Adult malnutrition screening, prevalence and management in a United Kingdom hospital: cross-sectional study

Christopher A. Lamb*, John Parr, Elizabeth I. M. Lamb and Matthew D. Warren

Department of Gastroenterology, Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Rake Lane, North Shields, Tyne and Wear NE29 8NH, UK

(Received 9 September 2008 – Revised 26 November 2008 – Accepted 23 December 2008 – First published online 10 February 2009)

The objectives of the present cross-sectional study were to assess the screening, prevalence and management of malnutrition and identify any co-existence with obesity in adult hospital in-patients. The Malnutrition Universal Screening Tool (MUST) was applied to all medical, surgical, orthopaedic and critical care in-patients in an acute hospital in North-East England on a single day in 2007. An audit was also performed of malnutrition screening using a locally developed tool. Patients were excluded from study if they had been an in-patient less than 24 h or if discharged on the day of study. Of 328 patients meeting inclusion criteria, 100 % had full data collection (143 males, 185 females, median length of stay 8 d (range 1–90 d), median age 76 years (range 17–101 years)). Only 226 patients (68·9 %) had been screened for malnutrition and thirty-one (13·7 %) were at highest malnutrition risk, of which only 45·2 % were appropriately referred to nutrition and dietetic services. The prevalence of malnutrition (MUST ≥ 1) was 44 %. The prevalence of highest risk (MUST ≥ 2) increased with age (20·6 % < 60 years, 29·7 % 60–79 years and 39·4 % ≥ 80 years). In total 37·8 % (n 70) of female patients had a MUST score of ≥ 2 compared with 24·5 % (n 35) of males. Obesity (BMI >30 kg/m2) was identified in 9·5 % of those with a MUST score ≥ 2. We have shown that malnutrition is a common problem affecting over 40 % of patients in this hospital-wide study. Currently malnutrition is often unrecognised and undertreated in clinical practice. Hospitals must develop comprehensive strategies to both identify and treat in-patients with this common condition.

Malnutrition: Prevalence: Obesity: Screening: Malnutrition Universal Screening Tool

The WHO defines malnutrition as a ‘cellular imbalance between supply of nutrients and energy and the body’s demand for them to ensure growth, maintenance, and specific functions’ (1). The consequences of this condition result in a significant health and economic cost. Malnutrition in hospital leads to prolonged hospital stay and increased risk of complications such as nosocomial infections, falls, impaired wound healing and depression (2–6). In December 2006, the National Institute for Health and Clinical Excellence (NICE) released its report Nutritional Support in Adults (7). This recommended that all UK hospital in-patients be screened for malnutrition on admission using a validated screening tool and that appropriate and immediate referral to nutrition and dietetic services should be undertaken for those at risk of, or suffering from, malnutrition. They recommended the use of a tool that would be simple, efficient and easily used by a wide variety of disciplines including doctors, nurses and other healthcare professionals.

Northumbria Healthcare NHS Foundation Trust employs a locally created malnutrition screening tool named the ‘Northumbria Nutrition Score Chart’ (NNSC), displayed in Table 1. Although only validated with regards to reproducibility and ease of use, this screening tool is otherwise compliant with NICE recommendations, and Trust policy at the time of study dictated its use on admission for all adult patients. Individuals are scored according to psychological state, BMI, weight loss, ability to swallow and co-morbid medical illness. If a patient is found to be at high risk of malnutrition according to the NNSC, they should be immediately referred to hospital nutrition and dietetic services.

There were three main aims to our cross-sectional study. The first was to measure compliance with NICE guidance and Trust policy on malnutrition, by prospectively auditing to what extent our locally devised malnutrition screening tool was being employed, and whether those identified as at high risk of malnutrition by ward staff were appropriately referred for nutritional support. We also intended to assess the burden to nutrition and dietetic teams should all in-patients be screened and referred according to policy.

Abbreviations: BAPEN, British Association for Parenteral and Enteral Nutrition; MUST, Malnutrition Universal Screening Tool; NHS, National Health Service; NICE, National Institute for Health and Clinical Excellence; NNSC, Northumbria Nutrition Score Chart.

