
British Actuarial Journal, Vol. 24, e13, pp. 1–26. © Institute and Faculty of Actuaries 2019. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi:10.1017/S1357321718000260
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Abstract
The Age-Period-Cohort-Improvement (APCI) model is a new addition to the canon of mortality
forecasting models. It was introduced by Continuous Mortality Investigation as a means of para-
meterising a deterministic targeting model for forecasting, but this paper shows how it can be
implemented as a fully stochastic model. We demonstrate a number of interesting features about the
APCI model, including which parameters to smooth and how much better the model fits to the data
compared to some other, related models. However, this better fit also sometimes results in higher
value-at-risk (VaR)-style capital requirements for insurers, and we explore why this is by looking at the
density of the VaR simulations.
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1. Introduction

Continuous Mortality Investigation (2016b) introduced a new model for fitting to mortality data: the
Age-Period-Cohort-Improvement (APCI) model. This is an extension of the Age–Period–Cohort
(APC) model, but it also shares an important feature with the model from Lee and Carter (1992).
The APCI model was intended to be used as a means of parameterising a deterministic targeting
model for mortality forecasting. However, it is not the purpose of this paper to discuss the Con-
tinuous Mortality Investigation’s approach to deterministic targeting. Readers interested in a dis-
cussion of stochastic versus deterministic projections, in particular the use of targeting and expert
judgement, should consult Booth and Tickle (2008). Rather, the purpose of this paper is to present a
stochastic implementation of the APCI model for mortality projections, and to compare the per-
formance of this model with various other models sharing similar structural features.

2. Data

The data used for this paper are the number of deaths dx,y aged x last birthday during each calendar
year y, split by gender. Corresponding mid-year population estimates, Ec

x;y, are also given. The data
therefore lend themselves to modelling the force of mortality, μx + 1

2;y +
1
2
, without further adjustment.

However, for brevity we will drop the 1
2 and just refer to μx,y.
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We use data provided by the Office for National Statistics for the population of the United Kingdom.
For illustrative purposes we will just use the data for males. As we are primarily interested in annuity
and pension liabilities, we will restrict our attention to ages 50–104 over the period 1971–2015.
Although data are available for earlier years, there are questions over the reliability of the population
estimates prior to 1971. All death counts were based on deaths registered in the United Kingdom in a
particular calendar year and the population estimates for 2002–2011 are those revised to take
account of the 2011 census results. More detailed discussion of this data set, particularly regarding
the current and past limitations of the estimated exposures, can be found in Cairns et al. (2015).

One consequence of only having data to age 104 is having to decide how to calculate annuity factors
for comparison. One option would be to create an arbitrary extension of the projected mortality
rates up to (say) age 120. Another alternative is to simply look at temporary annuities to avoid
artefacts arising from the arbitrary extrapolation, as used by Richards et al. (2014). We use the latter
approach in this paper, and we therefore calculate expectations of time lived and continuously paid
temporary annuity factors as follows:

e
x;y : 105�xj= Ð 105�x

0
tpx;ydt

(1)

a
x;y : 105�xj= Ð 105�x

0
tpx;yvðtÞdt

(2)

where v(t) is a discount function and tpx,y is the probability a life aged x at outset in year y survives
for t years:

tpx;y = exp �
ðt
0
μx + s;y + sds

� �
(3)

Restricting our calculations to temporary annuities has no meaningful consequences at the main ages
of interest, as shown in Richards et al. (2014). The methodology for approximating the integrals in
equations (1–3) is detailed in Appendix A.

For discounting we will use UK government gilt yields, as shown in Figure 1. The broad shape of the
yield curve in Figure 1 is as one would expect, namely with short-term yields lower than longer-term
ones. However, there is one oddity, namely that yields decline for terms above 24 years.

Figure 1. Yields on UK government gilts (coupon strips only, no index-linked gilts) as at 20 April
2017. Source: UK Debt Management Office (DMO, accessed on 21 April 2017)
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For v(t) we will follow McCulloch (1971) and McCulloch (1975) and use a spline basis for repre-
senting the yields. Note, however, that McCulloch placed his splines with knot points at non-equal
distances, whereas we will use equally spaced splines with penalisation as per Eilers and Marx
(1996); the plotted points in Figure 1 are sufficiently regular that they look like a smooth curve
already, so no distortion is introduced by smoothing. In this paper the P-spline smoothing is applied
to the yields directly, rather than to the bond prices as in McCulloch (1971) and McCulloch (1975).
The resulting P-spline-smoothed yield curve reproduces all the main features of Figure 1.

3. Model Fitting

We fit models to the data assuming a Poisson distribution for the number of deaths, i.e.

Dx;yePoisson μx;yE
c
x;y

� �
(4)

where Ec
x;y denotes the central exposure to risk at age x last birthday in calendar year y. The Poisson

assumption means that the variance of the death counts is equal to the mean, which is not true in
practice due to over-dispersion. There are several ways of allowing for this over-dispersion: Li et al.
(2009) proposed a gamma-distributed heterogeneity parameter which varied by age, while Djeundje
and Currie (2011) used a single over-dispersion parameter across all ages and years. However, in this
paper we will not make an allowance for over-dispersion for simplicity, as we are primarily inter-
ested in comparing the models for μx,y with each other.

The models we will fit are the following:

Age�Period log μx;y =αx + κy (5)

APC log μx;y = αx + κy + γy�x (6)

Lee�Carter log μx;y = αx + βxκy (7)

APCI log μx;y =αx + βxðy�yÞ + κy + γy�x (8)

where y is the mean over the years 1971–2015. We have selected these models as they are related to
each other, but some other models are considered in Appendix F.

Following Brouhns et al. (2002) we estimate the parameters using the method of maximum like-
lihood, rather than the singular-value decomposition of Lee and Carter (1992) or a Bayesian
approach. Our focus is on the practical implementation of stochastic models in industry applications,
so we estimate κ̂ and then, for forecasting, fit a variety of models to κ̂ treating it as an observed time
series. This is preferable to re-estimating κ every time we change the model for it, as a fully Bayesian
analysis would require. For a discussion of this practical aspect in insurance applications, see
Kleinow and Richards (2016).

The Age–Period, APC and APCI models are all linear in the parameters to be estimated, so we will
use the algorithm of Currie (2013, pages 87–92) to fit them. The Currie algorithm is a generalisation
of the iteratively reweighted least-squares algorithm of Nelder and Wedderburn (1972) used to fit
generalised linear models (GLMs), but extended to handle models which have both identifiability
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constraints and smoothing via the penalised splines of Eilers and Marx (1996); see Appendix D for
an overview. The Lee–Carter model is not linear, but it can be fitted as two alternating linear models
as described by Currie (2013, pages 77–80); as with the other three models, constraints and
smoothing via penalised splines are applied during the fitting process. Smoothing will be applied to
αx and βx, but not to κy or γy −x; smoothing of αx and βx reduces the effective number of parameters
and improves the quality of the forecasts by reducing the risk of mortality rates crossing over at
adjacent ages; see Delwarde et al. (2007) and Currie (2013). The fitting algorithm is implemented in
R (R Core Team, 2013).

