A CLASS OF THREE-GENERATOR, THREE-RELATION, FINITE GROUPS

J. W. WAMSLEY

Mennicke (2) has given a class of three-generator, three-relation finite groups. In this paper we present a further class of three-generator, threerelation groups which we show are finite.

The groups presented are defined as:

$$
\begin{aligned}
& \quad G_{1}(\alpha, \beta, \gamma)=\left\{a, b, c \mid c^{-1} a c=a^{\alpha}, c b c^{-1}=b^{\beta}, c^{\gamma}=a^{-1} b^{-1} a b\right\}, \\
& G_{2}(\alpha, \beta, \gamma)=\left\{a, b, c \mid c^{-1} a c=a^{\alpha}, c^{-1} b c=b^{\beta}, c^{\gamma}=a^{-1} b^{-1} a b\right\}, \\
& \text { with } \alpha^{|\gamma|} \neq 1, \beta^{|\gamma|} \neq 1, \gamma \neq 0 .
\end{aligned}
$$

We prove the following result.
Theorem 1. Each of the groups presented is a finite soluble group.
We state the following theorem proved by Macdonald (1).
Theorem 2. $G_{1}(\alpha, \beta, 1)$ is a finite nilpotent group.

1. In this section we make some elementary remarks.

Suppose that in each case, c has finite order; then $G_{2}(\alpha, \beta, \gamma)$ is a factor group of $G_{1}(\alpha, \delta, \gamma)$ for suitable δ and it follows from Theorem 2 that the normal subgroup $N_{i}(\alpha, \beta, \gamma)$ of $G_{i}(\alpha, \beta, \gamma)$ generated by a and b is a finite nilpotent group, and since $G_{i}{ }^{\prime}(\alpha, \beta, \gamma)$ is a subgroup of $N_{i}(\alpha, \beta, \gamma)$, we have $G_{i}{ }^{\prime}(\alpha, \beta, \gamma)$ is a finite nilpotent group, whence $G_{i}(\alpha, \beta, \gamma)$ is a finite soluble group. Furthermore, finiteness of the order of c follows if we show that c is of finite order in all cases with γ equal to ± 1, since c^{γ} of finite order implies c of finite order; and since $G_{2}(\alpha, \beta,-\gamma) \cong G_{2}(\beta, \alpha, \gamma)$, the theorem will be proved if we show that c has finite order in $G_{1}(\alpha, \beta,-1)$ and $G_{2}(\alpha, \beta, 1)$.

The groups $G_{i}(0, \beta, \gamma)$ and $G_{i}(\alpha, 0, \gamma)$ are easily treated, for then the groups are finite metacyclic.

If we add relations implying that $G_{i}(\alpha, \beta, \gamma)$ is a commutative group, we see that all groups other than $G_{i}(2,2, \pm 1)$ have order greater than 1 .

Theorem 1 when proved together with Theorem 2 imply that $G_{i}(2,2, \pm 1)$ is trivial.
2. Finiteness of the order of c in $G_{1}(\alpha, \beta,-1)$. Note that

$$
G_{1}(\alpha, \beta,-1) \cong G_{1}(\beta, \alpha,-1)
$$

thus we may assume that $\alpha \geqq \beta$, giving three possible cases:
Received August 21, 1968.

Case (i): $\alpha>1, \beta>1$,
Case (ii): $\alpha<0, \beta<0$,
Case (iii): $\alpha>1, \beta<0$.
We will prove Case (i) in detail, the other two cases being essentially similar.
The defining relations for $G_{1}(\alpha, \beta,-1)$ are:

$$
\begin{gather*}
c^{-1} a c=a^{\alpha}, \tag{2.1}\\
c b c^{-1}=b^{\beta}, \tag{2.2}\\
b^{-1} a b=a c^{-1} \tag{2.3}
\end{gather*}
$$

or

$$
\begin{equation*}
a^{-1} b a=b c . \tag{2.4}
\end{equation*}
$$

From (2.1) and (2.3) we have, for $\omega>0$,

$$
\begin{equation*}
b^{-1} a^{\omega} b=\left(a c^{-1}\right)^{\omega}=a^{1+\alpha+\cdots+\alpha^{\omega}-1} c^{-\omega} ; \tag{2.5}
\end{equation*}
$$

similarly, (2.2) and (2.4) yield, for $\omega>0$,

$$
\begin{equation*}
a^{-1} b^{\omega} a=(b c)^{\omega}=b^{1+\beta+\cdots+\beta^{\omega-1}} c^{\omega} . \tag{2.6}
\end{equation*}
$$

