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Abstract

Let d , G2 be locally compact real-compact spaces. A linear map T defined from C(Gi) into C(G2) is
s a i d t o b e separating or disjointnesspreserving i f / • g = 0 i m p l i e s Tf • Tg = 0 f o r a l l f , g € C ( G \ ) . I n
this paper we prove that both a separating map which preserves non-vanishing functions and a separating
bijection which satisfies condition (M) (see Definition 4) are automatically continuous and can be written
as weighted composition maps. We also study the effect of separating surjections (respectively injections)
on the underlying spaces Gj and G2.

Next we apply the above results to give an algebraic characterization of locally compact Abelian
groups, similar to the one given in [7] for compact Abelian groups in the presence of ring isomorphisms.

Finally, locally compact (not necessarily Abelian) groups are considered. We provide a sharpening of
a result of Edwards and study the effect of onto (respectively injective) weighted composition maps on
the groups G\ and G2.

1991 Mathematics subject classification (Amer. Math. Soc): primary 47B38; secondary 43A20, 54C40.

1. Introduction

Let G\, G2 be completely regular Hausdorff spaces. C{Gi) (i = 1, 2) denotes the
algebra of all complex-valued continuous functions on G, equipped with the compact-
open topology. C*(Gj) denotes the subset of all bounded functions of C(Gj). If G, is
also locally compact, then let C0(Gi) (respectively Coo(G,)) be the Banach algebra of
all complex-valued continuous functions on G, which are zero at infinity (respectively
the normed algebra of all continuous functions with compact support).

The deduction of topological links between G\ and G2 from certain algebraic
relationships between C(G\) and C(G2) has been widely studied in the literature.
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The first result of this type is the well-known Banach-Stone theorem. However, we
follow the direction of the following classical result: if a linear map T is an algebra
isomorphism between C(G\) and C(G2), then the real-compactifications of G\ and
G2 must be homeomorphic ([14, pp. 115-118]). Moreover, as in the Banach-Stone
theorem, T is a weighted composition map, that is, Tf = a-(foh) where 'the weight'
a belongs to C(G2) and h : G2 —> Gt is a continuous map. Indeed, \a\ = 1 whenever
T is an onto linear isometry and a = 1 provided T is an algebra isomorphism. In this
paper we deal with a weaker algebraic connection between C(G\) and C(G2).

A linear map T defined from C(G\) into C(G2) is said to be separating or disjoint-
ness preserving (also called a d-homomorphism) if / • g = 0 implies Tf Tg = 0 for
all f,g e C(G\). Throughout this paper, T will denote a separating map unless oth-
erwise specified. Algebra homomorphisms, lattice homomorphisms, onto isometries,
and bipositive or weighted composition operators, are all separating maps.

Disjointness preserving maps between general vector lattices were considered first
by several authors; see for example [1,2,5,10,15,21]. A thorough study of operators
preserving disjointness in the context of C(^T)-modules can be found in [3].

Disjointness preserving maps were later considered in [6] for spaces of real or
complex-valued continuous functions defined on a compact Hausdorff space with the
name of separating maps. The main goal of these two papers and [20, 4, 11, 12] is to
prove automatic continuity results for separating maps when G, (i=l,2) is compact,
real-compact, locally compact and a locally compact Abelian group respectively. As a
consequence, certain topological links between the underlying spaces are deduced and
weighted composition type representations for separating maps are obtained. Similar
representations have also been obtained in, for example, [1, 5, 19], though in the
presence of a continuity type assumption about T. Automatic continuity for separating
maps in the context of vector-valued continuous functions is considered in [16]. It
is important to remark that a separating map need not be continuous; indeed, Jarosz
proved in [20] that, given two compact spaces G\ (infinite) and G2, there always exists
a discontinuous separating map defined from C{GX) onto C(G2).

In Section 3, we prove that both a separating map which preserves non-vanishing
functions and a separating bijection which satisfies condition (M) (see Definition 4) are
automatically continuous and can be written as weighted composition maps (Theorem
1 and Theorem 2, (1)). We also study the effect of separating injections, surjections
and bijections on the underlying spaces G\ and G2 (Theorem 1 and Theorem 2,

In Section 4, we apply the results of Section 3 to give an algebraic characterization
of locally compact Abelian groups, similar to the one given in [7] for compact Abelian
groups in the presence of ring isomorphisms.

In Section 5, locally compact (not necessarily Abelian) groups are considered
and Coo(Gj) is regarded as an algebra under both the pointwise multiplication and the
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convolution product. We provide (Theorem 3) a sharpening of a result of Edwards ([8,
Theorem 2]) since isometric and bipositive bijections are nothing but separating maps.
Finally, we study the effect of onto (respectively injective) weighted composition maps
on Gx and G2 (Theorems 4 and 5).