4. Smoothing

An important part of modelling is choosing which parameters to smooth. This is not merely an
aesthetic consideration – Delwarde et al. (2007) showed how judicious use of smoothing can
improve the quality of forecasts, such as by reducing the likelihood of projected mortality rates
crossing over at adjacent ages in the future. Figure 2 shows the α̂x estimates for each of the four
models. There is a highly regular, linear-like pattern in each case. We can therefore replace the 55 α̂x
estimates with a smooth curve, or we could even replace them with a straight line for a Gompertz-
like version of each model (Gompertz, 1825). This will have the benefit of reducing the effective
dimension of the models, i.e., the effective number of parameters. For smoothing we use the pena-
lised splines of Eilers and Marx (1996).

Figure 2. Parameter estimates α̂x for four unsmoothed models. The αx parameters play the same
role across all four models, i.e., the average log(mortality) value across 1971–2015, when the
constraint

P
y
κy = 0 is applied.
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Figure 3 shows the β̂x values for the Lee–Carter and APCI models. Although the pattern of the βx
values looks different, this arises from the parameterisation of the models. One view of the APCI
model is that it separates the linear component of the time trend in the Lee–Carter model and makes
κ the residual, non-linear part of the time trend, i.e.

βxκy = βxðκy + y�y�y + yÞ (9)

= βxðy�yÞ + βxðκy�y + yÞ (10)

� βxðy�yÞ + κAPCIy (11)

where κAPCIy � βxðκy�y + yÞ. Now we see why the βx term has a reverse sign under the APCI model,
since in the Lee–Carter model κy has a negative slope but in the APCI model y�y has a positive slope.
It would seem more sensible to have �βxðy�yÞ in the APCI model to align the parameterisations, but
we will stick with the parameterisation of Continuous Mortality Investigation (2017). Figure 3
shows regularity in the β̂x estimates, albeit not as strong as for the α̂x estimates in Figure 2. Again, we
can replace the fifty-five β̂x estimates with a smooth curve to reduce the effective dimension of the
Lee–Carter and APCI models. The greater variability of the β̂x estimates in Figure 3 shows that
smoothing here will make an important contribution to reducing the likelihood of mortality rates
crossing over in the forecast; smoothing of the β̂x terms for this reason was first proposed by
Delwarde et al. (2007). Smoothing the β̂x values will therefore both reduce the dimension of the
model and improve the forecast quality.

In contrast to Figures 2 and 3, Figures 4 and 5 suggest that smoothing κ and γ is less straightforward.
In particular, the κ̂ estimates for the APCI model in the lower right panel of Figure 4 do not have a
clear trend, in which case smoothing κ̂ under the APCI model would make little sense. In Figure 5 the
pattern does not look to be regular and well-behaved enough to warrant smoothing, even though it is
technically feasible; the repeated changes in direction suggest that extrapolation would be unwise. In
both cases we prefer to leave both κ̂ and γ̂ unsmoothed so that we can project them using time-series
methods. Note that Richards and Currie (2009) presented a version of the Lee–Carter model with κ̂

smoothed and thus projected using the penalty function.

Figure 3. Parameter estimates β̂x for Lee–Carter and APCI models (both unsmoothed). Despite
the apparent difference, a switch in sign shows that the βx parameters play analogous roles in the
Lee–Carter and APCI models, namely an age-related modulation of the response in mortality to
the time index
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We have omitted plots of the α̂x and β̂x estimates in the smoothed models as they are just smoothed-
curve versions of Figures 2 and 3. Similarly, we have also omitted plots of κ̂y and γ̂y�x under the
smoothed models, as they are to all practical purposes identical to Figures 4 and 5. This is an
important aspect about smoothing – if it is done appropriately, the smoothing of one parameter
vector should not make a major impact on any unsmoothed parameter vectors.

Table 1 summarises our approach to smoothing the various parameters across the four models. The
impact of the decision to smooth is shown in the contrast between Tables 2 and 3. We can see that

Figure 4. Parameter estimates κ̂y for four unsmoothed models. While κy plays a similar role in the
Age–Period, Age–Period–Cohort (APC) and Lee–Carter models, it plays a very different role in
the APCI model. The APCI κ̂y estimates are an order of magnitude smaller than in the other
models, and with no clear trend. In the APCI model κy is much more of a residual or left-over
term, whose values are therefore strongly influenced by structural decisions made elsewhere in
the model

Figure 5. Parameter estimates γ̂y�x for Age–Period–Cohort (APC) and APCI models (both
unsmoothed). The γy −x values play analogous roles in the APC and APCI models, yet the values
taken and the shapes displayed are very different.
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smoothing has little impact on either the forecast time lived or the annuity factors for the Age–
Period, Lee–Carter and APCI models. However, smoothing has led to a major change in the central
forecast in the case of the APC model; this is due to a different autoregressive, integrated moving
average (ARIMA) model being selected as optimal for the κy terms: ARIMA(0, 1, 2) for the
unsmoothed APC model, but ARIMA(3, 2, 0) for the smoothed version. This large change in forecast
is an interesting, if extreme, example of the kind of issues discussed in Kleinow and Richards (2016).
An ARIMA(p, 1, q) process models the differences in κy, i.e., a model for improvements, whereas an
ARIMA(p, 2, q) process models the rate of change in differences in κy, i.e., accelerating or decel-
erating improvements. Smoothing has also improved the fit as measured by the Bayesian information
criterion (BIC) – in each case the BIC for a given smoothed model in Table 3 is smaller than the
equivalent unsmoothed model in Table 2. This is due to the reduction in the effective number of
parameters from the penalisation of the spline coefficients; see equation (21) in Appendix D.

Table 1. Smoothed and Unsmoothed Parameters

Model Smoothed Unsmoothed

Age–Period α̂x κ̂y
APC α̂x κ̂y; γ̂y�x

Lee–Carter α̂x; β̂x κ̂y
APCI α̂x; β̂x κ̂y; γ̂y�x

Table 2. Expected time lived and annuity factors for unsmoothed models, together with the Bayesian Infor-
mation Criterion (BIC) and Effective Dimension (ED).