The relation to which calculation will be applied is

$$
\begin{equation*}
c\left(a^{-\alpha} b^{-1} a^{\alpha} b\right) c^{-1}=a^{-1} b^{-\beta} a b^{\beta} . \tag{2.7}
\end{equation*}
$$

With $\alpha>1, \beta>1$ we have:

$$
\begin{align*}
c\left(a^{-\alpha} b^{-1} a^{\alpha} b\right) c^{-1} & =c a^{-\alpha}\left(b^{-1} a^{\alpha} b\right) c^{-1} \tag{2.8}\\
& =c a^{-\alpha} a^{1+\alpha+}+\alpha^{\alpha-1} c^{-\alpha-1} \quad \text { by (2.5) } \\
& =c a^{1+\alpha^{2}+\alpha^{3}+\ldots+\alpha^{\alpha-1}} c^{-\alpha-1}
\end{align*}
$$

which, together with

$$
\begin{align*}
a^{-1} b^{-\beta} a b^{\beta} & =\left(a^{-1} b^{-\beta} a\right) b^{\beta} \tag{2.9}\\
& =c^{-\beta} b^{-1-\beta-\ldots-\beta^{\beta-1}} b^{\beta} \quad \text { by }(2.6) \\
& =c^{-\beta} b^{-1-\beta^{2}-\beta^{3}-\ldots-\beta^{\beta-1}}
\end{align*}
$$

and (2.7), yields

$$
\begin{equation*}
a^{1+\alpha^{2}+\ldots+\alpha^{\alpha-1}} c^{-\alpha-1}=c^{-\beta-1} b^{-1-\beta^{2}-\ldots-\beta^{\beta-1}}, \tag{2.10}
\end{equation*}
$$

conjugation of (2.10) by c yields

$$
\begin{equation*}
c a c^{-1} a^{\alpha+\alpha^{2}+\ldots+\alpha^{\alpha-2}} c^{-\alpha-1}=c^{-\beta-1} b^{-\beta-\beta^{3}-\ldots-\beta^{\beta}} . \tag{2.11}
\end{equation*}
$$

Elimination of $c^{\beta+1}$ from (2.10) and (2.11) yields

$$
\begin{equation*}
a^{1-\alpha+\alpha^{2}-\alpha^{\alpha}} c^{-\alpha-2}=c^{-\alpha-2} b^{1-\beta+\beta^{2}-\beta^{\beta}} \tag{2.12}
\end{equation*}
$$

whereas elimination of $c^{\alpha+1}$ from (2.10) and (2.11) yields

$$
\begin{equation*}
a^{1-\alpha+\alpha^{2}-\alpha^{\alpha}} c^{-\beta-2}=c^{-\beta-2} b^{1-\beta+\beta^{2}-\beta^{\beta}} . \tag{2.13}
\end{equation*}
$$

Combining (2.12) and (2.13), we have

$$
\begin{equation*}
c^{\alpha-\beta} a^{1-\alpha+\alpha^{2}-\alpha^{\alpha}} c^{\beta-\alpha}=a^{1-\alpha+\alpha^{2}-\alpha^{\alpha}} \tag{2.14}
\end{equation*}
$$

whence (if $\alpha \neq \beta$) (2.1) yields a of finite order, then (2.5) yields c of finite order. In the case $\alpha=\beta>1$, the relation (2.10) yields
(2.15) $\quad a^{\delta} c^{-\alpha-1}=c^{-\alpha-1} b^{-\delta}, \quad$ where $\delta=1+\alpha^{2}+\alpha^{3}+\ldots+\alpha^{\alpha-1}$, and since we have

$$
\begin{equation*}
b^{-\delta}=c^{-\alpha-1} b^{-\alpha^{\alpha+1} \cdot \delta} c^{\alpha+1}=\left(c^{-\alpha-1} b^{-\delta} c^{\alpha+1}\right)^{\alpha^{\alpha+1}}=a^{\delta \cdot \alpha^{\alpha+1}} \tag{2.16}
\end{equation*}
$$

it follows that $b^{-\delta}$ in the centre of $G_{1}(\alpha, \beta,-1)$, hence b^{δ} and c commute, whereby (2.2) yields b of finite order, whence (2.6) yields c of finite order.