2. Preliminaries

N (respectively R, C) stands for the set of all natural numbers (respectively real,
complex numbers). If G, is locally compact, then G* denotes its Alexandroff com-
pactification; that is, G* = G, U {oo}, oo being an ideal point with a neighbourhood
consisting of all sets in G* whose complement is compact in G,. Let cGt denote
any Hausdorff compactification of G,. If / e C(Gt), the co-zero of / is the set
coz(/) = ( /e G, : f{t) ̂  0} and supp(/) will denote the closure of coz(/). When
U is any subset of G,, we denote by int(t/) the interior of U and by c\(JJ) the closure
of U in G,. We let fa stand for the restriction of / to U, for any / € C(Gi), and 1
denotes the unit of C(Gj); that is, l(s) = 1 for every s 6 G,.

Finally, if s e G2, let T's' : C(Gi) -* C be defined as T's'(f) = Tf(s) for all
/ e Cid).

3. Automatic continuity and representation of separating maps

Throughout this section G\,G2 will be locally compact real-compact spaces. The
following two definitions and Propositions 1, 2 and 3 follow the pattern given by
Abramovich in [1] for similar results in the context of general vector lattices.

DEFINITION 1. Given 5 e G2, we denote by suppTV the set {t € cGt : for
any cG,-neighbourhood U of t, there exists / e C(GX) such that Tf (s) ^ 0 and
coz(/) ci/nc,l.

LEMMA 1. For every s e G2, supp T's' has only one element.

PROOF. This can be found essentially in [1, Proposition 3.1]. (See also [6] or [20].)

DEFINITION 2. The lemma above lets us define a mapping h : G2 ->• cGu such
that h(s) =supp T's'. We call h the support map of T.

PROPOSITION 1. Let U be an open subset of cGx and suppose that f e C(Gi).
Then the following conditions hold:
(1) The support map hofT is continuous.

https://doi.org/10.1017/S1446788700001099 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001099


408 Juan J. Font and Salvador Hernandez [4]

(2) f\unc, = 0 implies that Tfih-HU) = 0.
(3) /.(coz(r/))Cc/cCl(coz(/)).
(4) If T is injective, then h(G2) is a dense subset ofcG\.

PROOF. This can be essentially found in [1, Proposition 3.1]. (See also [6] or [20].)

REMARK. Let G2o ̂  G2 be the subset of all points s such that there exists fs e
C(Gi) with Tfs(s) ^ 0. Throughout this article we will assume that G2o = G2. Note
that if T is onto or preserves non-vanishing functions, then G2o = G2.

PROPOSITION 2. If s e G2 and T's' is a continuous map, then h{s) e G\.

PROOF. Let us suppose that T's' is continuous and h(s) e (cGi\G\). Let [Ka :
a e A} be the family of all compact subsets of G\. Since h(s) g G{, let us consider,
for all a e A, an open neighbourhood Va of h(s) such that clcC(Va) 0 Ka — 0. By the
definition of h(s), there exists fa e C{G{) such that coz(/a) c Va and Tfa{s) = 1.

On the other hand, we can order A by taking, for a, b e A, a < b if Ka C Kb, so
that {fa)a€A form a net in C(G\). It is clear that, for all a € A, fa]Ka = 0 and fblKa = 0
if b > a, that is, the net (fa)aeA converges to 0 in the compact-open topology of
C{G\). This contradicts the continuity of T's' since T's'(fa) = Tfa(s) = 1 for all
a € A.

DEFINITION 3. We denote by G2c the subset of G2 consisting of all s e G2 such
that T's' is continuous, and by GM the complement of G2c in G2.

PROPOSITION 3. The following statements are equivalent.

(1) The map T's' is continuous for every s € G2, that is, G2 = G2c.
(2) T is a weighted composition map. Indeed, Tf(s) = Tl(s) • f(h(s)) for every

s eG2and f € C(GX).
(3) T is a continuous map.

PROOF. (1) implies (2). This is in [6, Theorem 2.2].
(2) implies (3). Let us consider a net (/„) in C(Gi) converging to / e C{G\) in

the compact-open topology. Given a compact subset K of G2, it suffices to prove that
the net (7%) converges to Tf on K.

Let € > 0. As h (K) is a compact subset of G {, there exists a' such that sup{ | T1 (s) \ •
\fa(h(s)) - f(h(s))\ : s € K} < € for every a > c/ because the map T\ is bounded
on K. Thus, sup{|r/a(i) — Tf(s)\ : s e K} < € and this completes the proof.

(3) implies (1) is clear.
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PROPOSITION 4. For any separating map T, the subsets of Definition 3 have the
following properties:

(1) G2C is closed in h~l(G\).
(2) hiGjd) is a subset of limit points ofcG\.