Models e70;2015 : 35j a70;2015 : 35j BIC ED

Age–Period 15.739 13.811 78,667 99.0
APC 15.217 13.510 15,916 188.0
Lee–Carter 15.196 13.531 13,917 153.0
APCI 15.579 13.812 7,140 241.0

The yield curve used to discount future cashflows in the annuity factors is shown in Figure 1.

Table 3. Expected time lived and annuity factors for smoothed (S) models, together with the Bayesian Infor-
mation Criterion (BIC) and Effective Dimension (ED).

Models e70;2015 : 35j a70;2015 : 35j BIC ED

Age–Period(S) 15.739 13.811 78,527 55.7
APC(S) 16.949 14.701 15,770 144.8
Lee–Carter(S) 15.199 13.534 13,506 63.8
APCI(S) 15.585 13.816 6,724 151.8

The yield curve used to discount future cashflows in the annuity factors is shown in Figure 1.
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One other interesting aspect of Tables 2 and 3 is the dramatic improvement in overall fit of the APCI
model compared to the others. However, it is worth repeating the caution of Currie (2016) that an
“oft-overlooked caveat is that it does not follow that an improved fit to data necessarily leads to
improved forecasts of mortality”. This was also noted in Kleinow and Richards (2016), where the
best-fitting ARIMA process for κ in a Lee–Carter model for UK males led to the greatest parameter
uncertainty in the forecast, and thus higher capital requirements under a value-at-risk (VaR)
assessment. As we will see in Section 7, although the APCI model fits the data best of the four related
models considered, it also produces relatively high capital requirements.

From this point on the models in this paper are smoothed as per Table 1, and the smoothed models
will be denoted (S) to distinguish them from the unsmoothed versions.

5. Projections

The κ values will be treated throughout this paper as if they are known quantities, but it is worth
noting that this is a simplification. In fact, the κ̂ estimates have uncertainty over their true underlying
value, especially if they are estimated from the mortality experience of a small population; see, for
example, Chen et al. (2017). The true κ can be regarded as a hidden process, since we cannot observe
κ directly and can only infer likely values given the random variation from realised deaths in a finite
population. As a result, the estimated variance of the volatility in any ARIMA process fitted to κ̂ will
be an over-estimate, as the estimated κ̂ values are subject to two sources of variation. There is a
parallel here to the concept of a Kalman filter, which models an observable process (the estimated κ)
which is itself a realisation of a hidden underlying linear process (the true κ). The Kalman filter
therefore allows for two types of noise: measurement error and volatility. In this paper ARIMA
models for κ and γ will be estimated using R’s arima() function, which uses a Kalman filter to
estimate the underlying parameter values, but assuming that there is no measurement error.

As in Li et al. (2009) we will adopt a two-stage approach to mortality forecasting: (i) estimation of
the time index, κy, and (ii) forecasting that time index. The practical benefits of this approach over
Bayesian methods, particularly with regards to VaR calculations in life-insurance work, are discussed
in Kleinow and Richards (2016). The same approach is used for γy�x. The details of the ARIMA
models used are given in Appendix E.

Figure 6. Observed mortality rates at age 70 and projected rates under Age–Period (smoothed)
(AP(S)), Age–Period–Cohort (smoothed) (APC(S)), Lee–Carter (smoothed) (LC(S)) and APCI(S)
models
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Central projections under each of the four models are shown in Figure 6. The discontinuity between
observed and forecast rates for the Age–Period(S) model arises from the lack of age-related mod-
ulation of the κy term – at ages 50–60 there is continuity, at ages 65–75 there is a discontinuity
upwards and at ages 85–90 there is a discontinuity downwards. It is for this kind of reason that the
Age–Period model is not used in practice for forecasting work.

6. Constraints and Cohort Effects

All four of the models in the main body of this paper require identifiability constraints, and the ones
used in this paper are detailed in Appendix C. There is a wide choice of alternative constraint
systems. For example, R’s gnm() function deletes sufficient columns from the model matrix until it is
of full rank and the remaining parameters are uniquely estimable and hence identifiable; see Currie
(2016). Cairns et al. (2009) imposed weighted constraints on the γy�x parameters that performed a
dual purpose: (i) acting as identifiability constraints, and (ii) imposing behaviour on γy�x to make
forecasting assumptions valid. In explaining their choice of identifiability constraints, Cairns et al.
(2009) stated that their choice ensured that the fitted γy�x will fluctuate around 0 and will have no
discernible linear trend or quadratic curvature.

However, one consequence of the treatment of corner cohorts described in Appendix B is that it
reduces the number of constraints required to uniquely identify parameters in the fitting of the
APC and APCI models. Following the rationale of Cairns et al. (2009) in imposing behaviour on
γy�x, both we and Continuous Mortality Investigation (2016b) use the full set of constraints,
meaning that both we and Continuous Mortality Investigation (2016b) are using over-
constrained models. For the data set of UK males used in this paper, this policy of over-
constraining has a much bigger impact on the shape of the parameter values in APCI model than
in the APC model.

The shape of the APC parameters is largely unaffected by over-constraining, as evidenced by
Figure 7. However, it is a matter of concern that the values for κ̂y and γ̂y�x change so much for the
APCI model in Figure 8, at least for this data set and with the choice of cohort constraints. In the case
of κ̂y, the suspicion is that this term is little more than a residual or left-over in the APCI model. This
is a result of the βxðy�yÞ term in the APCI model, which picks up the trend that for the other models
is present in κy.

The changes in κy and γy�x from a minimal constraint system to an over-constrained system depend
on the nature of the additional constraints that are applied. In the example in Figure 8 it so happens
that the constraints are not consistent with γ=0 for corner cohorts. A different set of constraints,
rather than those outlined in Appendix C, would lead to different estimated parameter values on the
left-hand side of Figure 8 and the changes on the right-hand side of Figure 8 might therefore be made
greater or smaller.

When we compare the minimal-constraint fits in Figures 7 and 8, we see that for both models γy�x

approximately follows a quadratic function plus some noise. Due to the additional constraint for the
APCI model, the quadratic trend is removed in Figure 8, but only the linear trend is removed
in Figure 7. It is then unsurprising that the estimated parameter values change more for the
APCI model. However, removing the quadratic trend like this has the advantage of making the γ
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Figure 7. Parameter estimates κ̂y and γ̂y�x for the Age–Period–Cohort (smoothed) model: left
panels from over-constrained fit, right panels with minimal constraints. The shape of the κ̂y and
γ̂y�x parameters is largely unaffected by the choice of minimal constraints or over-constraining.

Figure 8. Parameter estimates κ̂y and γ̂y�x for APCI(S) model: left panels from over-constrained
fit, right panels with minimal constraints. In contrast to Figure 7, the shape of the parameter
estimates is heavily affected by the choice to over-constrain the γy − x parameters.
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process in the APCI model look more like a stationary time series, and therefore easier to predict or
simulate.