With $\alpha<0, \beta<0$, the relation (2.10) becomes

$$
\begin{equation*}
a^{1+\alpha+\ldots+\alpha^{-\alpha-1}+\alpha^{1-\alpha}} c^{\alpha-1}=c^{\beta-1} b^{-1-\beta-\ldots-\beta-\beta-1-\beta^{1-\beta}} ; \tag{2.17}
\end{equation*}
$$

relations (2.12) and (2.13) become

$$
\begin{equation*}
a^{1-\alpha-\alpha+\alpha^{1-\alpha}-\alpha^{2-\alpha}} c^{\alpha-2}=c^{\alpha-2} b^{1-\beta^{-\beta}+\beta^{1-\beta}-\beta^{2-\beta}} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{1-\alpha-\alpha+\alpha^{1-\alpha-\alpha}{ }^{2-\alpha}} c^{\beta-2}=c^{\beta-2} b^{1-\beta-\beta_{+\beta}^{1-\beta_{-\beta}}{ }^{2-\beta}}, \tag{2.19}
\end{equation*}
$$

which together yield c of finite order.
For the case $\alpha>1, \beta<0$, (2.10) becomes

$$
\begin{equation*}
a^{1+\alpha^{2}+\alpha^{3}+\ldots+\alpha^{\alpha-1}} c^{-\alpha+\beta-1}=c^{-1} b^{1+\beta+\ldots+\beta-\beta-1+\beta^{1-\beta}} \tag{2.20}
\end{equation*}
$$

and as previously, c is of finite order.
3. Finiteness of the order of c in $G_{2}(\alpha, \beta, 1)$. Note that

$$
G_{2}(-1, \beta, \gamma) \cong G_{1}(-1, \beta, \gamma) \quad \text { and } \quad G_{2}(\alpha,-1, \gamma) \cong G_{1}(\alpha,-1, \gamma)
$$

Thus we may consider $|\alpha|>1,|\beta|>1$. The defining relations are:

$$
\begin{align*}
c^{-1} a c & =a^{\alpha} \tag{3.1}\\
c^{-1} b c & =b^{\beta}, \tag{3.2}\\
b^{-1} a b & =a c \tag{3.3}
\end{align*}
$$

and the following relations hold:

$$
\begin{equation*}
c^{-2}\left(a^{2}\right) c^{2}=\left(a^{2}\right)^{\alpha^{2}}, \quad c^{-2} b c^{2}=b^{\beta^{2}}, \quad c^{2}=b^{-1}\left(a^{2}\right) b\left(a^{2}\right)^{-r}, \tag{3.4}
\end{equation*}
$$

where $r=\left(\alpha^{2}+\alpha\right) / 2$.
Let G be the group defined by (3.4), i.e.

$$
G=\left\{a, b, c \mid c^{-1} a c=a^{\alpha}, c^{-1} b c=b^{\beta}, c=b^{-1} a b a^{-\gamma}\right\}
$$

where $\alpha>1, \beta>1, \gamma \geqq 1$. Then if we show that G is a finite group, Theorem 1 will follow.
4. Finiteness of G. The defining relations are:

$$
\begin{align*}
c^{-1} a c & =a^{\alpha}, & & \alpha>1, \tag{4.1}\\
c^{-1} b c & =b^{\beta}, & & \beta>1, \tag{4.2}\\
b^{-1} a b & =c a^{\gamma}, & & \gamma>0 . \tag{4.3}
\end{align*}
$$

We first prove the following result.
Lemma. For $n>0$ and $m \geqq 0$ we have

$$
\begin{equation*}
a^{m} b^{n}=c^{\tau} b^{s} a^{t} \tag{4.4}
\end{equation*}
$$

for suitable integers r, s, and t, each depending on m and n, where $t>\gamma m$ for $m>1$.