PROOF. (1) From Proposition 2 we have G2c c h~x {G{). Let us consider a net (sa)
in G2c which converges to s e h~l{G\). By Proposition 3, Tf (sa) = Tl(sa)-f(h(sa))
for every a and every / e C(Gi). Since Tl, f oh, and Tf are continuous mappings,
it is clear that Tf(s) = Tl(s) • f(h(s)) for every / e C{GX); that is, 5 e G2c.

(2) Let us see that if h(s) e Gi is isolated in d , for some s e G2, then T's'
is a continuous map; that is, 5 € G2c. Given / € C(G{), let us define the map
g = f(h(s)) • 1. As /j ( A ( J ) 1 = gms)], we have that 7/(5) = Tg(s) by Proposition 1.
Hence, T's'(f) = Tl(s) • f(h(s)) for every / e C(G0, which implies that T's' is
continuous.

DEFINITION 4. We say that T satisfies condition (M) if r(Coo(Gt)) C C*(G2).

PROPOSITIONS. /ff/ze separating map T satisfies condition (M), then /!(GM) D
in t (^ ) is finite for every compact subset K ofG\.

PROOF. TO prove that h{G2d) n \n\.(K) is finite for every compact subset K of G\,
let us suppose that there exists a sequence (h(sn)) of distinct elements of int(AT) such
that sn e G24 for every n e N. As K is a normal space, by taking a subsequence if
necessary, we can assume that {{/„} is a pairwise disjoint sequence of open subsets of
# such that h(sn) e Un c. K for every n e N. Let Vn be a closed neighbourhood of
h(sn) with Vn c £/„. Thus, there exists a map Kn e Coo (GO such that 0 < / £ " „ < I,
A ^ = 1 and coz(ATn) c Un for each n e N.

On the other hand, since T's'n is discontinuous, there exists a map /„ e C ( G 0 with
sup{\fn(t)\ : f e f } < 1 and such that | r ' ^ ( / n ) | = \Tfn(sn)\ > n3 for all n e N.
Let us define the map

n2

Since An = 1 on Vn, we have

n(sn)\ = --\Tfn(sn)\>n.
n1n1

Consequently, \Tgn(sn)\ > n for each n e N.
It is clear that \\gn\\ < l/n2 since Kn{ = 0. Thus, we can define the map g :—

Ln£N 8n- Given that supp(g) c cl(U(suppteJ)) c K, we deduce that g e Coo(GO-
On the other hand, as the family {{/„} is pairwise disjoint and coz(gn) C Un for all
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n e N, then we have that Tgn\h-HVm) = 0 for n ^ m. Thus, \Tg(sn)\ = \Tgn(sn)\ > n
for every n e H, which is a contradiction since 7 satisfies condition (M).

PROPOSITION 6. Let T be a separating bijection from C(G\) onto C(G2) which
satisfies condition (M). Then:

(1) G2c is dense in G2; indeedh~\Gx) = G^.
(2) A(G2)CG,.

PROOF. (1) As G 2 c UG M = G2, then KG^) U A(GM) = A(G2). Since 7 is
injective, /i(G2) is dense in cGx by Proposition 1(4). Hence, given t e Gi and a
compact neighbourhood £/ of/, we have, by Propositions 4(2) and 5, h(G2c) n £/ ^ 0.
That is, hiGic) is dense in cGi.

Let s € /i~'(Gi) such that 5 £ G2c. By Proposition 4, there exists a closed subset
C of G2 such that G^ = C D (h~l(Gi)). Clearly, s & C. Since 7 is onto, let
/ e C(Gi) such that / # 0, 7/(5) = 1 and Tfc = 0. This implies that TfG2c = 0.
Consequently, / = 0 since, from the onto-ness of 7, Tl(s) ^ 0 for all s € G^
(see Proposition 3(2)) and h(G2c) is dense in cG\. This contradiction proves that
G2c = h~l(Gi). In like manner, we prove that G^ = h~x(G\) is dense in G2.

(2) Let s0 € G2 be such that h(s0) e (cGi\Gi). From (1), there exists a net
(sa) in G^ such that (sa) converges to s0. Thus, by the continuity of h, we have
that the net (h(sa)) converges to h(s0). Let AT be a compact subset of G2 such that
( ( s JUfe l l £ K. Let us suppose first that 71 (s0) = 0. Then(|71(sa)|-|/(/i(sa))|) =
(\Tf(sa)\) converges to |7/(so)l for all / e C(Gi). Since ( / o h) is bounded on K,
{\T\(sa)\-\f(h(sa))\) converges toO. This implies that 7/(s0) = Oforall/ e C(Gi),
which contradicts the onto-ness of 7.

