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Abstract

An algorithm is given that recognises (inO(lN2 logN) time,
whereN is the size of the input andl the depth of a precalculated
Schreier tree) when a transitive group(G, �) is the action on one
orbit of the action ofG on the set0(2) of ordered pairs of distinct
elements of someG-set0 (that is,� is isomorphic to an orbital of
(G, 0)). This may be adapted to list all essentially different such
actions inO(lN4 logN) time, whereN is the sum of the sizes of the
input and output. This will be a useful tool for reducing the degree
of a permutation group as an aid to further study of the group.

This algorithm is then extended to provide an algorithm that will
(in O(lN3 logN) time) recognise when a transitive group is the ac-
tion on one orbit of the action ofG on the set0{2} of unordered
pairs of distinct elements of someG-set0. An algorithm for find-
ing all essentially different such actions is also provided, running
in O(lN4 logN) time. (Again,N is the sum of the input and out-
put sizes.) It is also indicated how these results may be applied to
the more general problem of recognising when an intransitive group
(G, �) is isomorphic to(G, 0{2}) for someG-set0.

All the algorithms are practical; most have been implemented in
GAP, and the code is made available with this paper. In some cases
the algorithms are considerably more practical than their asymptotic
analyses would suggest.

1. Introduction

Let (G, 0) be a transitive permutation group. Define0(2) to be the set of all ordered
pairs(α, β) of distinct elements of0, and0{2} to be the set of all unordered pairs{α, β} of
distinct elements of0. Recall that the orbitals ofG are the orbits ofG on the set of pairs
02, and that the non-trivial orbitals are those orbitals(α, β)G whereα 6= β; that is, those
orbitals that are contained in0(2).

Given an arbitrary transitive permutation group(G, �), we ask whether there is a tran-
sitive action ofG on a set0 such that(G, �) is isomorphic to the action ofG on one of
the orbitals of(G, 0). In Sections2 to 8, we describe an algorithmic method by which this
question may be answered for any group(G, �) input to our algorithm by means of a list
of generators. The principal application envisaged for this algorithm is to provide a fast
method of reducing the degree of an input permutation group to a more manageable size,
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Algorithmic Recognition of Group Actions on Orbitals

to aid further calculation and investigation of the group. Other applications are discussed
below.

In Sections9 to 12 we consider the related question of identifying whether there is an
action(G, 0) of G such that� is G-isomorphic to an orbit ofG on 0{2}. The algorithm
presented in the first part of this paper will form an integral part of the solution to this second
problem.

Initially, we therefore seek an algorithm with the following specification.

Specification 1.1.

Input Permutationsg1, . . . , gs ∈ Sym(�) generating a transitive permutation groupG
on�.

Output An action(G, 0) where#0 < #� and an orbital(α, β)G ⊆ 0(2) such that(G, �)

is isomorphic to the action ofG on (α, β)G, or the information that no such action
and orbital exist.

Here and throughout this paper, we regard two actions(G, �1) and(G, �2) as being
isomorphic, or two sets�1 and�2 as beingG-isomorphic, if and only if there exists a
bijectionη : �1 → �2 such thatωηg = ωgη for all ω ∈ �1 and allg ∈ G.

Since a principal application of this algorithm will lie in reducing the degree of an input
permutation group, we insist in Specification1.1 that #0 < #�. There will be situations
when one is interested in orbitals of the same size as the underlying group, and it is easy
to modify the algorithm given below for the above specification, so that it can find such
actions.

Another application of the algorithms in this paper is to enable one to recognise when
the input action(G, �) (which may be intransitive) is thewholeof 0(2) (the set of ordered
pairs of distinct elements of0) or 0{2}, rather than just one orbit. The special case where
(G, �) is transitive and we ask whether� is isomorphic to0{2} for some set0 on which
G (necessarily) acts 2-homogeneously has been covered in [8].

To approach the general case we can start with one orbit of the input action, and seek
actions ofG on sets0 of a particular sizem (i.e.,where #� = n = m(m−1)orn = (

m
2

)
). We

are therefore interested in an algorithm fulfilling Specification1.1where we may stipulate
in advance the size of the set0. This is a difficult problem, and instead we formulate a
problem that asks forall possible actions, from which we may choose the ones we want.
Of course, the number of such actions may be very large, and the resulting algorithm
infeasibly slow, but we provide techniques to speed up the procedure in practice, partly by
removing redundancies from the output. It is, however, a theme of this paper that some of
the algorithms are theoretically infeasible, but that they are in practice applicable to the vast
majority of permutation groups of suitable degree; the practical upper limit on the degree of
the input group is quite high, somewhere between 4000 and 10 000 on a 200 MHz Pentium.

Specification 1.2.

Input Permutationsg1, . . . , gs ∈ Sym(�) generating a transitive permutation groupG
on�.

Output The set of all (essentially different) pairs, where each pair consists of an action
(G, 0) and an orbital(α, β)G such that(G, �) is isomorphic to the action ofG on
(α, β)G.
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By ‘essentially different’ we mean that if two actions(G, 01) and(G, 02) in the output
are isomorphic by an isomorphism that identifies the corresponding orbitals, then we would
like to regard them as the same. This will be formalized in Definition3.1.

One further application of these algorithms is to find graphs (directed or undirected)
where the edge set can be identified with the input set� in such a way that the groupG
embeds in the automorphism group of the graph.

In [8], special techniques based on the classification of finite 2-transitive groups are used
to obtain a recognition algorithm that, for a very special case, runs in nearly linear time (if
the orbits of a point stabilizer are known). The algorithms in the present paper are based
on far more elementary mathematics, and have significantly worse asymptotic complexity.
When the results of the present paper are applied to actions with a solution in the sense of
[8], we find that the algorithms for Specifications1.1and9.1, which return just one action,
do not in general return a solution in the sense of [8]. The algorithms for Specifications1.2
and9.2, which return all possible actions, include in their output all ‘essentially different’
solutions in the sense of [8], and these can easily be extracted by reference to the degree of
the output actions.

It would be interesting to examine the various cases of [8] to investigate the consequences
of the definitions of equivalence of solutions contained in this paper. For example, one could
ask how many different inequivalent solutions there can be in each case, and one could
investigate the consequences for the algorithms in [8] of the various results in the present
paper which use equivalence of solutions to reduce the effort involved in the search for a
solution. Unfortunately, the author has not had time to undertake these investigations, so
they are left as open questions for the reader to ponder.