7. VaR Assessment

Insurers in the United Kingdom and European Union are required to use a 1 year, VaR methodology
to assess capital requirements for longevity trend risk. Under Solvency II a VaR99.5 value is
required, i.e., insurers must hold enough capital to cover 99.5% of possible changes over one year in
the financial impact of mortality forecasts. For a set, S, of possible annuity values arising over the
coming year, the VaR99.5 capital requirement would be:

qðS; 99:5% Þ�qðS; 50% Þ
qðS; 50% Þ (12)

where q(S,α) is the α-quantile of the set S, i.e., for any randomly selected value in S, s, we have that
Pr s< qðS; αÞð Þ= α. To generate the set S we use the procedure described in Richards et al. (2014) to
assess long-term longevity trend risk within a one-year framework. The results of this are shown in
Table 4.

Table 4 shows VaR99.5 capital requirements at age 70, while Figure 9 shows a wide range of ages.
The APCI(S) capital requirements appear less smooth and well-behaved than than those for the other
models, but the VaR99.5 capital requirements themselves do not appear out of line. We note,
however, that the APCI VaR capital requirements exceed the APC(S) and Lee–Carter (S) values at
almost every age. How a model’s capital requirements vary with age may be an important con-
sideration for life insurers under Solvency II, such as when calculating the risk margin and parti-
cularly for closed (and therefore ageing) portfolios.

To understand how the VaR99.5 capital requirements in Table 4 arise, it is instructive to consider the
smoothed densities of the annuity factors at age 70 for each model in Figure 10. Here we can see the
reason for the higher capital requirement under the APCI model – there is a relatively wider gap
between the median and the 99.5% quantile value.

Table 4 shows the impact of model risk in both the median projected annuity factor and the capital
requirement. This is a reminder that it is important for practical insurance work to always use a

Table 4. Results of Value-at-Risk Assessment

a70;2015 : 35j:

Models Median VaR99.5 Capital Requirement (%)

AP(S) 13.696 14.263–14.317 4.14–4.54
APC(S) 14.993 15.192–15.316 1.33–2.15
LC(S) 13.447 13.740–13.832 2.18–2.86
APCI(S) 13.692 14.246–14.253 4.05–4.10

The 99.5% quantiles are estimated by applying the estimator from Harrell and Davis (1982) to 5,000 simula-
tions. The ranges given are the 95% confidence intervals computed from the standard error for the Harrell–Davis
estimate. The yield curve used to discount future cashflows is shown in Figure 1.
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variety of models from different families. Indeed, we note that the best estimate under the APC(S)
model in Table 4 is higher than the estimated VaR99.5 reserves for the other models, a phenomenon
also observed by Richards et al. (2014).

8. Conclusions

The APCI model is an interesting addition to the actuarial toolbox. It shares features with the Lee–
Carter and APC models and – as with all models – it has its own peculiarities. In the case of the APCI

Figure 9. VaR99.5 capital-requirement percentages by age for models in Table 4.
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Figure 10. Densities for annuity factors for age 70 from 2015 for 5,000 simulations under the
models in Table 4. The dashed vertical lines show the medians and the dotted vertical lines show
the Harrell–Davis estimates for the 99.5% quantiles. The shape of the right-hand tail of the APCI
(S) model, and the clustering of values far from the median, leads to the higher VaR99.5 capital
requirements in Table 4.
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model, the κ̂y estimates for UK males are heavily dependent on whether the model is over-constrained
or not. With minimal constraints the κ̂y estimates in the APCI model for UK male mortality look like
a much noisier process than for other models, largely because the linear component of the time trend
is accounted for by the βxðy�yÞ term. On the face of it this raises questions over whether κy should
even be kept in the model. However, κy captures non-linear curvature in the trend and period
deviations – without it the APCI model would have unrealistically low uncertainty over its projec-
tions. With minimal constraints it is also trickier to find a forecasting model for the γ process. Either
way, with minimal constraints or not, neither κy nor γy − x look like suitable candidates for
smoothing.

In the APCI model the γ̂y�x estimates change dramatically according to whether the model is over-
constrained or not. This is not a feature of the APC model, where the shape of the γ̂y�x estimates
appear relatively robust to the choice to over-constrain or not, at least for this data set for UK males.

The APCI model fits the data better than the other models considered in this paper, but fit to the data
is no guarantee of forecast quality. Interestingly, despite having an improved fit to the data, the APCI
model leads to higher capital requirements under a VaR-style assessment of longevity trend risk than
most of the other models considered here. These higher requirements vary by age, emphasising that
insurers must not only consider multiple models when assessing longevity trend risk, but also the
distribution of liabilites by age.
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Appendices

A. Integration

We need to evaluate the integrals in equations (1–3). There are several approaches which could be
adopted when the function to be integrated can be evaluated at any point, such as adaptive quad-
rature; see Press et al. (2005, page 133) for details of this and other methods. However, since we only
have data at integer ages, tpx,y can only be calculated at equally spaced grid points. Since we cannot
evaluate the function to be integrated at any point we like, we maximise our accuracy by using the
following approximations.

For two points separated by one year we use the Trapezoidal Rule:ða +1
a

f ðxÞ � 1
2
f ðaÞ + f ða + 1Þ½ � (13)

For three points spaced 1 year apart we use Simpson’s Rule:ða +2
a

f ðxÞ � 1
3
f ðaÞ + 4f a + 1ð Þ + f ða + 2Þ½ � (14)

For four points spaced one year apart we use Simpson’s 3/8 Rule:ða+ 3
a

f ðxÞ � 3
8
f ðaÞ + 3f ða + 1Þ + 3f ða + 2Þ + f ða + 3Þ½ � (15)

For five points spaced 1 year apart we use Boole’s Rule:ða+ 4
a

f ðxÞ � 2
45

7f ðaÞ + 32f ða + 1Þ + 12f ða + 2Þ + 32f ða + 3Þ + 7f ða + 4Þ½ � (16)

To integrate over n equally spaced grid points we first apply Boole’s Rule as many times as possible,
then Simpson’s 3/8 Rule, then Simpson’s Rule and then the Trapezoidal Rule for any remaining
points at the highest ages.