On the other hand, let us suppose that 71 (s0) ^ 0. Without loss of generality, we
can assume that cG\ is jSGi, the Stone-Cech compactification of G\. Since G\ is
real-compact, there exists ([23, p.81]) a function f0 e C0Gi) such that fo(t) e R
for every t e fid, fo(h(so)) = 0 and fo(t) > 0 for every t 6 Gx. Let g0 := ( l / /0) .
It is clear that g0 G C(G^). Furthermore, (\go(h(sa))\) converges to (+oo) since the
net (sa) belongs to G2c and {(sa) {J{s0}} £ K. This contradicts the fact that the net
(info,) • go(h(sa))\) = (|7gofo*)l) converges to \Tgo(so)\ € R.

THEOREM 1. If there exists a separating bijection T from C(G\) onto C(G2) which
satisfies condition (M), then T is automatically continuous (indeed, a weighted com-
position map) and Gt and G2 are homeomorphic.

PROOF. The automatic continuity of 7 and its multiplicative representation follow
from Propositions 3 and 6. This and the onto-ness of 7 yield easily the injectivity of
the map h (note that 71 is non-vanishing on G2).
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Let us prove that the inverse of T, T~l, is also a separating bijection. Let gx and
g2 be two elements of C(G2) such that coz(gi) n coz(g2) = 0. Let fuf2 G C(GX)
be such that Tf = gx and T/2 = g2. Since 7*1 is non-vanishing on G2, we deduce
that coz(/i) fl coz(/2) = 0 on h(G2), which is dense in Gj. As a consequence,
coz(/1)ncoz(/2) = 0.

We can now define the support map k : G] —>• cG2 of T~l. Like ft, k is continuous
and its range is dense in cG2. Let / e C(G]) be such that Tf e Coo(G2). From
the multiplicative representation of T, we deduce that ( / o h) is bounded on G2,
which implies that / is bounded on Gx. Therefore T~l also satisfies condition (A/).
Consequently, we can represent 7"1 as a weighted composition map and k(Gx) c G2.

If f e Gi is an element of h(G2), that is, h(s) = t for some s e G2, we will show
that k{t) = s. If k(h(s)) ^ 5, then there exist disjoint compact neighbourhoods U
and V of k(h(s)) and 5 respectively. By the definition of k, there exists a function
/o e C(G2) such that coz(/0) c £/ and r-'(/0)(/i(s)) ^ 0. This implies that
s $ cl(coz(/0)) and k(h(s)) e cl(coz(/0)). Let / , € C(G2) such that /,(s) # 0 and
/i|COI(/) = 0. Consequently, we have that coz(/i) n coz(/0) = 0 and, since T"1 is
separating, coz(r- '(/i)) n coz(r-'(/o)) = 0.

On the other hand, coz(T~l(f0)) is a neighbourhood of h(s). If we take any
g e C(G,) such that coz(g) c coz(7"1(/o)), then coz(fx) D coz(Tg) = 0 because
r is separating. Consequently, Tg(5) = 0 since /i(s) ^ 0. This contradicts the
definition of h. In like manner, we obtain that h~] = k, that is, h is a homeomorphism
of G2 onto G\.

REMARKS. Note that if G2 is a pseudo-compact space, then condition (M) is redund-
ant. Thus, we extend the result proved by Jarosz in [20]: Let Gj and G2 be compact
spaces. If T is a separating bijection of C(Gi) onto C(G2), then T is continuous, has
a separating inverse and Gj and G2 are homeomorphic.

A close result is proved in [4] when Gx and G2 are real-compact and either the
inverse of T is separating or Gi is zero-dimensional, though different techniques are
used.

THEOREM 2. Let T be a separating map from C{G\) into C(G2) which preserves
non-vanishing functions. Then:

(1) T is automatically continuous (indeed, a weighted composition map).
(2) IfT is onto, then there exists a closed subset Hi of G\ such that H\ is homeo-

morphic to G2.
(3) IfT is injective and preserves the functions with compact support, then Gx is

homeomorphic to a quotient of G2.
(4) If T is a bijection, then G\ and G2 are homeomorphic.
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PROOF. (l)Let us first show that h~l{G\) — G2c. Suppose that there exists s e G2

such that h(s) e G\ and T's' is not continuous. Then, by Proposition 3, there is some
/ e C{GX) such that f(h(s)) = 0 but Tf(s) ^ 0. Since Tl(s) ^ 0, we can choose
z e C(G\) such that z = 1 on a neighbourhood U of h(s), while

sup{|/z(f)| : f e G , } < \Tf(s)\/\Tl(s)\.

Let
Tl(s)-fz

8 " T(fz)(s) •

Since T(fz)(s) = Tf(s) by Proposition 1(2), it follows that g is non-vanishing, but
Tg(s) = 0, which contradicts the non-vanishing-preserving property of T.

