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1. Introduction. The purpose of this paper is to prove
and generalize the following theorem: Given any topological
space X, of all the T2 spaces Z which are continuous images

of X, there is a maximal one Y; thatis, one over which all
others factor, as in Figure 1.

X >Y

ZIL

Figure 1.

In pursuit of this result, the authors define a certain
species of functors and natural transformations on the category
of all topological spaces and maps. A subspecies is singled out
which yields the main result. As well it leads to a uniform
definition of many separation axioms, and universal proofs for
some of the simple properties of these axioms.

The authors are indebted to the referee for many helpful
suggestions.

2. Topological Equivalence Relations and Quotients.
In this section we introduce the basic machinery in two equivalent
forms. The idea is similar in spirit to rewriting the Stone- Cech
compactification in terms of an induced natural transformation.
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Deiinition 1. A gquotient on Top (the category of topological
spaces and maps, the latter meaning continuous mappings) is a
pair (F,n) where F:Top - Top is a covariant functor, n:l—F
is a natural transformation of the identity functor on Top into
F and Ny is onto for all X in Top.

If Q=(F,n) is a quotient (on Top) we shall say that a space
X (in Top) is Q-invariant when Ny is a homeomorphism.

In the following, if R is an equivalence relation defined on
a space X (in Top) we denote the set of equivalence classes
endowed with the quotient topology by X/R. Also, X will be
called R-discrete when xRx' implies x=x' for all x, x'in X.

Definition 2.  An equivalence relation R which is
defined on every topological space is called topological when, for
any map {:X =Y, =xRx' implies f(x)RE(x').

PROPOSITION 1. Thereis a 1-1 correspondence
between topological equivalence relations and quotients for
which the topology on F(X) is the topology induced by Ny

Proof. Given a topological equivalence relation R,
define F:Top — Top by: F(X) = X/R and F(f) is the map
determined uniquely by the commutative diagram in Fig. 2.
Here, n. is the canonical map of X onto X/R.

X
X f > Y
X Dy
X/R F(f) >Y/R
Figure 2.

Uniqueness, together with Figure 3, shows that F is a
covariant functor.

£
X Y & 5 Z
nx Ty iz
X/R Y/R >Z/R
F(f) F(g)
Figure 3.
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Conversely, given a quotient Q= (F,nj, we define X on

X by xRx' if and only if nX(x) = nX(x’) . R 1is a topological

equivalence relation, for, given f:X = Y and xRx' in X, then
nY(f(x)) = F(f)onx(x) = F(f)o nx(x') = nY(f(x') . Hence f(x)Rf(x').

Finally, it is easy to see that the above correspondences
are the inverse of one another. This completes the proof.

COROLLARY 1. Suppose Q and R induce each other
as in Proposition 1. Then X (in Top) is Q-invariant if and only
if it is R-discrete.

Proof. Suppose X is Q-invariant. Then xRx' means
that nX(x) = nX(x') . But ny is a homeomorphism. Conversely,

if X is R-discrete, X = X/R = F(X) and the canonical map is
the identity.

Definition 3. Given a topological space X, a pair (Y, g)
consisting of a space Y (in Top) and a map g:X = Y, is said
to have the R-factorization property for X when for any
R-discrete space Z together with a map f:X = Z there is a
map h:Y = Z so that f = hog.

The observation that Fig. 2 collapses to a triangle when
Y is R-discrete, gives

COROLLARY 2. Given a space X and a topological
equivalence relation R, then (X/R, nX) has the R-factorization
property for X.

Now that we have established the relation between quotients
and topological equivalence relations, we will discuss only the

latter.
3. The Limit Relation. Given a topological equivalence
relation R, we define a new relation limR as follows. For

X a topological space containing x and x', we have x(limR)x'
if and only if for all R-discrete spaces Z together with maps
f from X to Z, then f(x) = f(x'). Note that such pairs (Z,{)
always exist.

PROPOSITION 2. (i) limR is a topological equivalence

relation;
(ii) X/(limR) is R-discrete;

203

https://doi.org/10.4153/CMB-1966-027-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-027-3

(111) X 15 R-discrete ir and only i 1t
is limR-discrete.

Proof. (i) I f:X =Y 1is a map and f(x) and f{(x') are
not limR related then there is a map g:Y - Z with Z
R-discrete and g(f(x)) ¥ g(f(x')). Since gof is a map, x and x'
are not limR related.

(ii) Suppose that x and x' in X are not limR
related. Then there is a map f from X into an R-discrete
space Z with f(x) #f(x'). From Corollary 2 of Proposition 1
there is an h such that f = hop, where p 1is the canonical map
of X onto X/(limR). Thus h(p(x)) #h(p(x')), and hence p(x)
and p(x') are not R related.

(iii) ¥ X is R-discrete and x(limR)x', the
identity map on X gives x = x'. Conversely, if X is
limR-discrete then X = X/(limR) is R-discrete by (ii).

COROLLARY. X/(limR) is limR-discrete.