In practice, when running algorithms from the present paper on groups that have a
solution in the sense of [8], one finds that in most cases these groups do not have very
many solutions in the sense of the present paper, and the program does not therefore take
inordinately longer than the implementation of the algorithm in [8].

Throughout this paper,n will be the cardinality of the (finite) set�, ands will be the
cardinality of the (finite) input set of generators used to defineG.

2. Finding solution pairs

Let ω be a fixed element of�. Suppose(G, �) is isomorphic to the action ofG on an
orbital 1 of (G, 0). Thenω corresponds to some element(α, β) of 1, and1 = (α, β)G,
andGω = Gα ∩ Gβ . Let x ∈ G mapα to β. ThenGβ = Gx

α, so in factGω = Gα ∩ Gx
α.

On the other hand, whenever we have a subgroupJ with Gω = J ∩ J x then we can take0
to be the action ofG by right multiplication on the set cos(G : J ) of cosets ofJ in G, and
(G, �) is isomorphic to the orbital(J, Jx)G (and also to the orbital(Jx, J )G, which may
be distinct from the first one). We have proved:

Proposition 2.1. Fix ω ∈ �. If the action(G, �) is isomorphic to the action ofG on an
orbital 1 of (G, 0), then there is a stabilizerJ = Gα for someα ∈ 0, and an element
x ∈ G such thatJ ∩ J x = Gω for someω ∈ �. Conversely, ifJ 6 G andx ∈ G satisfy
J ∩ J x = Gω then(G, �) is isomorphic to the action ofG on an orbital of its action on
cosets ofJ . �

Definition 2.2. A solution pair will be a pair (J, x) whereJ 6 G andx ∈ G satisfy
J ∩ J x = Gω.
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Our approach to Specification1.2will be a search over the set of pairs(J, x) whereJ is
a subgroup ofG containingGω, andx an element ofG. We shall later show that we need
not consider very many elementsx. We shall find that part of the same search will suffice
for Specification1.1. The restriction on subgroupsJ for a particularx follows from two
simple lemmas.

Lemma 2.3. SupposeGω 6 J 6 G andx ∈ G, andJ ∩J x = Gω. ThenJ > 〈Gω, Gx−1

ω 〉.
Proof. SinceGω 6 J x , we have Gx

−1

ω 6 J .

Lemma 2.4. Suppose〈Gω, Gx−1

ω 〉 6 J ′ 6 J andJ ∩ J x = Gω. ThenJ ′ ∩ J ′x = Gω.

Proof. CertainlyJ ′ ∩ J ′x 6 J ∩ J x = Gω. On the other hand,J ′ > Gx−1

ω soJ ′x > Gω

and asJ > Gω as well; the result follows.

Therefore for a fixed value ofx, we can enumerate all subgroupsJ with J ∩ J x = Gω

by starting withJ = 〈Gω, Gx−1

ω 〉, and checking whetherJ ∩ J x = Gω for this J . Then
recursively for anyJ satisfying this equation we form all proper supergroupsJ̄ of J in
whichJ is maximal, and test each of these in turn to see whetherJ̄ ∩ J̄ x = Gω.

The following procedure uses this technique to enumerate all solution pairs for the chosen
value ofx.

Algorithm 2.5.

Input Permutation group(G, �) as a list of generators, a pointω ∈ � and an element
x ∈ G.

Output List of all solution pairs (for the givenω) (J, x) for J 6 G andx as it was input.

1. Function:ProcessSubgroup(J )
2. If J ∩ J x = Gω then
3. Output(J, x);
4. FormJ := {J̄ 6 G

∣∣ J <max J̄ };
5. ForJ̄ ∈ J do ProcessSubgroup(J̄ ); End for;
6. End if;
7. End function;
8. ProcessSubgroup(〈Gω, Gx−1

ω 〉);
9. End.

We shall show later how this theoretical procedure can be translated into a practical
algorithm.

3. Equivalence of solution pairs

As we saw earlier, every action ofG with an orbital action isomorphic to(G, �) has a
point stabilizerJ for which there existsx ∈ G with J ∩ J x = Gω, and for a given value
of x we can find all subgroupsJ fulfilling this condition. We now consider which values
of x we need to look at to make sure we find all the actions in which we are interested, and
identify the corresponding orbitals. We introduce a notion of equivalence of solution pairs
to formalize the ‘essentially the same’ aspect of Specification1.2; it will also reduce the
number of elementsx that need to be considered for Specification1.1.
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Definition 3.1. Two solution pairs(J1, x1) and(J2, x2) are calledequivalentif there exists
g0 ∈ G such thatJ2 = J

g0
1 andx2 ∈ J2x

g0
1 J2.

A simple calculation shows that the relation of Definition3.1 is an equivalence relation
on the set of solution pairs.

Proposition 3.2. Two solution pairs(J1, x1) and(J2, x2) are equivalent if and only if there
exists aG-isomorphismθ : cos(G: J1) → cos(G: J2) such that

((J1, J1x1)
G)θ = (J2, J2x2)

G.

Proof. Supposeθ is aG-isomorphism as described. Then the trivial cosetJ1 maps under
θ to a coset ofJ2, sayJ2g. As θ is aG-isomorphism, the stabilizers of these cosets are the
same, soJ1 = J

g

2 . As θ maps(J1, J1x1)
G to (J2, J2x2)

G, it must mapJ1x1 to J2x2hg for
someh ∈ J2. But sinceθ is aG-isomorphism, it must also mapJ1x1 to (J1θ)x1, which

equalsJ2gx1. ThusJ2x2hg = J2gx1 and sox2 ∈ J2x
g−1

1 h−1, which is as required (with
g0 = g−1 in Definition3.1).

Conversely, supposeg0 ∈ G is such thatJ2 = J
g0
1 andx2 ∈ J2x

g0
1 J2. Defineθ : cos(G:

J1) → cos(G : J2) by (J1g)θ = J2g
−1
0 g for all g ∈ G. It is easily checked that this is a

well-definedG-isomorphism with the required property.