We next show that h(G2) c G\. Let us suppose that h(s0) e (PGi\G{) for some
s0 e G2. Since Gt is real-compact, there exists ([23, p.81]) a function /0 e C(flGy)
such that fo(h(so)) = 0 and /0 never vanishes on Gi. Hence, by hypothesis, Tfo(so) /
0. Let zo £ C(jSd) be such that zo = 1 on U (~)GU where U is a neighbourhood of
/z(s0) in fiGx and

sup{|/0Zo(OI : ( € G , } < |77bfo,)l/|ri(50)|.

If we take a function g0 like ̂  above, we get the same contradiction.
By combining the preceding two paragraphs, we have G2 = G2c and, therefore, T

is continuous from Proposition 3.
(2) From Propositions 2 and 3, we know that the range of h is in G\ and Tf(s) =

Tl(s) • f(h(s)) for all / e C(Gi) and all s € G2. In addition, h is injective since T
is onto.

We will first prove that if A" is a compact subset of G\, then /i"1 (K) is a compact
subset of G2. Otherwise, h~l(K) cannot be pseudo-compact since it is real-compact.
Consequently, if T\ is bounded on h~x{K), there is a sequence (sn) in h~l(K) and
a function g e C(G2) such that |g(sn)| > n • \T\(sn)\ for all n e N. On the other
hand, if 71 is not bounded on h~l{K), there is a sequence (sn) in h~l(K) such that
| r i (sn) | > n. Thus, by taking g = (Tl)2, we also have \g(sn)\ > n • | r i(sn) | for
all n e N. Then, whether Tl is bounded on h~l(K) or not, take / e C(G,) such
that Tf = g. Since 71 is non-vanishing, we deduce that n • \Tl(sn)\ < \Tf(sn)\ =
17" 1 (*„)| • \f(h(sn))\. Hence, / is not bounded on K, which is a contradiction.

Let us show now that h(G2) is a closed subset of G\. Assume that / e clG] (h(G2))
and let U be any compact neighbourhood of t. Thus, h~[(U) is a compact subset of
G2. Since h~\U) = h~\U C\h{G2)), we obtain that (Unh(G2)) is acompact subset
of G,. That is, t e (U nh(G2)).

Let ft* : G*2 —> {h{G2)T be a map defined by the requirement that h*(oo) be oo and
(/J*)IG2 = h. To prove the continuity of h*, it suffices to check that h* is continuous at

https://doi.org/10.1017/S1446788700001099 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001099


[9] Characterizing locally compact groups 413

oo. Let V be a neighbourhood of oo in (h(G2))*. Hence there exists a compact subset
K of h(G2) such that (h(G2)\K) CV. Since h~\K) is compact in G,, (G2\/?-'(^))
is a neighbourhood of oo and h{G2\h.-1 (K)) c (h(G2)\K) CV.

As a consequence, fc* is a continuous bijection between G2 and (h(G2))*, which
implies that h is a homeomorphism of G2 onto h(G2). It is now clear that H\ := /t(G2)
satisfies the required conditions.

(3) By (1), we know that T is automatically continuous, and thus we can write
Tf(s) = Tl(s)- f(h(s)) for every / e C ( d ) and every s e G2.

Now let us prove that h (K) is compact for every compact subset K of G
Take / e Coo(G,) with K c coz(/). Then h~x{K) c /z-'(Gi). Furthermore, if
5 e /r '(coz(/)) c h-l(Gi), then /(^(s)) ^ 0, which implies that Tf(s) ^ 0. That
is, h~l(K) is a closed subset of the compact set supp(r/).

As in the proof of (3), we obtain that the map h* : G*2 —*• G* is continuous and,
consequently, closed. In addition, we know that the range of h is dense in G\ since T
is injective. Hence, it is clear that h* is onto, closed, and continuous and so is h.

Therefore, by [9, Proposition 2.4.3], it is now evident that G\ is homeomorphic to
a quotient of G2.

(4) We first show that h(G2) is C-embedded (see [14] for the definition) in Gx.
Let g0 e C(h(G2)). Let us consider the map G : C(h(G2)) -»• C(G2) defined
by the requirement that G(g) be T\ • (g o h) for every g e C(h(G2)). Since
T is onto, there exists a function f0 e C(Gi) such that Tf0 = G(g0). Hence,
Tl(s) • fo(h(s)) = T\(s) • go(h(s)) for every s e G2. Since T\ is non-vanishing, we
have f0 o h = go o h; that is, /OI*(G2) = So and, thus, the function f0 e C(GX) is the
required extension.

Since T is injective, we know the range of h is dense in G \. By combining this
assertion, [14, Theorem 8.6], and the preceding paragraph, we deduce that G\ =
u(h(G2)), where v(h(G2)) stands for the real-compactification of h(G2).