The result we mentioned in the introduction can be stated
as follows:

THEOREM. Given a topological space X and a topological
equivalence relation R, there is a pair (Y, p) consisting of an
R-discrete space Y and amap p of X onto Y, which has
the R-factorization property for X. This pair is unique up to
homeomorphism.

Proof. We take X/(limR) for Y, with p the natural
map. By (ii) of Proposition 2, X/limR is R-discrete. The
R-factorization property is an immediate consequence of (iii)
of Proposition 2 and Corollary 2 of Proposition 1. For
uniqueness, if (Y,p) and (Y',p') both satisfy the conditions of
the theorem we have a diagram as in Fig. 4. Since the diagram
commutes and p and p' are onto, we have that (Y,p) and
(Y',p') are related by a homeomorphism.

X
2 p'
Y 2 h Y'
hl
Figure 4.
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An example will be given in Section 5 to show that X/R will not
suffice for Y in this theorem.

4. Subspace and product theorems.

PROPOSITION 3. I £:X=-Y is 1-1 and Y is
R-discrete, then X is R-discrete.

Proof. If xRx' then f(x)Rf(x'). Hence f(x) = f(x')
and thus x = x' since f is 1-1.

COROLLARY. A subspace of an R-discrete space is
R-discrete.

PROPOSITION 4. Given a family of topological spaces
Yi, let Y denote the product space. Let R be a topological

equivalencerelation. Then yRy' in Y implies vy, Ryi' in
i

each Yi. The converse holds if the family is finite.

Proof. The first part comes immediately by considering
the projection maps. For the converse, define j:Y = Y for
i i

i= i = o sy . k] E) '_ o sy l -
i=1,2,...,n by Ji(z) (Y1,Y2:- Y1-1ZY1 Yn)

+17°
Now y.Ry' implies ji(yi)Rj'(Y'i) for i=1,2,...,n. The result
i 71 i

now follows by applying the transitivity of R a finite number of
times.

PROPOSITION 5. With the notation of Proposition 4,
Y is R-discrete if and only if each Y is R-discrete. (The

family need not be finite). !

Proof. Proposition 4 gives the "if'' part at once.
Zroot. P g P

Conversely, suppose Y is R-discrete and y,Ry'i in each Y..
i 1

Define j:Y =Y by j(2)(k) =y, if i ¥k and equal to z if
i = k. We have j.(y.)Rj.(y'.) and hence j (y.) = j.(yv'). Thus we
SR RS B i1 i1
have y, = Y’i . This proves the result.
i
5. Separation axioms. To construct topological

equivalence relations corresponding to separation axioms, we
make

Definition 4. An elementary topological relation is a
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symmetric, reflexive relation defined on every topological
space which is preserved under maps.

An elementary topological relation Eo induces an

equivalence relation E as follows: xEx' when there are points

zi,zz,...,zn with zizx, zn=x' and ZkEOzk+1 for

k=1,2,...,n-1. The following is clear:

PROPOSITION 6. (i) E is a topological equivalence
relation;
(ii) X is Eo-discrete if and only if
it is E-discrete.

Examples. The following are examples of topological
equivalence relations and how they are formed.
(1) TO defined by: xTOx' when every open set

containing one of x,x' contains them both. In this case R=limR.
(2) T1 induced by the elementary topological relation

EO defined by: XEOX' when every open set containing x

contains x' or every open set containing x' contains x.
(3) P1 induced by: xEOx' when there is a sequence

which converges to both x and x'.
induce : xE x' when every pair of open sets
(4) ’I'2 ind d by EO ' wh vy pair of op

containing x and x' respectively overlap.
(5) T:‘}/2 defined by: xT

£f:X =[0,1] we have f(x) = f(x').

3/2x' when for every map

Then, for example, a space X is a TZ space if and only
if it is Tz—discrete in the sense defined by (4). Similar state-
ments hold for the other examples; they can, if desired, be

taken as definitions.

Next we come to the question of what separation axioms
are not definable by topological equivalence relations. We shall
show that T3 and T4 fall into this class.

First of all T4 (normality) is not product invariant and
so would contradict Proposition 5. For T3 we will get a
contradiction with Proposition 3. Let I denote [0, 1] with the
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usual topology. Let I' denote [0,1] with topology generated by
the following subbasis: (i) all open sets of I; (ii) the complement
of K, which is the union of [1/(2n+1), 1/(2n)]n=1,2,... . Now
I' is not regular (T3) since 0 cannot be separated from the

closed set K. However, we have a 1-1 map I'= I. This is
not compatible with Proposition 3.

Finally, we give an example where R and limR are not
the same. We do this by giving an example of a space X for
which X/T2 is not Hausdorff. Let X be the union of:

S = {...,p_n,...,p_z,p_i,pi,pz,...} and

s'={..., CIPTL SR VR YR .} . The topology is generated by

the following basis: (i) all subsets of S'; (ii) complements of
1 is
sets of the form {pa,...,pa,qea,...,qea }  where e i
1 r 11 rr
1 or -4. Itis readily verified that points of S belong to the

same class while the subspace S' is TZ. Also, points in S
can be separated from those of S'. Thus X/T2 is not TZ, for

the only open set containing the class S is X/TZ.

The University of Toronto.
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