Remark 3.3. Since any orbital(J, Jx)G is isomorphic to the reverse orbital(Jx, J )G or
(J, Jx−1)G, in a natural way, Definition3.1could be extended to reflect this. We could do
this by replacing the condition ‘x2 ∈ J2x

g0
1 J2’ in that definition by ‘eitherx2 ∈ J2x

g0
1 J2

or x2 ∈ J2(x
−1
1 )

g0
J2’. Most of the following results based on the above definition could

be altered to take account of the changed definition, but the alterations would be quite
complicated. It turns out not to be as easy to test for this sort of equivalence and, as we only
ever expect to gain a small factor with this change, it was left out of the final algorithm.

We now prove an important characterization of equivalence of solution pairs, and deduce
as a corollary that if we have two solution pairs that are equivalent, then any further solution
found by starting from one of them is equivalent to one found by starting from the other.

Theorem 3.4. Let (J1, x1) be a solution pair and letJ2 6 G andx2 ∈ G. Then(J2, x2)

is a solution pair equivalent to(J1, x1) if and only if there existsg ∈ NG(Gω) such that
J2 = J

g

1 andx2 ∈ J2x
g

1 .

Proof. Suppose first thatJ2 ∩ J
x2
2 = Gω and that there existsg0 ∈ G such thatJ2 = J

g0
1

andx2 ∈ J2x
g0
1 J2. Then there existsz ∈ J2 such thatx2 ∈ J2x

g0
1 z, and sinceJ2∩J

x2
2 = Gω,

we get that

J2 ∩ J
x

g0
1

2 = Gz−1

ω .

It follows that

J
g0
1 ∩ J

x1g0
1 = Gz−1

ω

sinceJ2 = J
g0
1 , and so

J1 ∩ J
x1
1 = G

z−1g−1
0

ω .

HoweverJ1 ∩ J
x1
1 = Gω by hypothesis, soz−1g−1

0 normalizesGω. We can therefore take
g = g0z, which normalizesGω, and alsoJ g

1 = J
g0z

1 = J z
2 = J2 andJ2x

g

1 = J2x
g0z

1 =
J2x

g0
1 z, which containsx2.
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Conversely, suppose that there existsg normalizingGω such thatJ2 = J
g

1 andx2 ∈ J2x
g

1 .
If we can show that(J2, x2) is a solution pair, then it will immediately follow that it is
equivalent to(J1, x1) by takingg0 = g in the definition of equivalence.

So it suffices to prove thatJ2 ∩ J
x2
2 = Gω. We have

J1 ∩ J
x1
1 = Gg−1

ω

since(J1, x1) is a solution pair andg normalizesGω. Now

J2 ∩ J
x

g
1

2 = Gω

and so

J2 ∩ J
x2
2 = Gω

sincex2 ∈ J2x
g

1 .

Corollary 3.5. Suppose(J1, x1)and(J2, x2)are equivalent solution pairs, and that(J̄1, x1)

is also a solution pair, wherēJ1 > J1. Then there exists̄J2 > J2 such that(J̄2, x2) is a
solution pair that is equivalent to(J̄1, x1).

Proof. By Theorem3.4 there existsg ∈ NG(Gω) such thatJ2 = J
g

1 andx2 ∈ J2x
g

1 . Let
J̄2 = J̄

g

1 . ThenJ̄2 containsJ2 and so the result now follows from a second application of
Theorem3.4.

This means that not only can we safely discard one of a pair of equivalent solutions in
the output, we actually need to process only one of any pair of equivalent solutions when
looking for solutions containing ones that have already been found. This is very important,
and will reduce the workload of the algorithm considerably (even though it will probably
not reduce its overall worst-case complexity).

There now follow two results, which between them characterize the equivalence of
solutions in a more practical way.

Proposition 3.6. Let (J, x1) be a solution pair. Ifx2 ∈ Jx1Gω then(J, x2) is a solution
pair and is equivalent to(J, x1).

Proof. There existsg ∈ Gω such thatx2 ∈ Jx1g. ThenJ g = J asGω 6 J andJx
g

1 =
Jx1g, and so the result follows by Theorem3.4.

It is natural to define a set of pairs whose elements correspond to collections of equivalent
solution pairs that are closely related as in Proposition3.6:

X = {(J, JxGω)
∣∣ (J, x) is a solution pair}.

Each element(J, JxGω) of X satisfies the condition that for everyx′ ∈ JxGω, the pair
(J, x′) is a solution pair equivalent to(J, x).

Proposition 3.7. The normalizerN = NG(Gω) acts onX by conjugation:

(J, JxGω)g = (J g, J gxgGω) for all g ∈ N and all (J, JxGω) ∈ X.

The kernel of this action containsGω and so the action induces an action of the quotient
N/Gω.

The orbits of this action are the equivalence classes under the equivalence relation of
Definition3.1, in the sense that solution pairs(J1, x1) and (J2, x2) are equivalent if and
only if the orbit ofN onX that contains(J1, J1x1Gω) also contains(J2, J2x2Gω).
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Proof. Observe that the setJ gxgGω is simply the image of the setJxGω under the action
of conjugation of elements ofG by g, sinceg normalizesGω, and it follows that the image
J gxgGω is not dependent on the choice ofx. The image(J g, J gxgGω) lies inX whenever
(J, JxGω) does, by Theorem3.4. The mapping defined above is an action since it is derived
from the action ofN onG by conjugation.

If g ∈ Gω, thenJ g = J asGω 6 J , andJ gxgGω = g−1JxGωg = JxGω, for
all solution pairs(J, x), so Gω lies in the kernel of the action ofN on X. Finally the
characterization of orbits in terms of equivalence is a consequence of Theorem3.4 and
Definition3.1.

Corollary 3.8. Suppose there existsg ∈ N such thatx2 ∈ Gωx
g

1Gω for two elementsx1, x2

of G. If one of(〈Gω, G
x−1

1
ω 〉, x1) and(〈Gω, G

x−1
2

ω 〉, x2) is a solution pair, then the other is
as well, and they are equivalent.