* Corresponding author: Dr Christopher A. Lamb, email christopherlamb@doctors.org.uk; christopherlamb@nhs.net
Table 1. The Northumbria Nutrition Score Chart

<table>
<thead>
<tr>
<th>Risk of malnutrition and action to be taken</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score 0–3: Low risk – Review weekly</td>
<td></td>
</tr>
<tr>
<td>Score 4–5: Moderate risk – Assist food choices/feeding, offer food supplements and refer to dietitian if no improvement</td>
<td></td>
</tr>
<tr>
<td>Score 6 or more: High risk – Refer to dietitian immediately</td>
<td></td>
</tr>
</tbody>
</table>

The second aim was to assess the overall prevalence of malnutrition risk within the hospital population using a validated tool, the Malnutrition Universal Screening Tool (MUST)\(^{(9)}\).

Our final aim was to record the prevalence of obesity according to BMI in those at highest malnutrition risk.

Experimental methods

The present study was carried out at North Tyneside General Hospital, Northumbria Healthcare NHS Foundation Trust, in the North East of England (local population 250,000). All adult in-patients over age 16 years under the specialities of general medicine, general surgery, orthopaedics and critical care were eligible for study. Patients discharged on the day of study and those that had been admitted less than 24 h previously were excluded. All patients meeting inclusion criteria were reviewed and anthropometric data including age, sex, BMI and weight loss were recorded. Data were collected by a group of thirty-one individuals comprising of doctors and senior clinical medical students. Complex anthropometric measurements were performed by doctors of senior house officer grade or above.

The study was approved by the local audit committee. Caldicott approval was obtained, and verbal consent was gained from all participants or advocates. Ethical approval was not required.

For each patient the NNSC depicted in Table 1 was reviewed and, if previously completed by ward staff, was checked for accuracy. It was noted whether those at high risk of malnutrition had been referred for dietetic review (as per Trust policy). The NNSC was calculated by the researchers for all patients in whom nutritional assessment had not been carried out by ward staff, to identify how many patients in the cohort should have been referred to nutrition and dietetics if local policy had been followed in the desired 100 % of cases. BMI was calculated for all patients if not already done so. As recommended by BAPEN, if unable to measure height or weight, we used recently documented or self-reported measurements if they were felt to be realistic or reliable. Alternatively ulnar length was used to estimate height, or mid upper arm circumference was used to estimate BMI category\(^{(9)}\). If this was impossible or inappropriate due to immobility or frailty, subjective judgement was used to estimate BMI category. If recent weight loss could not be calculated, self-reported weight loss or that reported by close family members if reliable and realistic was used. If reports were unreliable, a default score of 0 was applied for this step of the MUST calculation. Information on ability to swallow, and co-morbid illness was gained from medical and nursing notes. Using the above information a MUST score was calculated for all patients.

Data were used to identify the proportion of patients with a BMI >30 kg/m\(^2\), and hence the prevalence of obesity within those at highest malnutrition risk\(^{(10)}\).

Results

Patient selection

In total 328 in-patients met the inclusion criteria for the present study and all (100 %) were assessed during a single day in 2007 (1 May). There were 185 female patients (56-4 %) and 143 male (43-6 %). The median length of stay on the day of study was 8 d (range 1–90 d). The median age was 76 years (range 17–101 y).

Compliance with policy on screening for malnutrition and appropriate dietetic referral

The NNSC had been completed in 226 (68-9 %) of the 328 patients. Of these, 152 (67-3 %) patients were identified as at low risk of malnutrition (score 0–3), forty-three (19 %) patients were identified as at moderate risk of malnutrition (score 4–5) and thirty-one (13-7 %) patients were identified by staff as being at high risk of malnutrition (score >5).

Of the thirty-one patients at high risk of malnutrition, fourteen (45-2 %) were appropriately referred for dietetic advice, no action was taken in twelve (38-7 %) of the cohort, and the remaining five (16-1 %) were provided nutritional support without prior referral to nutrition and dietetic services (four were provided with diet plans and one commenced on nasogastric feeding).
Malnutrition in a United Kingdom hospital

Table 2. Northumbria Nutrition Score Chart (NNSC) results for all 328 in-patients
(Number of patients and percentages)

<table>
<thead>
<tr>
<th>In-patient specialty...</th>
<th>Medicine (n 222)</th>
<th>Surgery/or-thopaedics (n 93)</th>
<th>Critical care (n 13)</th>
<th>Overall (n 328)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Low risk of malnutrition (NNSC score 0–3)</td>
<td>144</td>
<td>64.9</td>
<td>76</td>
<td>81.7</td>
</tr>
<tr>
<td>Moderate risk of malnutrition (NNSC score 4–5)</td>
<td>45</td>
<td>20.3</td>
<td>11</td>
<td>11.8</td>
</tr>
<tr>
<td>High risk of malnutrition (NNSC score ≥6)</td>
<td>33</td>
<td>14.9</td>
<td>6</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Theoretical burden to nutrition and dietetic services if all patients were screened and referred appropriately