B. Corner Cohorts

One issue with the APC and APCI models is that the cohort terms can have widely varying numbers
of observations, as illustrated in Figure A1; at the extremes, the oldest and youngest cohorts have just

A stochastic implementation of the APCI model

15

https://doi.org/10.1017/S1357321718000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321718000260


a single observation each. A direct consequence of this limited data is that any estimated γ term for
the corner cohorts will have a very high variance, as shown in Figure A2. Cairns et al. (2009) dealt
with this by simply discarding the data in the triangles in Figure A1, i.e., where a cohort had four or
fewer observations. Instead of the oldest cohort having year of birth ymin − xmax, for example, it
becomes cmin= ymin − xmax + 4. Similarly, the youngest cohort has year of birth cmax= ymax − xmin − 4
instead of ymax −xmin.

There is a drawback to the approach of Cairns et al. (2009), namely it makes it harder to compare
model fits. We typically use an information criterion to compare models, such as the AIC or BIC.
However, this is only valid where the data used are the same. If two models use different data, then
their information criteria cannot be compared. This would be a problem for comparing the models in
Tables 2, 3 and 12, for example, as the fit for an APC or APCI model could not be compared with the
fits for the Age–Period and Lee–Carter models if corner cohorts were only dropped for some models.
One approach would be to make the data the same by dropping the corner cohorts for the Age–
Period and Lee–Carter fits, even though this is technically unnecessary. This sort of thing is far from
ideal, however, as it involves throwing away data and would have to be applied to all sorts of other
non-cohort-containing models.

An alternative approach is to use all the data, but to simply not fit cohort terms in the corners of
Figure 1. This preserves the easy comparability of information criteria between different model fits.
To avoid fitting cohort terms where they are too volatile we simply assume a value of γ= 0 where
there are four or fewer observations. This means that the same data are used for models with and

Figure A1. Number of observations for each cohort in the data region

Figure A2. Standard errors of γ̂y�x for APCI(S) model with and without estimation of corner
cohorts. γ̂y�x terms for the cohort cohorts in Figure A1 have very high standard errors; not
estimating them has the additional benefit of stabilising the standard errors of those cohort terms
we do estimate.
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without cohort terms, and thus that model fits can be directly compared via the BIC. Currie (2013)
noted that this had the beneficial side effect of stabilising the variance of the cohort terms which are
estimated, as shown in Figure A2.

For projections of γ we forecast not only for the unobserved cohorts, but also for the cohorts with
too few observations, i.e., the cohorts in the dotted triangle in Figure A1.

C. Identifiability Constraints

The models in equations (5)–(8) all require identifiability constraints. For the Age–Period model we
require one constraint, and we will use the following:X

y

κy = 0 (17)

For the Lee–Carter model we require two constraints. For one of them we will use the same con-
straint as equation (17), together with the usual constraint on βx from Lee and Carter (1992):X

x

βx = 1 (18)

There are numerous alternative constraint systems for the Lee–Carter model – see Girosi and King
(2008), Renshaw and Haberman (2006) and Richards and Currie (2009) for examples. The choice of
constraint system will affect the estimated parameter values, but will not change the fitted values of
μ̂x;y.

For the APC model we require three constraints. For the first one we will use the same constraint as
equation (17), together with the following two from Cairns et al. (2009):X

c

wcγc =0 (19)

X
c

wcðc�cmin + 1Þγc = 0 (20)

where wc is the number of times cohort c appears in the data. Continuous Mortality Investigation
(2016b) uses unweighted cohort constraints, i.e., wc= 1,∀ c, but we prefer to use the constraints of
Cairns et al. (2009), as they give less weight to years of birth with less data.

For the APCI model we require five constraints. We will use equations (17), (19) and (20), together
with the following additional two: X

y

ðy�yminÞκy = 0 (21)

X
c

wcðc�cmin + 1Þ2γc = 0 (22)

where equation (22) is the continuation of the pattern in equations (19) and (20) established by
Cairns et al. (2009).

The number of constraints necessary for a linear model can be determined from the rank of the model
matrix. Note that the approach of not fitting γ terms for cohorts with four or fewer observations, as
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outlined in Appendix B, makes the constraints involving γ unnecessary for identifiability. As in Con-
tinuous Mortality Investigation (2016b), this means that the APC and APCI models in this paper are
over-constrained, and will thus usually produce poorer fits than would be expected if a minimal
constraint system were adopted. Over-constraining has a different impact on the two models: for the
APC model it leads to relatively little change in κ, as shown in Figure 7. However, for the APCI model κ
is little more than a noise process in the minimally constrained model (see Figure 8), while any pattern
in κ from the over-constrained model appears likely to have been caused by the constraints on γy−x.

D. Fitting Penalised Constrained Linear Models

The Age–Period, APC and APCI models in equations (5), (6) and (8) are Generalized Linear Models
(GLMs) with identifiability constraints. We smooth the parameters as described in Table 1. We
accomplish the parameter estimation, constraint application and smoothing simultaneously using the
algorithm presented in Currie (2013). In this section, we outline the three development stages leading
up to this algorithm.

Nelder and Wedderburn (1972) defined the concept of a GLM. At its core we have the linear
predictor, η, defined as follows:

η=Xθ (23)

where X is the model matrix or design matrix and θ is the vector of parameters in the model. For the
model to be identifiable we require that the rank of X equals the length of θ; the model of Cairns
et al. (2006) is just such a mortality model (also referred to as M5 in Cairns et al., 2009). Nelder and
Wedderburn (1972) presented an algorithm of iteratively weighted least squares (IWLS), the details
of which vary slightly according to (i) the assumption for the distribution of deaths and (ii) the link
function connecting the linear predictor to the mean of that distribution. This algorithm finds the
values, θ̂, which jointly maximise the (log-)likelihood.

X can also contain basis splines, which introduces the concept of smoothing and penalisation into
the GLM framework; see Eilers and Marx (1996). Currie (2013). extended the IWLS algorithm to
find the values, θ̂, which jointly maximise the penalised likelihood for some given value of the
smoothing parameter, λ. The optimum value of λ is determined outside the likelihood framework by
minimising an information criterion, such as the BIC:

BIC=Dev + logðnÞED (24)

where n is the number of observations, Dev is the model deviance (McCullagh and Nelder, 1989)
and ED is the effective dimension of the model (Hastie and Tibshirani, 1986). In the single-
dimensional case, as λ increases so does the degree of penalisation. The penalised parameters
therefore become less free to take values different from their neighbours. The result of increasing λ is
therefore to reduce the effective dimension of the model, and so equation (24) balances goodness of
fit (measured by the deviance, Dev) against the smoothness of the penalised coefficients (measured
via the effective dimension, ED). Currie et al. (2004) and Richards et al. (2006) used such penalised
GLMs to fit smooth, two-dimensional surfaces to mortality grids.