Proof. Let Ji = 〈Gω, G
x−1
i

ω 〉 for i = 1,2. If x2 ∈ Gωx
g

1Gω, thenx1 ∈ Gωx
g−1

2 Gω and
vice-versa, so without loss we may assume that(J1, J1x1Gω) lies in X. We have x−1

2 ∈
Gωg−1x−1

1 gh for someh ∈ Gω, soG
x−1

2
ω = G

x−1
1 gh

ω . ThenJ2 = 〈Gh−1g−1

ω , G
x−1

1
ω 〉gh =

J
gh

1 but ash ∈ J
g

1 , we getJ2 = J
g

1 . By Proposition3.7, therefore,X contains the pair
(J2, J2x

g

1Gω) and sinceGωx
g

1Gω ⊆ J2x
g

1Gω, it follows that(J2, x2) is a solution pair, and
that it is equivalent to(J1, x1).

This corollary is even more helpful than previous results on equivalence; rather than
merely enabling us to discard solutions after considering them, it significantly reduces the
number of elementsx that we need to consider to start with.

4. High-level algorithm

We present a high-level version of the algorithm for Specification1.2(an algorithm for
Specification1.1can be easily deduced). Discussion of how this procedure is to be converted
into a practical procedure with reasonable asymptotic complexity is deferred until the next
section.

The algorithm is in two parts, a main procedure (Algorithm4.1 on page9) and a sub-
routine, calledAdd (Algorithm 4.2on page9). Instead of a recursive approach (as in Algo-
rithm 2.5), we store solutions awaiting processing in a list of pairsL. The purpose of the
subroutineAdd is to updateL by adding newly discovered solutions, and to find and filter
out solutions that are equivalent to previously discovered solutions. Much of the remainder
of the algorithm is similar to the corresponding parts of Algorithm2.5.

Each entry ofL is a pair(J, X) such that the solution pairs to be processed are(J, x) for
eachx ∈ X. They are stored inL in increasing order of the size ofJ , and each subgroup
J will be the subject of at most one entry inL (although that entry will move withinL,
eventually working its way to the head of the list). We always process the first entry in
L, thus ensuring that the smallest outstanding subgroup is processed. This means that no
subgroup will ever need to be processed twice, since whenever a new solution that will
need processing is produced, the subgroup in that solution is always strictly larger than the
subgroup currently being processed.

As in Algorithm 2.5, processing a set of solutions(J, X) involves finding all minimal
overgroupsJ̄ of J (i.e., all subgroups̄J that haveJ as a maximal subgroup) and for each
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suchJ̄ and eachx ∈ X, checking whether̄J ∩ J̄ x = Gω. For eachJ̄ for which there exists
x satisfying this condition, the pair(J̄ , X̄) is added toL in an appropriate place according
to the size ofJ̄ . HereX̄ is the subset ofX of elementsx for which J̄ ∩ J̄ x = Gω.

The purpose of the subroutineAdd is to ensure that only one representative from each
equivalence class (under the relation of Definition3.1) is actually added toL. It also ensures
that only one subgroup from eachN -conjugacy class of subgroups is used, thus reducing
the number of subgroupsJ for which the set of minimal overgroups must be calculated.

Those sets(J̄ , X̄) of solutions which, according to the description in the previous para-
graph, are to be added toL are in fact passed to this subroutine. For each solution pair
(J̄ , x), one of three things can happen.

(i) It can be entered as a new entry intoL.

(ii) It can be conjugated to give an equivalent solution(J̄ ′, x′) whereJ̄ ′ already appears
in L, though no solution equivalent to(J̄ ′, x′) yet appears in that entry (or anywhere
else); thenx′ is added to the second component of the current entry containingJ̄ ′.

(iii) It may be decided that(J̄ , x) is equivalent to a solution already inL, and so it is not
added.

The first few lines of Algorithm4.1use the results of Corollary3.8 to restrict the number
of x with which to start, and then initiate the process by forming and testing the subgroups
〈Gω, Gx−1

ω 〉, and adding those that pass the test toL. Again the procedureAdd is used for this
because Corollary3.8does not pick up every equivalence between solutions of this form;
also, we need to check for conjugacy between the subgroups of non-equivalent solutions.

The subroutineAdd (Algorithm 4.2) takes a pair(J, X) to add toL, as described above.
It starts by identifying those entries(J ′, X′) in L for whichJ ′ has the same size asJ , and
then decides which, if any, hasJ ′ conjugate toJ by an element of the normalizerN . Note
that by construction ofL, there will be at most one such entry. The entry isL[i]; if none
were found then a new entry inL is created withJ as subgroup, immediately after all the
other entries inL whose subgroups have the same size asJ . Although the entry is created
with an empty second component, ifX 6= ∅ (as is always the case whenAdd is called) then
this second component can be guaranteed not to be empty at the end of the subroutine.

The second part of the subroutine handles the elements ofX. We know that any solution
in L that is equivalent to a solution in(J, X) must be in the entryL[i] = (J ′, X′). Let Y
denote the subset ofX consisting of pairs whose first component isJ ′. Then the stabilizer
NJ ′ of N/Gω in its action onX acts onY. Each orbit ofN/Gω onX that contains a pair
(J ′, x) containingJ ′ obviously meetsY, and the intersection of such an orbit withY is
precisely the orbit of(J ′, x) underNJ ′ .

The setX1 is then the set of equivalence classes of the relation onG that relatesx and
y if and only if (J ′, J ′xGω) and(J ′, J ′yGω) are in the sameNJ ′ -orbit. Thus, solutions
(J ′, x) and (J ′, y) are equivalent if and only ifx andy are in the same member set of
X1. The setT will be the union of those sets inX1 that contain elements ofX′. As X′ is
enlarged,T is expanded correspondingly.

If (J, x) is equivalent to(J ′, x′) (for x ∈ X, x′ ∈ X′) then so is(J g, xg) for anyg ∈ N ,
in particular for theg ∈ N chosen in the algorithm, for whichJ g = J ′. But (J ′, xg) is
equivalent to some(J ′, x′) if and only if xg ∈ T , by Proposition3.7. Therefore, for each
x ∈ X, we test whetherxg ∈ T ; if not, then(J ′, xg) is an equivalent solution to(J, x) that
is not equivalent to any solution currently inL, so xg is added to the second component of
L[i] andT is updated accordingly.
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Algorithm 4.1.