Proof. Induction on n. For $n=1$, (4.3) yields

$$
\begin{equation*}
b^{-1} a^{m} b=c^{m} a^{\gamma\left(1+\alpha+\ldots+\alpha^{m-1}\right)} \quad \text { for } m>0 \tag{4.5}
\end{equation*}
$$

whence $a^{m} b=b c^{m} a^{\gamma\left(1+\alpha+\ldots+\alpha^{m-1}\right)}=c^{m} b^{\beta^{m}} a^{\gamma\left(1+\alpha+\ldots+\alpha^{m-1}\right)}$ and

$$
\gamma\left(1+\alpha+\ldots+\alpha^{m-1}\right)>\gamma m
$$

for $m>1$. Suppose that $a^{m} b^{n}=c^{\tau} b^{s} a^{t}$; then

$$
\begin{aligned}
a^{m} b^{n+1} & =c^{r} b^{s} a^{t} b \\
& =c^{\tau} b^{s} b c^{t} \gamma^{\gamma\left(1+\alpha+\ldots+\alpha^{t-1}\right)} \quad \text { by } \\
& =c^{r+t} b^{(s+1) s^{t}} a^{\gamma\left(1+\alpha+\ldots+\alpha^{t-1}\right)}
\end{aligned}
$$

and $\gamma\left(1+\alpha+\ldots+\alpha^{t-1}\right)>\gamma m$ if $t>\gamma m$.
Now from (4.3) we have

$$
\begin{equation*}
c=b^{-1} a b a^{-\gamma}=b^{-\beta} a^{\alpha} b^{\beta} a^{-\gamma \alpha} \tag{4.6}
\end{equation*}
$$

which with (4.4) yields

$$
\begin{equation*}
c=b^{-\beta} c^{\tau} b^{s} a^{t-\gamma \alpha} \quad \text { with } t>\gamma \alpha \tag{4.7}
\end{equation*}
$$

or

$$
\begin{equation*}
c^{p} b^{q} a^{m}=1 \tag{4.8}
\end{equation*}
$$

for suitable p, q, and m with $m \neq 0$. Conjugation by c yields

$$
\begin{equation*}
a^{m(\alpha-1)} \in\{b\} \tag{4.9}
\end{equation*}
$$

whereby $a^{m(\alpha-1)}$ commutes with c and (4.1) yields

$$
\begin{equation*}
a^{m(\alpha-1)^{2}}=1, \quad m \neq 0 . \tag{4.10}
\end{equation*}
$$

Substitution in (4.5) and (4.2) yields c and b of finite orders whence (4.1), (4.2), and (4.3) show that G is a finite group since every element of G may be written in the form $c^{r} b^{s} a^{t}$ for suitable r, s, and t.
We do not settle the question as to the precise order of each $G_{i}(\alpha, \beta, \gamma)$. However, if p is a prime which divides the order of G_{i}, then p divides either $\alpha^{|\gamma|}-1, \beta^{|\gamma|}-1$ or γ, whereby (1) yields an upper bound on the orders.
$G_{i}(3,3, \pm 2)$ is a 2 -group and $G_{i}(-2,-2, \pm 3)$ a 3 -group.
Some of the $G_{i}(\alpha, \beta, \gamma)$ are well known as three-generator, four-relation groups, for example, for γ odd we have

$$
G_{2}(2,2, \gamma)=\left\{a, b, c \mid a b=b a, c^{-1} a c=a^{2}, c^{-1} b c=b^{2}, c^{\gamma}=1\right\} .
$$

5. Acknowledgement. I wish to thank the University of Queensland for the grant of a scholarship and Dr. I. D. Macdonald for his guidance.

References

1. I. D. Macdonald, On a class of finitely presented groups, Can. J. Math. 14 (1962), 602-613.
2. J. Mennicke, Einige endliche Gruppen mit drei Erzeugenden und drei Relationen, Arch. Math. 10 (1959), 409-418.

University of Queensland,
St. Lucia, Brisbane;
The Flinders University of South Australia, Bedford Park, South Australia