We note that penalisation is applied to parameters which exhibit a smooth and continuous pro-
gression, such as the αx parameters in equations (5)–(8). If a second-order penalty is applied, as
λ ! 1 the smooth curve linking the parameters becomes ever more like a simple straight line, i.e.,
the effective dimension of αx would tend to ED=2. Alternatively, the αx could be replaced with two
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parameters for a simple straight-line function of age. In the case of equations (5)–(8) this would
simplify the models to variants of the Gompertz model of mortality (Gompertz, 1825).

Many linear mortality models also require identifiability constraints, i.e., the rank of the model
matrix is less than the number of parameters to be estimated. The Age–Period, APC and APCI
models of the main body of this paper fall into this category: they are all linear, but in each case rank
(X)< length(θ). The gap between rank(X) and length(θ) determines the number of identifiability
constraints required. To enable simultaneous parameter estimation, smoothing and application of
constraints, Currie (2013) extended the concept of the model matrix, X, to the augmented model
matrix, Xaug, defined as follows:

Xaug =
X

H

 !
(25)

where H is the constraint matrix with the same number of columns as X and where each row of H
corresponds to one linear constraint. If rank(Xaug)= length(θ), the model is identifiable. If rank
(Xaug)> length(θ), then the model is over-constrained; see Appendix C. Note that the use of the
augmented model matrix, Xaug, here restricts H to containing linear constraints.

In this paper we use a Poisson distribution and a log link for our GLMs; this is the canonical link
function for the Poisson distribution. This means that the fitted number of deaths is the anti-log of
the linear predictor, i.e., Ec× eη. However, Currie (2014) noted that a logit link often provides a
better fit to population data. This would make the fitted number of deaths a logistic function of
the linear predictor, i.e., Ec× eη/(1 + eη). If the logistic link is combined with the straight-line
assumption for αx in equations (5)–(8), this would simplify the models to variants of the Perks
model of mortality; see Richards (2008). Currie (2016; Appendix 1) provides R code to imple-
ment the logit link for the Poisson distribution for the number of deaths in a GLM. From
experience we further suggest specifying good initial parameter estimates to R’s glm() function
when using the logit link, as otherwise there can be problems due to very low exposures at
advanced ages. The start option in the glm() function can be used for this. In Appendix F we use a
logit link to make a M5 Perks model as an alternative to the M5 Gompertz variant using the log
link. As can be seen in Table A8, the M5 Perks model fits the data markedly better than the other
M5 variants.

E. Projecting κ and γ

A time series is a sequence of elements ordered by the time at which they occur; stationarity is a key
concept. Informally, a time series {Y(t)} is stationary if {Y(t)} looks the same at whatever point in time
we begin to observe it – see Diggle (1990, page 13). Usually we make do with the simpler second-
order stationarity, which involves the mean and autocovariance of the time series. Let:

μðtÞ=E½YðtÞ� (26)

Covðt; sÞ=E½fYðtÞ�μðtÞgfYðsÞ�μðsÞg� (27)

be the mean and autocovariance function of the time series. Then the time series is second-order
stationary if:

μðtÞ= μ; 8t (28)
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Covðt; sÞ=Covð j t�s j Þ; i:e: Covðt; sÞ depends only on j t�s j (29)

that is, the covariance between Y(t) and Y(s) depends only on their separation in time; see Diggle
(1990, page 58). In practice, when we say a time series is stationary we mean the series is second-
order stationary. The assumption of stationarity of the first two moments only is variously known as
weak-sense stationarity, wide-sense stationarity or covariance stationarity

The lag operator, L, operates on an element of a time series to produce the previous element. Thus, if
we define a collection of time-indexed values {κt}, then Lκt= κt − 1. Powers of L mean the operator is
repeatedly applied, i.e., Liκt= κt − i. The lag operator is also known as the backshift operator, while
the difference operator, Δ, is 1−L.

A time series, κt, is said to be integrated if the differences of order d are stationary, i.e., (1−L)dκt is
stationary.

A time series, κt, is said to be autoregressive of order p if it involves a linear combination of the
previous values, i.e. 1�Pp

i=1 ariL
i

� �
κt, where ari denotes an autoregressive parameter to be esti-

mated. An AR process is stationary if the so-called characteristic polynomial of the process has no
unit roots; see Harvey (1996). For an AR(1) process this is the case if �1< ar1 <1. For empirically
observed time series stationary can be tested using unit-root tests.

A time series, κt, is said to be a moving average of order q if the current value can be expressed as a
linear combination of the past q error terms, i.e. 1 +

Pq
i= 1 maiLi

� �
ϵt, where mai denotes a moving-

average parameter to be estimated and {εt} is a sequence of independent, identically distributed error
terms with zero mean and common variance, σ2ϵ . A moving-average process is always stationary.

A time series, κt, can be modelled combining these three elements as an ARIMA model (Harvey,
1981) as follows:

1�
Xp
i=1

ariLi

 !
1�Lð Þdκt = 1 +

Xq
i=1

maiLi

 !
εt (30)

An ARIMA model can be structured with or without a mean value. The latter is simply saying the
mean value is set at 0. The behaviour and interpretation of this mean value is dependent on the
degree of differencing, i.e., the value of d in ARIMA(p, d, q).

For the Age–Period, APC and Lee–Carter models (but not the APCI model), an ARIMA model for κ
with d=1 is broadly modelling mortality improvements, i.e., κt+ 1 − κt. It will be appropriate where
the rate of mortality improvement has been approximately constant over time, i.e., without pro-
nounced acceleration or deceleration. An ARIMA model with d= 1 but no mean will project gra-
dually decelerating improvements. An ARIMA model with d= 1 and a fitted mean will project
improvements which will gradually tend to that mean value. In most applications the rate at which
the long-term mean is achieved is very slow and the curvature in projected values is slight. However,
there are two exceptions to this:

∙ Pure moving-average models, i.e., ARIMA(0, d, q) models. With such models the long-term mean
will be achieved quickly, i.e., after q+ d years.
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∙ ARIMA models where the autoregressive component is weak. For example, an ARIMA(1, d, q)
model where the ar1 parameter is closer to 0 will also converge to the long-term mean relatively
quickly, with the speed of convergence inversely proportional to the absolute value of the ar1
parameter.

For the Age–Period, APC and Lee–Carter models (but not the APCI model), an ARIMA model for κ
with d=2 is broadly modelling the rate of change in mortality improvements, not the improvements
themselves. Thus, with d=2 we are modelling (κt + 2 − κt + 1)− (κt + 1 − κt). Such a model will be
appropriate where the rate of mortality improvement has been accelerating or decelerating over time.
An ARIMA model with d= 2 and without a mean will project a gradual deceleration of the rate of
change in mortality improvements.