1. FormN := NG(Gω);
2. FormD , the set of double cosets ofGω in G;
3. LetR be a subset ofD containing one double coset from each orbit ofN in its action

onD by conjugation;
4. LetX be a subset ofG containing one element from each double coset inR;
5. LetL := [ ];
6. Forx ∈ X do
7. LetJ := 〈Gω, Gx−1

ω 〉;
8. If J ∩ J x = Gω thenAdd(J, {x}); end if;
9. End for;

10. WhileL 6= [ ] do
11. Let(J, X) := L[1]; removeL[1] from L;
12. Output(J, X);
13. FormJ := {J̄ 6 G

∣
∣ J <max J̄ };

14. ForJ̄ ∈ J do
15. LetX̄ := {x ∈ X

∣
∣ J̄ ∩ J̄ x = Gω};

16. If X̄ 6= ∅ thenAdd(J̄ , X̄); end if;
17. End for;
18. End while;
19. End.

Algorithm 4.2.

1. SubroutineAdd(J, X)

2. Seti0 to be the smallest positive integer such thati0 > #L or the first component
of L[i0] has the same size asJ ; seti1 to be the smallest positive integer
such thati1 > #L or the first component ofL[i1] has size strictly greater
than that ofJ ;

3. Find the first value ofi with i0 6 i < i1 for which there existsg ∈ N/Gω such
thatJ ′g = J , where(J ′, X′) = L[i]; if none exists then seti := i1;

4. If i = i1 then insert a new entry(J, ∅) into the listL with index i, shifting all
entries beyond that point up by one, soL[i + 1] is the oldL[i], etc.;

5. Let(J ′, X′) := L[i];
6. LetNJ ′ := {g ∈ N/Gω

∣∣ J ′g = J ′};
7. FormD := {J ′xGω

∣∣ x ∈ G};
8. FormZ, whose elements are the orbits ofNJ ′ in its action by conjugation onD ;
9. FormX1 := {⋃ A

∣∣ A ∈ Z};
10. LetT := ⋃{D ∈ X1

∣∣ X′ ∩ D 6= ∅};
11. Fixg ∈ N such thatJ g = J ′;
12. Forx ∈ X do
13. If xg /∈ T then
14. Addxg to the second component ofL[i];
15. Join the element ofX1 containingxg to T ;
16. End if;
17. End for;
18. End subroutine.
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By this construction, we ensure that no two elements of the set of solutions{(J, x)
∣∣

(∃i, X)((x ∈ X) ∧ (L[i] = (J, X)))} are equivalent, and that no two subgroups from the
set{J ∣∣ (∃i, X)(L[i] = (J, X))} are conjugate under the action ofN .

5. Lower-level algorithm

In this section we introduce computationally efficient ways of representing and manip-
ulating the objects required for the above algorithm.

Forα ∈ �, letr(α) denote a representative ofα, that is,r(α) is an element ofG mapping
ω to α. We will assume that ther(α) are stored as words in the elements of a generating
set in a Schreier tree of depthl. (A Schreier tree, sometimes called a Schreier vector, is an
efficient means of storing a transversal for a point stabilizer in a permutation group without
storing the permutations explicitly. See [4] for example. If the maximum depth of the tree
is l then the image of anyβ ∈ � under anyr(α) can be calculated inO(l) time, and the
whole permutationr(α) in O(nl) time.)

There is a one-to-one correspondence between subgroups ofG containingGω and blocks
of imprimitivity of (G, �) containingω. Instead of the subgroupsJ we store the correspond-
ing blockωJ . Accordingly, a lot of calculations with blocks will be necessary. We will often
work with a small subsetS of �, and will want to find the smallest block containingS and
ω. This isωH whereH = 〈Gω, {r(α)

∣∣ α ∈ S}〉.
It is easier to calculate the orbits ofGω (which can be done inO(sn2 logn) time and

O(ns) space using the Schreier generators, or much more quickly and with high probability
by taking a small random subset of the Schreier generators) than it is to find a small
generating set forGω. Furthermore, we will need to know the orbits ofGω anyway when
we use the algorithm of Schönert and Seress [6] for calculating minimal blocks in a group
action. We will therefore assume that we know the orbits ofGω, but not necessarily a
generating set forGω. This will save a significant amount of space (and some time), as by
using a Schreier tree we can avoid having to explicitly store any permutation apart from the
original generators of the group.

The following lemma and proposition show that the usual algorithm for calculating orbits
given the generators of a group can be adapted to cope with this situation. Note that we do
not assume that the orbit to be calculated is a block.

Lemma 5.1. LetH = 〈H1, H2, . . . , Ht 〉. ThenωH is the unique minimal (with respect to
inclusion) subset of� that containsω and is a union ofHi-orbits for i = 1, . . . , t.

Proof. The proof is straightforward, and is omitted here.

The following proposition will only be applied either withJ = Gω or as part of a se-
quence of applications that start withJ = Gω and gradually extendJ (see Proposition5.3).

Proposition 5.2. Suppose we are given the orbits of a subgroupJ ofG in the form of linked
lists, together with an array indexed by�, mapping each element of� to the first element
of the list containing that element. Suppose also that a transversal{r(α)

∣∣ α ∈ �} is given,
in the form of a Schreier tree of depthl. LetT , S be subsets of�, andω0 a given element
of �. The following algorithm will calculateωH

0 whereH is the subgroup of� generated
by the groupsJ r(α) for eachα ∈ T together with the elementsr(α) for eachα ∈ S. (Note
that if J containsGω and eitherω ∈ T or S = ∅, thenH is independent of the choice of
transversal.) The running time isO((#T + #S)l#ωH

0 ), and the space used isO(n#T ).
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1. Set1 := ∅, Q := {ω0};
2. WhileQ 6= ∅ do
3. Chooseξ ∈ Q; addξ to 1 and removeξ from Q;
4. Forα ∈ T do
5. If ξJ r(α) 6⊆ 1 ∪ Q then
6. SetQ := Q ∪ (ξJ r(α)

) \ 1);
7. End if;
8. End for;
9. Forα ∈ S do

10. If ξ r(α) /∈ 1 ∪ Q then setQ := Q ∪ {ξ r(α)}; end if;
11. End for;
12. End while;
13. Output1;
14. End.

Proof. It is easy to see that after execution,1 containsω0, is a union ofJ r(α)-orbits for
eachα ∈ T and a union of〈r(α)〉-orbits for eachα ∈ S, and that it is the smallest such set,
so correctness follows from Lemma5.1.

