c$;
(ii) $\left|L_{i} / L_{i+1}\right|=p^{2}$ for $i=2, \ldots, c$;
(iii) $L_{c+1-i}=Z_{i}$ for $i=0,1, \ldots, c$;
(iv) L_{i} / L_{i+1} is not cyclic for $i=2, \ldots, c$.

Hence the remarks made following Theorems 3.3 and 3.6 are valid.

References

1. G. Baumslag and N. Blackburn, Groups with cyclic upper central factors, Proc. London Math. Soc. 10 (1960), 531-544.
2. N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92.
3. J. Gallian, Two-step centralizers in finite p-groups, Ph.D. dissertation, University of Notre Dame, 1971.
4. D. Gorenstein, Finite groups (Harper \& Row, New York, 1968).
5. B. Huppert, Endliche Gruppen I (Springer-Verlag, Berlin, 1967).

University of Minnesota, Duluth, Duluth, Minnesota

[^0]: Received December 11, 1972 and in revised form, April 23, 1973. This paper constitutes a portion of the author's doctoral dissertation written at the University of Notre Dame under the direction of Professor Karl M. Kronstein.