To project κ and/or γ in each of the models in the paper, we fit an ARIMA model. We fit ARIMA
models with a mean for κ in the Age–Period, APC and Lee–Carter models. We fit ARIMA models
without a mean for γ in the APC and APCI models, and also for κ in the APCI model.

The ARIMA parameters, including the mean where required, are estimated using R’s arima(), which
estimates ARIMA parameters assuming that κy and γy −x are known quantities, rather than the
estimated quantities that they really are.

While R’s arima() function returns standard errors, for assessing parameter risk we use the meth-
odology outlined in Kleinow and Richards (2016). The reason for this is that sometimes ARIMA
parameter estimates can be borderline unstable, and this can lead to wider confidence intervals for
the best-fitting model, as shown in Kleinow and Richards (2016).

To fit an ARIMA model we require to specify the autoregressive order (p), the order of differencing
(d) and the order of the moving average (q). For a given level of differencing we fit an ARMA(p, q)
model and choose the value of p and q by comparing an information criterion; in this paper we used
Akaike’s Information Criterion (Akaike, 1987) with a small-sample correction (AICc). Choosing the
order of differencing, d, is trickier, as the data used to fit the ARMA(p, q) model are different when
d= 1 and d=2: with n observations there are n −1 first differences, but only n −2 second differences.
To decide on the ARIMA(p, d, q) model we select the best ARMA(p, q) model for a given value of d
using the AICc, then we pick the ARIMA(p, d, q) model with the smallest root mean squared error as
per Solo (1984).

The choice of differencing order is thorny: with d= 1 we are modelling mortality improvements, but
with d=2 we are modelling the rate of change of mortality improvements. The latter can produce

Table A1. Parameters for Autoregressive, Integrated Moving Average (ARIMA)(1,1,2) process for κ in
smoothed Age–Period model

Parameters Estimate Standard Error

ar1 0.742 0.262
ma1 −1.366 0.350
ma2 0.846 0.255
Mean −0.018 0.004

The ARIMA process order was selected as the best-fitting one from ARIMA(0:3,1:2,0:3). σ̂2 = 0:000302.
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very different forecasts, as evidenced by comparing the life expectancy for the APC(S) model in
Table 3 (with d= 2) with the life expectancy for the APC model in Table 2 (with d= 1).

For a VaR assessment of in-force annuities we need to simulate sample paths for κ. If we want
mortality rates in the upper right triangle of Figure A1, then we also need to simulate sample paths
for γ. We use the formulae given in Kleinow & Richards (2016) for bootstrapping the mean (for κ
only) and then use these bootstrapped parameter values for the ARIMA process to include parameter
risk in the VaR assessment (Tables 5–10).

F. Other Models

In their presentation of a VaR framework for longevity trend risk, Richards et al. (2014) included
some other models not considered in the main body of this paper. For interest we present comparison
figures for members of the Cairns–Blake–Dowd family of stochastic projection models. We first
consider a model sub-family based on Cairns et al. (2006) (M5) as follows (Table A6):

Table A2. Parameters for Autoregressive, Integrated Moving Average (ARIMA)(1,1,2) process for κ in
smoothed Lee–Carter model

Parameters Estimate Standard Error

ar1 0.821 0.215
ma1 −1.306 0.315
ma2 0.719 0.264
Mean −0.010 0.002

The ARIMA process order was selected as the best-fitting one from ARIMA(0:3,1:2,0:3). σ̂2 = 0:000073.

Table A3. Parameters for Autoregressive, Integrated Moving Average (ARIMA)(0,1,2) process for κ in
smoothed APC model

Parameters Estimate Standard Error

ma1 −0.682 0.151
ma2 0.353 0.225
Mean −0.017 0.002

The ARIMA process order was selected as best-fitting combination from ARIMA(0:3,1:2,0:3). σ̂2 = 0:000468.

Table A4. Parameters for Autoregressive, Integrated Moving Average (ARIMA)(2,1,0) process for γ in smoothed
APC model

Parameters Estimate Standard Error

ar1 −0.037 0.079
ar2 0.438 0.098

The ARIMA process order was selected as the best-fitting one from ARIMA(0:3,1:1,0:3). σ̂2 = 0:000468.

S. J. Richards et al.

22

https://doi.org/10.1017/S1357321718000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321718000260


gðμx;yÞ= κ0;y +wðxÞκ1;y (31)

for some functions g() and w() where κ0 and κ1 form a bivariate random walk with drift. The three
members of the M5 family used here are defined in Table A7, with the results in Tables A8 and A9.
We also consider two further models from Cairns et al. (2009). First, M6:

log μx;y = κ0;y + ðx�xÞκ1;y + γy�x (32)

Model M6 in equation (32) needs two identifiability constraints and we use equations (19) and (20).
As with the M5 family, κ0 and κ1 form a bivariate random walk with drift and γ is projected using an
ARIMA model (as done for the APC and APCI models). We also consider M7 from Cairns et al.
(2009):

log μx;y = κ0;y + ðx�xÞκ1;y + + ðx�xÞ2�σ̂2
� �

κ2;y + γy�x (33)

where σ̂2 = 1
nx

Pnx
i=1ðxi�xÞ2. Model M7 in equation (33) needs three identifiability constraints and

Table A5. Parameters for Autoregressive, Integrated Moving Average (ARIMA)(1,1,2) process for κ in
smoothed APCI model

Parameters Estimate Standard Error

ar1 0.754 0.255
ma1 −1.375 0.346
ma2 0.860 0.278

The ARIMA process order was selected as best-fitting combination from ARIMA(0:3,1:2,0:3). σ̂2 = 0:000514.

Table A6. Parameters for Autoregressive, Integrated Moving Average (ARIMA)(2,1,0) process for γ in smoothed
APCI model

Parameters Estimate Standard Error

ar1 0.057 0.056
ar2 0.536 0.078

The ARIMA process order was selected as the best-fitting one from ARIMA(0:3,1:1,0:3). σ̂2 = 0:000514.

Table A7. Definition of M5 Family Under Equation (31)

Models g(μx,y) w(x)

M5 Gompertz log x�x
M5 Perks logit x�x
M5 P-spline log

P
j
θjBjðxÞ

x Represents the mid-point of the age range, Bj(x) is the jth spline evaluated at x and θj the corresponding spline
coefficient. Note that the M5 Gompertz and Perks models do not require any identifiability constraints, but the
M5 P-spline model needs two.
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we use equations (19), (20) and (22). κ0, κ1 and κ2 form a trivariate random walk with drift and γ is
projected using an ARIMA model (as done for the APC and APCI models). As with the APC and
APCI models, M6 and M7 do not need all these constraints with our treatment of corner cohorts
described in Appendix B. Thus, M6 and M7 here are also over-constrained.