Since T is onto, we know that h is injective. Let us consider h~x : h(G2) —> G2,
the inverse of h. On the other hand, it is clear that G is injective. Therefore, we can
consider G"1 : C(G2) —> C(h(G2)), the inverse of G. It is also easy to verify that
G~l(g) = g o h~l/Tl for every g e C(G2). Hence, G"1 is also a separating map
and its support map is h~l. From Proposition 1 we have h~l is continuous. By [14,
Theorem 8.6], h~l has a continuous extension {h')~l : G\ —>• G2. As a consequence,
(h o (h')~l) and the identity of Gj coincide on h(G2) and, therefore on G,, by the
density of h (G2) in Gi. The proof of (4) is now complete.

REMARKS. (1) Theorem 2 is also valid when Gi and G2 are only real-compact
spaces. However, if G\ and G2 are not real-compact, then Theorems 1 and 2 may
fail. As an example, consider G\ a pseudo-compact, not real-compact space and
vG\ its real-compactification, which is compact. It is easy to see that the natural
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isomorphism of C(Gi) onto C(vGi) is a discontinuous separating bijection which
preserves non-vanishing functions and satisfies condition (M).

However, let us recall (see [11]) that a separating bijection from C0(Gi) (respect-
ively CQO(GI)) onto Co(G2) (respectively Coo(G2)) is automatically continuous and
induces a homeomorphism between the locally compact (not necessarily real-compact)
spaces G: and G2.

There remains open a complete answer to the following question: When is the
inverse of a separating bijection defined from C(X) onto C(Y) (X, Y completely
regular Hausdorff spaces) also separating?. Partial answers to this problem are then
provided by Theorem 1 and Theorem 2 (4). In fact, such question was first proposed by
Abramovich in the more general context of vector lattices. The first affirmative answer
in this direction is the result (op. cit.) by Jarosz ([20]). Recently, Huijsmans and de
Pagter ([18]) have proved the following: An invertible disjointness preserving operator
from a Banach lattice onto a normed vector lattice has a disjointness preserving inverse
and is norm bounded (=continuous).

(2) The following example shows that preserving functions with compact support is
not a redundant hypothesis in Theorem 2(3): let us consider the map T : C(fiG2) - •
C(G2), where fiG2 denotes the Stone-Cech compactification of G2, and such that
Tf = /|G2 for every / e C(fiG2). It is easy to verify that T is a separating injection
which preserves non-vanishing functions. However, £G2 is not homeomorphic to a
quotient of G2.

(3) Finally, let us show, with an example due to Beckenstein and Narici, that there
exist discontinuous separating injections: Let G] = [0, 1] and G2 = [0, 1] U {2}. For
any / € C(G,), let Tf(s) = (1 - s) • f(s) if s e [0, 1] and Tf(2) = g(f), where g
is a discontinuous separating functional defined like Example 3.6 in [6].

4. Algebraic characterization of locally compact Abelian groups

Throughout this section, Gt and G2 will be locally compact Abelian (LCA) groups.
Let us recall that every locally compact group is real-compact. We say that a separating
map T of C(G\) into C{G2) is character preserving if given a character x of Gu that
is, a complex-valued continuous homomorphism on G i, then Tx is a character of G2.

COROLLARY 1. If there exists a character preserving separating bijection T from
C(G0 onto C(G2) which either satisfies condition (M) or preserves non-vanishing
functions, then the LCA groups G\ and G2 are topologically isomorphic.

PROOF. By Theorems 1 and 2, we know that T is a weighted composition map and
G\ and G2 are homeomorphic. Hence, it suffices to check that the support map h of
T is a homomorphism.
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Take su s2 e G2 and let x be any character of Gx. Hence, both Txisi • s2) —
Tl(si • s2) • x(h(si • s2)) and Tx(s\ • s2) = Tx(sx) • Tx(s2) = 71(s,) • x(h(si)) •
Tl(s2) • x(h(s2)) = Tl(st • s2) • x(h(s\)) • X(h(s2)). Since 71 is non-vanishing, we
have x(h(Si • s2)) = x(h(si)) • X(h(s2)) = x(^(5 i) • h(s2)) for every character x of
G\, which implies that h(sx • s2) = h(si) • h(s2) and we are done.

COROLLARY 2. Let T be a separating map ofC(Gi) into C(G2) which preserves
non-vanishing functions and characters.

(1) If T is onto, then there exists a closed subgroup Hi of G\ such that Hi is
topologically isomorphic to G2.

(2) IfT is infective and preserves functions with compact support, then there exists
a closed subgroup H2 ofG2 such that G\ is topologically isomorphic to G2/H2.

PROOF. This follows from Theorem 2 (2) and Corollary 1.
(2) This follows from Theorem 2 (3) and Corollary 1, H2 being the kernel of the
homomorphism h.