The time bound is obtained by taking care in the implementation. We use an array indexed
by �, each of whose entries indicates whether the corresponding element of� is a member
of 1 or Q, so membership of1 ∪ Q can be tested in constant time; for each element ofT

we also maintain an array of flags indexed by the heads of the linked lists representing the
J -orbits; the flag corresponding to an elementα ∈ T and aJ -orbitA will be set when it has
been shown that the whole ofAr(α) is contained inQ∪1, that is when lines 5–7 have been
executed for this value ofα and anξ such thatξ r(α)−1 ∈ A. This will enable us to decide in
line 5 whether the image underr(α) of theJ -orbit containingξr(α)−1

has previously been
added toQ; using the data structure described this test can be done in constant time once
we knowξ r(α). Line 5 is executed #T #ωH

0 times, and a Schreier tree calculation is needed
each time to findxr(α). Thus all these checks can be made in total timeO(l#T #ωH

0 ).
It follows that we only need to do an element-by-element check in lines 5 and 6 once

for each pairα, A whereα ∈ T andA is a J -orbit. Using the linked list structure, the
number of individual element checks made in lines 5 and 6 during the whole execution of
the algorithm is therefore #T #ωH

0 , and as each check requires a Schreier tree calculation,
these also takeO(l#T #ωH

0 ) time. It is straightforward to see that the same data structures
allow for the execution of lines 9–11 inO(l#S#ωH

0 ) time, and it is clear that all the other
lines execute within the time bound stated in the proposition. The space bound is clear from
the use of the data structures described.

Proposition 5.3. If Gω 6 J̄ 6 G and the blockωJ̄ is known, then given the orbits ofGω

on� and a Schreier tree of depthl, we can calculate a subset ofωJ̄ of size at mostlog #ωJ̄

that generatesωJ̄ as a block containingω, in O(l#ωJ̄ log #ωJ̄ ) time.

Proof. We will obtain a chain of subgroupsJi with Gω = J0 < J1 < · · · < Jr = J̄ as
follows. We will haveJ0 = Gω andJi+1 = 〈Ji, r(αi)〉 whereαi ∈ ωJ \ ωJi , as long as
this is possible. Eachαi will be determined by calculating the orbits ofJi onωJ and then
choosing a suitable point.

The procedure is to use Proposition5.2 repeatedly. For each value ofi, starting with
i = 0, several calls will be made, withT = {ω}, J = Ji andS = {αi}, using various
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elements asω0 sufficient to find all the orbits ofJi on ωJ̄ . Thus we find the orbits of
Ji+1 on ωJ̄ ; when the orbits ofJi+1 are known we can then chooseαi+1 and (inO(#ωJ̄ )

time) process the orbits ofJi+1 to get into a suitable form to be used as input on the next
iteration.

As mentioned earlier, there is a one-to-one correspondence between subgroups ofG

containingGω and blocks of imprimitivity of(G, �) containingω. Instead of the subgroups
J we store the corresponding blockωJ . The manipulations we require with these subgroups
are: conjugation by elementsx, where the resulting subgroup also containsGω, testing
whether the intersectionJ ∩ J x is Gω, testing the equality of two such subgroups, and
forming the set of minimal overgroups for a subgroupJ .

Lemma 5.4. Let S ⊆ � and letB be the smallest block containing{ω} ∪ S. Let g ∈ G.

Thenω
G

g
{B} is the smallest set containingω which is a union ofGg

ω-orbits and which is
closed under the action of the set{r(α)g

∣
∣ α ∈ S}.

Proof. We haveGg
{B} = 〈Gg

ω, {r(α)g
∣
∣ α ∈ S}〉, and the result follows by Lemma5.1.

A suitable setS can be calculated and stored with each block; indeed, the block can be
calculated fromS, the orbits ofGω and a Schreier tree to obtain the representativesr(α).
This idea of calculating blocks from the orbits ofGω and the representatives of one or more
points which, together withGω, generate the stabilizer of the block, is taken from Beals
[2].

Observe that we may apply Proposition5.2to calculate the smallest blockB containing
ω and a given setS in time O(l#B#S), wherel is the depth of our Schreier tree, and a
one-off cost ofO(n) for setting up the data structure, assuming that we know the orbits of
Gω.

In general, of course, the setS corresponding to the subgroupJ needs have size no more
than log|J : Gω|, and since all our blocks are to be built up by repeated extensions of smaller
blocks with each enlargement being minimal, we will have no difficulty in maintaining this
condition.

Lemma 5.5. SupposeJ > 〈Gω, Gx−1

ω 〉. ThenJ ∩J x = Gω if and only ifωJ ∩ωJx = {ω}.
Proof. The initial hypothesis givesJ ∩ J x > Gω, and the result is now immediate.

Since the algorithm arranges that all subgroupsJ for which we want to know whether
J ∩ J x = Gω contain〈Gω, Gx−1

ω 〉, this lemma enables us to perform this test efficiently.
The real advantage of the use of blocks to represent subgroups is the ease with which we

can find the blocksωJ̄ corresponding to the minimal subgroupsJ̄ containing the subgroup
J corresponding to a given blockωJ . The blocks we require correspond to the minimal
blocks of the action ofG on the block system of translates of the blockωJ , and these can
be found by the extension of an algorithm by Schönert and Seress [6]. Their paper gives a
deterministic algorithm, running inO(ln logn) time (and which runs quickly in practice),
which, given a Schreier tree of depthl and the orbits ofGω, will return all the minimal
blocks of the input action (of degreen).

We will be calling it with various actions ofG on the sets of translates of different blocks
B of (G, �), so we will need to calculate the action corresponding to the known blockB,
takingO(sn) time, and then convert our Schreier tree for� to one for the induced action,
and find the suborbits of the induced action. As we can easily work out the orbits ofGω
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on the translates ofB from knowledge of its orbits on�, and we know a setS such that
G{B} = 〈Gω, {r(α)

∣∣ α ∈ S}〉, we can then apply Proposition5.2to obtain the suborbits in
onlyO(ln#S) time, and using a smallS of size at most log #B, this works out asO(ln logn)

time. As conversion of the Schreier tree is straightforward to do inO(n) time, we can set
up and make each call to the Schönert–Seress routine inO(n(s + l logn)) time.