Assessment of the remaining 102 ‘unscreened’ patients revealed fourteen patients at high risk of malnutrition (NNSC scores ≥6) that had gone unrecognised. In twenty-two of the 102 unscreened patients it was impossible or inappropriate to measure height and/or weight due to immobility or frailty; therefore mid upper arm circumference or subjective judgement was employed to estimate BMI category. In total, nine of these patients had an estimated BMI below 20 kg/m². The other thirteen patients had an estimated BMI of greater than 20 kg/m². Table 2 represents the NNSC scores that would have been observed had 100% of our 328 patients been assessed. Overall, forty-five patients would have qualified for immediate referral to the dietetic department, representing 13.7% of the entire cohort (forty-five out of 328) and reveals that 31.1% (fourteen out of forty-five) of the highest-risk group had not been screened by ward staff.

Prevalence of malnutrition according to the Malnutrition Universal Screening Tool

As depicted in Table 3, the MUST identified 105 patients (32%) as being at high risk of malnutrition (score ≥2) and a further thirty-nine patients (11.9%) were classed as moderate risk (MUST score 1). The prevalence of high malnutrition risk in critical care was 76.9% (n 10). As demonstrated by Table 4, the risk of malnutrition increased with age. On surgical wards 44.8% (thirteen out of twenty-nine) of patients over the age of 80 years scored ≥2 on the MUST compared with 17.9% (five out of twenty-eight) of patients under the age of 60 years. This trend was repeated in medical and critical care patients. The overall prevalence of high malnutrition risk (MUST ≥2) in patients aged less than 60 years was 20.6%, rising to 29.7% in 60- to 79-year-olds and 39.4% in those aged over 80 years. Malnutrition risk varied according to sex with 37.8% (seventy out of 185) of female patients having a MUST score of 2 or greater compared with 24.5% (thirty-five out of 143) of males.

Prevalence of obesity

As demonstrated in Table 5, 18.6% (n 61) of the entire cohort was obese (defined as BMI > 30 kg/m²), with the highest rate of 28.1% (thirty-six out of 128) in patients aged 60–79 years. In contrast, only 8% (eleven out of 137) of those over 80 years were obese. A higher proportion of male patients were obese compared with females (23.1 vs. 15.1%). Interestingly 9.5% (ten out of 105) of patients defined as at high risk of malnutrition with a MUST score of 2 or more were also obese with a BMI > 30 kg/m².

Discussion

Malnutrition remains a common but often unrecognised problem in the UK. Risk factors include social deprivation, physical dependence, poor mobility, old age, institutionalisation, malignant disease and polypharmacy. Malnutrition is associated with greater in-hospital mortality, and at 1 year following diagnosis the mortality of a malnourished in-patient is estimated to be 29.7%, compared with 10.1% in those with a normal nutritional status.

Improved recognition and treatment of malnutrition is therefore essential. There are, however, over fifty screening tools in use with no universally recognised definition for malnutrition. Terms such as ‘malnutrition risk’ and ‘malnutrition prevalence as between 17 and 78% depending on criteria.

Table 3. Prevalence of malnutrition risk using the Malnutrition Universal Screening Tool (MUST)
(Number of patients and percentages)

<table>
<thead>
<tr>
<th>In-patient specialty...</th>
<th>Medicine (n 222)</th>
<th>Surgery/or-thopaedics (n 93)</th>
<th>Critical care (n 13)</th>
<th>Overall (n 328)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Low risk of malnutrition (MUST score = 0)</td>
<td>119</td>
<td>53.6</td>
<td>62</td>
<td>66.7</td>
</tr>
<tr>
<td>Medium risk of malnutrition (MUST score = 1)</td>
<td>29</td>
<td>13.1</td>
<td>10</td>
<td>10.8</td>
</tr>
<tr>
<td>High risk of malnutrition (MUST score ≥2)</td>
<td>74</td>
<td>33.3</td>
<td>21</td>
<td>22.6</td>
</tr>
</tbody>
</table>