REMARK. If we consider the Bohr compactification bG2 of G2 instead of its Stone-
Cech compactification in the remark following Theorem 2, then 7 is also character
preserving. Despite this, it is also evident that preserving functions with compact
support is still not redundant.

5. Algebraic characterization of locally compact groups

Throughout this section, Gi and G2 are locally compact (not necessarily Abelian)
groups. Let us also regard Coo(G,) (i = 1, 2) as an algebra under the convolution
product ( / * g)(s) = fG f(z) • g{z~x • s)dz, integration being with respect to a fixed
left Haar measure denoted by dz. Let C^iGj) = {/ e Coo(G,) : / > 0}.

DEFINITION 5. We say that a linear operator 7 of Coo(Gi) into Coo(G2) satisfies
condition (P) if given s e G2 and f,ge C ^ ( d ) such that T(f * g)(s) — 0, then
(7/ * Tg)(s) = 0.

It is evident that every convolution algebra homomorphism satisfies condition (P).

LEMMA 2. Let T : CQO(GI) —> Coo(G2) be a map defined by the requirement that
Tf = X(foh) where X is a non-vanishing scalar-valued continuous function defined
on G2 and h is a continuous mapping from G2 into G\. Then the following statements
are equivalent:
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(1) h is a closed group homomorphism.
(2) T satisfies condition (P).

PROOF. (1) implies (2) Let us suppose that / , g <E C ^ ( G I ) and i € G2 are such that
T(f*g)(s) = 0. Then, since X does not vanish on G2, we infer that (f*g)(h(s)) = 0;
that is, / f(z)g(z~l • h(s))dz — 0. Hence, from the continuity of / and g, we have
that f(z)g(z~] • h(s)) = 0 for all z e G,.

On the other hand,

(77 * Tg)(s) = I Tf(y)Tg(y-[ • s)dy
Jc2

L= / X(y)X(y-l-s)(foh)(y)(gohKy-l-s)dy.

Since h is a homomorphism, we deduce that

(/ o h)(y)(g o h)(y~l • s) = (fMyMgiihiy))-1 • h(s)) = 0

for all y € G2. As a consequence, it is now clear that (Tf * rg)(.s) = 0, as was to be
proved.

(2) implies (1). Firstly let us see that h is a closed mapping. As in the proof
of Theorem 2 (3), we have that h~\K) is compact for every compact subset K of
G\. Then the map h* : G\ —> G\, defined as in Theorem 2 (2), is continuous.
Consequently, it is closed and so is h.

Next suppose that h(s • t) ^ h{s) • h(t) for some s,te G2. Then we can find open
neighbourhoods U and V of h(s) and h(t) respectively such that h(s • t) g U • V. Let
/ , g e C(J,(Gi) be such that f(h(s)) > 0, g(h(t)) > 0, / vanishes outside U and g
vanishes outside V.

Suppose firstly that X is real-valued and let us assume, without loss of generality,
that X(s) > 0 and X(t) < 0. Hence there exists a compact neighbourhood Wt of the
unit of G2 such that XlsWl > 0 and X\Wlt < 0- Let us take a compact neighbourhood
W of the unit of G2 such that W C intCW^). If gh(s.n stands for a function on G\
defined by the requirement that gh(S-t)(z) = g(z • h(s • t)) for all z e G,, then it is easy
to check that

/ X(y)X(y-1 • s • t)(f o h)(y)(gh(s.t) o h){y'')dy = c < 0.

Take now kx e C^(Gi) such that 0 < fc, < 1, M^CO) = 1 and A:, = 0 outside
h(sW). Similarly, let us consider k2 e C ^ ( d ) such that 0 < k2 < 1, k2(h(t)) = 1
and A:2 = 0 outside /i(Wf). Thus we have ((A:,/) * (k2g))(h(s • /)) = 0. Since 7" is a
weighted composition map, T((ktf) * (k2g))(s • t) = 0.
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On the other hand and reasoning as above, we have

(T(kJ)*T(k2g))(s-t)

= f X(y)X(y-l-s
Jc2

JsW

which contradicts condition (P). Assume now that X is complex-valued, that is,
X = X, + iX2. Hence

X(y)X(y-' • s • t) = (X^Xiiy-1 • s • t) - X2(y)X2(y-' • s • t))

y~x • s • t) + X1(y)X2(y~1 • s • t)).

If we denote y(y) = Xi(y)X1(y~l • s • t) — X2(y)X2(y"1 • s • t), we will assume,
without loss of generality, that y(s) > 0. As a consequence, there is a compact
neighbourhood W of the unit of G2 such that for all u e sW and all v e Wt,
Xi(u)Xt(v) — X2(u)X2(v) > 0. The remainder of the proof follows from the same
arguments as in the real-valued case.