Comparing Table A8 with Tables 2 and 3 we can see that the stochastic version of the APCI model
produces similar expected time lived and temporary annuity factors to most models, apart from the
APC and M6 models. This suggests that the best-estimate forecasts under the APCI model are
consistent and not extreme.

Comparing Table A9 with Table 4 we can see that, while the AP(S) and APCI(S) models produce the
largest VaR99.5 capital requirements at age 70, these are not extreme outliers.

A comparison of Table 4 with the equivalent figures in Richards et al. (2014, Table 4) shows
considerable differences in VaR99.5 capital at age 70. There are two changes between Richards et al.
(2014) and this paper that drive these differences. The first change is that Richards et al. (2014)
discounted cashflows using a flat 3% per annum, whereas in this paper we discount cashflows using
the yield curve in Figure 1. The second change lies in the data: in this paper we use UK-wide data for
1971–2015 , whereas Richards et al. (2014) used England and Wales data for 1961–2010. There are
three important sub-sources of variation buried in this change in the data: the first is that the
population estimates for 1961–1970 are not as reliable as the estimates which came after 1970; the

Table A8. Expected time lived and annuity factors for unsmoothed models, together with Bayesian Information
Criterion (BIC) and Effective Dimension (ED)

Models e70;2015 : > 35j a70;2015 : > 35j BIC ED

M5 Gompertz 15.519 13.734 46,597 90.0
M5 Perks 15.500 13.702 28,950 90.0
M5 P-spline 15.423 13.646 33,428 99.7
M6 16.960 14.730 7,969 179.0
M7 15.514 13.763 7,956 223.0

The yield curve used to discount future cashflows is shown in Figure 1.

Table A9. Results of Value-at-Risk assessment for models in Table A8

a70;2015 : > 35j:

Models Median VaR99.5 Capital Requirement (%)

M5 Gompertz 13.836 14.268–14.328 3.13–3.55
M5 Perks 13.805 14.278–14.345 3.42–3.91
M5 P-spline 13.747 14.192–14.250 3.24–3.66
M6 14.925 15.418–15.481 3.31–3.72
M7 13.867 14.277–14.336 2.95–3.39

The 99.5% quantiles are estimated by applying the estimator from Harrell and Davis (1982) to 5,000 simula-
tions. The ranges given are the 95% confidence intervals computed from the standard error for the Harrell–Davis
estimate. The yield curve used to discount future cashflows is shown in Figure 1.
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second is that the data used in this paper include revisions to pre-2011 population estimates fol-
lowing the 2011 census; and the third is that mortality experience after 2010 has been unusual and is
not in line with trend. The combined effect of these changes to the discount function and the data has
led to the VaR99.5 capital requirements at age 70 for the models in Table A9 being around 0.5% less
than for the same models in Richards et al. (2014, Table 4). However, a comparison between
Figures 9 and A3 shows that these results are strongly dependent on age. As in Richards et al. (2014),
this means that it is insufficient to consider a few model points for a VaR assessment – insurer capital
requirements not only need to be informed by different projection models, but they must take
account of the age distribution of liabilities.

G. Differences compared to Continuous Mortality Investigation approach

In this paper we present a stochastic implementation of the APCI model proposed by Continuous
Mortality Investigation (2016b). This is the central difference between the APCI model in this paper
and its original implementation in Continuous Mortality Investigation (2016a, 2016b). However,
there are some other differences of note and they are listed in this section as a convenient overview.

As per Cairns et al. (2009) our identifiability constraints for γy −x weight each parameter according to
the number of times it appears in the data, rather than assuming equal weight as in Continuous
Mortality Investigation (2016b, page 91). As with Continuous Mortality Investigation (2016b) our
APC and APCI models are over-constrained (see Appendix C and section 6).

For cohorts with four or fewer observed values we do not estimate a γ term – see Appendix B. In
contrast, Continuous Mortality Investigation (2016a, pages 27–28) adopts a more complex
approach to corner cohorts, involving setting the cohort term to the nearest available estimated term.

For smoothing αx and βx we have used the penalised splines of Eilers and Marx (1996), rather than
the difference penalties in Continuous Mortality Investigation (2016b). Our penalties on αx and βx
are quadratic, whereas Continuous Mortality Investigation (2016b) uses cubic penalties. Unlike
Continuous Mortality Investigation (2016b) we do not smooth κy or γy −x. We also determine the
optimal level of smoothing by minimising the BIC, whereas Continuous Mortality Investigation
(2016b) smooths by user judgement.

Figure A3. VaR99.5 capital requirements by age for models in Table A8
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As described in Section 3, for parameter estimation we use the algorithm presented in Currie (2013).
This means that constraints and smoothing are an integral part of the estimation, rather than
separate steps applied in Continuous Mortality Investigation (2016b, page 15).

Unlike Continuous Mortality Investigation (2016b) we make no attempt to adjust the exposure data.

For projections we use ARIMA models for both κy and γy −x, rather than the deterministic targeting
approach of Continuous Mortality Investigation (2016b, pages 31–35). Unlike Continuous Mor-
tality Investigation (2016b) we do not attempt to break down mortality improvements into age,
period and cohort components, nor do we have a long-term rate to target and nor do we have any
concept of a “direction of travel”(Continuous Mortality Investigation, 2016b, page 14).

H. Suggestions for Further Research

There were many other things which could have been done in this paper, but for which there was not
the time available. We list some of them here in case others are interested in doing so:

∙ Female lives. To illustrate our points, and to provide comparable figures to earlier papers such as
Richards et al. (2014) and Kleinow and Richards (2016), we used the data for males. However,
both insurers and pension schemes have material liabilities linked to female lives, and it would be
interesting to explore the application of the APCI model to data on female lives.

∙ Back-testing. It would be interesting to see how the APCI model performs against other models in
back-testing, i.e., fit the models to first part of the data set and see how the resulting forecasts
compare to the latter part of the data.

∙ Sensitivity testing. Some models are sensitive to the range of ages selected or the period covered. It
would be interesting to know how sensitive the APCI model is to such changes.

∙ Canonical correlation. Models with both period and cohort terms, such as the APC and APCI
models, usually have these terms projected as if they are independent. However, such terms are
usually correlated, making the assumption of independence at best a simplifying assumption for
convenience. It would be interesting to compare the correlations of κ and γ for the APC and APCI
models. Joint models for κ and γ could be considered.

∙ Over-dispersion. To fit the models, both we and Continuous Mortality Investigation (2017, page
5) assume that the number of deaths follows a Poisson distribution, i.e., that the variance is equal
to the mean. However, in practice death counts are usually over-dispersed, i.e., the variance is
greater than the mean.
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