Observe that finding a small generating set for eachωJ̄ as a block containingω is easy,
given that we know one forωJ : simply extend the generating set forωJ by the addition of
one point fromωJ̄ \ ωJ ; this works because of the minimality of̄J as an overgroup ofJ .

Each elementGωg of N/Gω can of course be represented by the pointωg, and the
Schreier tree can be used to calculate the imagesαg andαg−1

as required. We can also
represent the group elementx in the solution pair(J, x) by the pointωx , since whenever
(J, x) is a solution pair,(J, x′) is an equivalent one, for anyx′ in Gωx, by Proposition3.6.

6. Implementation and analysis

We consider the implementation of each line in Algorithms4.1and4.2in terms of these
representations of our data. We assume that we have a Schreier tree of depthl available,
and that we know the orbits ofGω on�.

FindingN andN/Gω represented by the set of pointsωN is straightforward because
ωN = {α ∈ �

∣∣ αGω = {α}}, so we take the set of points that are singletonGω-orbits; this
requiresO(n) time.

The setR will be represented by the set{ω1
∣∣ 1 ∈ R}; that is, take the image ofω

under each of the sets inR (all the sets are unions of cosets ofGω). Formation of this
representation involves starting with the orbits ofGω and calculating the orbits ofN/Gω

in its action on this set of orbits. This is a straightforward orbit calculation, except that the
action involved is a little different: forGωg ∈ N/Gω and aGω-orbit αGω then the image
required is theGω-orbit containingωg−1r(α)g; sinceg is represented byωg, this means that
three Schreier tree calculations will be necessary to form each image. We also note that
we need a generating set forN/Gω, and that if we use the whole of the group then the
calculation will requireO(ln|N : Gω|) time, whereas if we pre-calculate a subset ofωN

that generates it as a block containingω and has size log|N : Gω|, we can do the whole
thing, including the precalculation, inO(ln log |N : Gω|) time. (See Proposition5.3for the
precalculation.) The setX will appear out of our construction ofR, but of course is stored
as a set of points (from�), not as a set of group elements.

Note that these calculations assume that we represent the orbits ofGω not just as a set of
sets but also as a look-up table, indexed by the elements of�, with each entry containing
some reference or pointer to the relevant orbit.

Formation of〈Gω, Gx−1

ω 〉 requires a straightforward application of Proposition5.2. The

calculation of the blockB = ω〈Gω,Gx−1
ω 〉 therefore requiresO(ln) time.

Recall that we need to know not only the blockB, but also a subsetS of B of size at most
log #B that generatesB as a block containingω. This can be calculated either by modifying
the process for calculatingB, or afterwards, as in Proposition5.3, in timeO(l#B log #B).

By Lemmas5.4 and5.5, conjugating and testing whetherJ̄ ∩ J̄ x = Gω can be done
by forming ωJ̄x

and testing whetherωJ̄ ∩ ωJ̄x = {ω}. FormingωJ̄x
from ωJ̄ requires

O(l|J̄ : Gω| log |J̄ : Gω|) time, by Proposition5.2. Testing whetherωJ̄ ∩ ωJ̄x = {ω} can
also be done inO(|J̄ : Gω| log |J̄ : Gω|) time.
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This means that the first part of Algorithm4.1, up to the start of the main loop, can be
executed inO(ln2 logn) time, plusO(n) calls toAdd, since #X is O(n). In particular, this
is sufficient to answer the question posed in Specification1.1.

Theorem 6.1. Specification1.1can be implemented inO(ln3 logn) time andO(sn) space,
given a Schreier tree of depthl and the orbits ofGω.

Proof. It suffices to run Algorithm4.1until the first call toAdd in whichJ > Gω. Since we
stop as soon as a solution(J, x) is found withJ > Gω, we only need to implementAdd, to
handle calls made withJ = Gω. This means that no equivalence checking is needed within
Add as equivalent solutions withJ = Gω will arise from the sameN -conjugacy class of
double cosets ofGω and so will be eliminated in the early lines of Algorithm4.1. Therefore
Add can be implemented in constant time. We may need one iteration of the main loop,
and therefore one call to the Schönert–Seress routine. We may then have to test whether
J̄ ∩ J̄ x = Gω a furtherO(n2) times, as there may be up ton values ofx and up ton − 1
subgroupsJ̄ .

The spatial bound is easily seen from the discussion preceding the theorem; the only
point worth commenting on is thatL requires onlyO(n) storage space as it has only one
entry, which stores a block of size 1 andO(n) values ofx (which are of course stored as
pointsωx in �).

Peter Neumann has suggested an improvement to this algorithm, which is the subject of
Section8.

Leaving aside the subroutineAdd for the moment, the only remaining question about
the implementation and complexity of Algorithm4.1 is how many iterations of the main
loop there will be. This is bounded by the number ofN -conjugacy classes of subgroups
containingGω, but this can easily be seen to grow exponentially as a function ofn for
certain classes of groups (e.g.,elementary abelian groups acting regularly). In what follows
the number of iterations will be denoted byK; observe that this is bounded linearly by the
size of the output. Thus our complexity analyses will be in terms of the sizes of both the
input and the output, rather than (as is more usual) just the input. Secondly, observe that
in most practical casesK is very small, although experiments have been undertaken with
groups with largeK, with successful results. Even though aK2 term appears in the final
analysis, this does not appear to be a serious restriction on the practicality of the algorithm.

There areK calls to the Schönert–Seress algorithm, and at mostn + nK calls toAdd,
where then term arises from the calls before the main loop and thenK from the calls in the
main loop, since there are at mostn minimal blocks in any action of degree no more thann.