THEOREM 3. Let T be a separating bijection o/Coo(Gi) onto CQO(G2). Then the
following statements are equivalent:
(1) There exists a topological isomorphism h of G2 onto Gt such that Tf = X(foh).
(2) T satisfies condition (P).

PROOF. According to Theorem 3 and Corollary in [11], we know that T(f) =
X(f o h) where X is a non-vanishing continuous map defined on G2 and h is a
homeomorphism of G2 onto G\. Everything else is a consequence of Lemma 2.

COROLLARY 3. Let T be a linear bijection o/Coo(Gi) onto Coo(G2) which is either
bipositive or isometric. Then the following statements are equivalent:

(1) There exists a topological isomorphism hofG2 onto G i such that Tf = X(foh).
(2) T satisfies condition (P).

PROOF. From Theorem 3, it suffices to check that T is a separating map in both
cases. The isometric one is already proved in [11, Proposition 5].

Let us suppose that T is a bipositive bijection. Given s e G2, let us define

Fs = {g € C+(G2) : g(s) > 0}.
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Fix s0 € G2. We shall show that f]Tf€Fs supp(/) ^ 0. Since, for every / e C<J,(Gi),
supp(/) is a compact subset of Gu it is enough to prove that Hr/ef SUPP(/) i1 ®
for every finite subset F of FSo. There exist an open neighbourhood V of s0 and a
positive constant A such that Tfw > X for all Tf e F. Since T is onto, we can
choose/i € C(J)(Gi) such that, multiplying by a constant if necessary, \\Tfa\\ < land
supp(r/i) c V. The positivity of the inverse of T then implies that 0 ^ supp(/i) C

flr/£FsuPP(/)-
From the above arguments we derive the following: for every s e G2, there exists

a subset Is C Gj such that, if Tf(s) > 0 for some / e C^(Gi), then / € supp(/) for
all t G / j . That is, if for some / € C^(Gi) and some open neighbourhood U(t) of
any ( € /, we have /n/ = 0, then 7*/(.s) = 0.

Again fix s0 € G2 and let us take f0 e C^CGj) such that fo(to) = 0 for some
t0 e /Jo. We will show that Tfo(so) = 0. Let (/„) be a net C^(Gi) such that
(/a) converges to /0 and /„ = 0 on some open neighbourhood Va of t0 for all a.
Consequently, T'so(fa) = 0 for all a.

Since T'SQ is a positive linear functional on Coo(Gi), it is well known that, given a
compact subset K of Gu \T*s'0(f)\ < CK • \\f\\, CK a constant, for all / 6 C^{GX)
whose support is contained in K. Without loss of generality, we can assume that
supp(/a) c supp(/0) for all a. Hence the net (T's'0(fa)) converges to T'sQ(f0), that
is, T's'0(f0) = Tfo(so) = 0.

In general, if we choose f0 e Coo(Gi) such that /o(fo) = 0 for some t0 e ISo, then
it is easy to check that Tfo(so) = 0.

Finally, let fu f2 € Coo(Gi) be such that fl-f2 = 0. Let us suppose that there
exists s0 e G2 such that both Tfi(s0) / 0 and Tf2(s0) / 0. Then, since either
/ i (0 = 0 or f2(t) = 0 for any t e 7Jo, we have either Tfi(s0) = 0 or Tf2(s0) = 0,
which contradicts the above assumption and proves that T is separating.

REMARK. In [8] (see also [24]), Edwards proved that if there exists a convolution
algebra isomorphism of Coo(Gi) onto Coo(G2) which is either bipositive or isometric,
then G] and G2 are isomorphic topological groups. Theorem 3 and its corollary above
are then extensions of Edwards' results.

THEOREM 4. Let T be a continuous separating map of Coo(Gi) onto Coo(G2). Then
the following statements are equivalent:

(1) There exists a topological isomorphism h : G2 —> G\ such that Tf = X(f o h)
{indeed, G2 is topologically isomorphic to a closed subgroup ofGx).

(2) T satisfies condition (P).

PROOF. Let us suppose that T satisfies condition (P). Since T is continuous, it
can be written as a weighted composition map (see [11]); namely, Tf = X(f o
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h). By applying Lemma 2, we infer that h is a closed injective continuous group
homomorphism. Consequently, h is a topological isomorphism.

The converse falls inmediately out of Lemma 2.

THEOREM 5. Let T be a continuous separating injection ofCoo(Gi) into Coo(G2).
Then the following statements are equivalent:

(1) There exists a topological homomorphism h of G2 onto G\ such that Tf =
X(f oh) (indeed, G\ is topologically isomorphic to a quotient ofG2).

(2) T satisfies condition (P).

PROOF. Let us suppose that T satisfies condition (P). Arguments like those in
Corollary 2 and Theorem 4 show that G\ is topologically isomorphic to G2/ker(/i).
The converse follows from Lemma 2.
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