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 25 Dec 2017 at 23:20:32, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0007114509236038
Table 5. High malnutrition risk according to age (Malnutrition Universal Screening Tool (MUST) score of ≥2) (Number of patients and percentages)

<table>
<thead>
<tr>
<th>In-patient specialty…</th>
<th>Medicine (n 222)</th>
<th>Surgery/orthopaedics (n 93)</th>
<th>Critical care (n 13)</th>
<th>Overall (n 328)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At risk</td>
<td>Total %</td>
<td>At risk</td>
<td>Total %</td>
</tr>
<tr>
<td>Age < 60 years</td>
<td>5</td>
<td>31 16.1</td>
<td>5</td>
<td>28 17.9</td>
</tr>
<tr>
<td>Age 60–79 years</td>
<td>30</td>
<td>85 35.3</td>
<td>3</td>
<td>36 8.3</td>
</tr>
<tr>
<td>Age ≥ 80 years</td>
<td>39</td>
<td>106 36.8</td>
<td>13</td>
<td>29 44.8</td>
</tr>
</tbody>
</table>

The prevalence of obesity was higher in men than women, and more common in surgical and critical care patients than medical patients. Additionally we noted a significant level of malnutrition risk associated with obesity, which highlights an important issue when screening for malnutrition. In the present study, one in ten of those with a MUST score of ≥ 2 were also obese.

The strength in the present study is that we have surveyed 100% of an entire hospital population admitted for more than 24 h, and so can provide an accurate point prevalence of malnutrition within our population. The main limitations of the present study are that it is single-centred, and in twenty-two patients mid upper arm circumference or subjective estimation were required to obtain BMI. This could therefore lead to some bias due to inaccuracy of BMI estimation. However, overall our prevalence data correlate well with other UK research in which a rate of malnutrition (MUST score ≥ 1) of 32% was recognised in nearly 12 000 patients and residents admitted to 372 hospitals, mental health units and care homes across the UK(23). Similarly, the present study also demonstrated malnutrition prevalence to increase with age. Moreover, other European studies have demonstrated equally poor in-patient malnutrition screening and recognition as our data, with only 60% of patients weighed on admission to hospital, and up to 70% of malnutrition going undetected in acute hospital admissions(16,24,25).

BAPEN report that 89% of UK hospitals now have screening policies and tools in place(23). It is imperative to the success of these programmes that hospital employees are trained to use these tools and recognise when specialist input is required. Education is now the most important factor in the implementation of change. A study from Hammersmith Hospital NHS Trust, London, UK demonstrated that improving hospital nutrition care strategies and implementing targeted education programmes reduced hospital malnutrition rates, improved nutritional practice and improved the appropriateness of dietetic referrals(25). We believe that similar

Table 5. Prevalence of obesity in different age groups (BMI >30 kg/m²) (Number of patients and percentages)

<table>
<thead>
<tr>
<th>In-patient specialty…</th>
<th>Medicine (n 222)</th>
<th>Surgery/orthopaedics (n 93)</th>
<th>Critical care (n 13)</th>
<th>Overall (n 328)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obese</td>
<td>Total %</td>
<td>Obese</td>
<td>Total %</td>
</tr>
<tr>
<td>All ages</td>
<td>36</td>
<td>222 16.2</td>
<td>21</td>
<td>93 22.6</td>
</tr>
<tr>
<td>Age < 60 years</td>
<td>8</td>
<td>31 25.8</td>
<td>5</td>
<td>28 17.9</td>
</tr>
<tr>
<td>Age 60–79 years</td>
<td>19</td>
<td>85 22.4</td>
<td>14</td>
<td>36 38.9</td>
</tr>
<tr>
<td>Age ≥ 80 years</td>
<td>9</td>
<td>106 8.5</td>
<td>2</td>
<td>29 6.9</td>
</tr>
</tbody>
</table>
Acknowledgements

M. D. W. devised the initial concept which was then developed along with C. A. L.; C. A. L., J. P. and M. D. W. designed the methodology. C. A. L. coordinated data collection and initial data analysis with E. I. M. L. Complex data interpretation was performed by all authors. C. A. L. was responsible for the initial draft. Subsequent drafts were developed by C. A. L., J. P. and M. D. W. All authors were responsible for final draft revision.

The present study represents original work that has not been published previously. Each author has seen and approved the contents of the submitted manuscript.

The present study was not funded, and all authors declare that there are no competing interests.

References