We turn now to the implementation of the subroutineAdd, Algorithm 4.2. If size in-
formation is calculated and stored with each block as it is constructed, findingi0 and i1
requires onlyO(logK) time. To findi we need to calculate a lot of conjugates of blocks;
however in this case the conjugating elementsg normalizeGω and so the conjugate block
ωJ ′g

is generated as a block containingω by the set{ωr(α)g
∣∣ α ∈ S} whereS generates

J ′ as a block containingω. Therefore we can test whetherωJ ′g = ωJ , whereg ∈ N , by
taking a subsetS of ωJ ′

that generates it as a block containingω, and forming the conju-
gate set{ωg−1r(α)g

∣
∣ α ∈ S}. This set will be a subset ofωJ if and only if ωJ ′g = ωJ ,

since the two blocks are known to have the same size. Therefore findingi can be done
in O((i1 − i0)l|N : Gω| log |J : Gω|) time if an array indexed by the points of� and
indicating membership ofωJ is prepared and used. In the theoretical analysisi1 − i0 will
be taken asO(K), but note that it is normally going to be a small fraction ofK.
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Insertion of a new entry intoL requiresO(K) time, but note that this happens on at most
K of the calls toAdd. If L were stored as a linked list, this would take constant time, but
finding i0 andi1 would beO(K) instead ofO(logK), and this happens every timeAdd is
called. In practice, we could implementL by a technique such as hashing, or as an array
of linked lists indexed by the divisors ofn, but K is anticipated to be sufficiently small for
these techniques to be unnecessary. Anyway, we cannot eliminate theK2 term arising from
the search fori.

FormingNJ ′ is a similar process to that of findingi, and so can be done inO(l|N :
Gω| log |J : Gω|) time.

Formation ofX1 is similar to that ofR in Algorithm 4.1, except that here we start with
the block system of translates ofωJ ′

, then form the orbits ofGω on this system, and then the
orbits ofNJ ′ . Forming the block system can be done inO(sn) time; although we will need
this system many times, we do not store it between calls toAdd as this would unacceptably
increase the storage requirement of the algorithm. Forming the orbits ofGω on the block
system requiresO(n) time, as we know the orbits ofGω on�. As before, the orbits ofNJ ′
can now be formed inO(ln log #NJ ′) time.

Naturally,T is stored as a subset of� rather than a set of elements ofG. Using a suitable
look-up table constructed whilstX1 was being formed, we can both formT and extend it
as necessary in a total time of no more thanO(n). In doing this we will provide a look-up
table indexed by the elements of� to determine membership ofT .

The setX certainly has size at mostO(n) (usually much less), and so the loop executes
O(n) times. Each execution of the body of the loop (apart from the extensions ofT ) takes no
more thanO(l) time for testing the condition in the ‘If’ statement, plus a constant time for
the storage ofxg. Therefore the total time taken to buildT and execute the loop is at worst
O(n(s+l log #NJ ′)), so the total time to executeAdd is at worstO(n(s+l log #NJ ′)+Kl|N :
Gω| log |J : Gω|), which isO(n(s + Kl logn)).

We conclude this section by giving the overall complexity of the algorithm in terms of
n, s andK.

The first tranche of calls toAdd require no more thanO(n2(s + Kl logn)) time (theK

here could be taken asO(n) butK can on the whole be expected to be significantly smaller
thann) as there areO(n) of them.

The calls to the Schönert–Seress routine require at mostO(Kln logn) time as there
areK of them. The calls toAdd made from within the main routine require no more than
O(Kn2(s + Kl logn)) time. The remaining parts of the main loop require a total time of
at mostO(Kln3 logn), since in each iteration of the main loop there are up toO(n2) tests
of the form ‘isJ ′ ∩ J ′x = Gω?’.

It is easy to see from the preceding discussion that the spatial requirement of the algorithm
is dominated by the size of the input, which isO(sn), and the space needed to storeL, which
is O(Kn), as each entry can take up toO(n) space.

We have proved:

Theorem 6.2. Algorithms4.1and4.2can be implemented inO(Kn2(s + (K +n)l logn))

time, andO((s + K)n) space, provided that theGω orbits and a Schreier tree of depthl
are known in advance. �

We can calculate theGω-orbits inO(sln2) time, using the Schreier generators forGω,
stored as words in the original generators. In practice, a much faster method would be used
to approximate the orbits, or we would find the orbits in the process of finding a whole
strong generating set if that were needed for other purposes.
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Forming a Schreier tree of depthO(n) takes justO(sn) time, but more complicated
techniques such as cube-doubling (see [1], for example) enable one to construct one of
depthl 6 2 log #G in timeO(n log #G(s + log #G)), which for families of so-called ‘small
base groups’ is better asymptotically. In practice, the standardO(sn) algorithm is used with
a breadth-first search since the possibility of the worst case arising is small, and the depth
is on average much better thanO(n).

In practice. The algorithm has been implemented inGAP [7]. Results to date are pleasing:
groups of degree up to 4000 are handled efficiently on a P200MMX with 32MB RAM
running Linux; the time taken varies considerably, but all the groups tried to date are
handled within a quarter of an hour of CPU time (after the calculation of the suborbits), and
many much faster. The implementation is to be found inAppendix A.

A comparison was made between two programs implementing different versions of the
algorithm. One implemented the full strength of the definition of equivalence, guaranteeing
that no two solution pairs that it output were equivalent. The other was a simpler algorithm
whose only check to reduce the number of equivalent solutions produced was that it started
off with only one value ofx from each double coset ofGω; thereafter, the number of solutions
was allowed to grow freely. Not only were there dramatically fewer solutions produced by
the more complicated algorithm (so it in fact produced significantly more information,
as the complete sets of solutions can be constructed quickly from representatives of each
equivalence class of solutions), but in virtually every case where there were solutions to
find it was faster by a factor of 2 or more (often very much more than that: in at least one
case there was a speed-up by a factor of about 70), even when there were very few solutions
for either algorithm to find.

7. Self-paired and non-self-paired orbitals

Orbitals fall into two classes: those that contain(β, α) for each pair(α, β) in the orbital,
and those that, for each pair(α, β) in the orbital, do not contain the reversed pair(β, α).
The former are termedself-paired, the latternon-self-paired.

Proposition 7.1. Suppose(J, x) is a solution pair. The corresponding orbital(J, Jx)G is
self-paired if and only if(J, x) is equivalent to a solution pair(J, y) wherey2 ∈ Gω. If
this is the case theny ∈ NG(Gω), and, additionally,y can be chosen inJx.

Proof. We have(Jx, J ) ∈ (J, Jx)G, so there isy ∈ GmappingJ toJx andJx toJ by right
multiplication. In particular,Jy = Jx, soy ∈ Jx; considering the stabilizers of the action
on cosets ofJ , we get thatJ y = J x andJ xy = J . ThusGy

ω = (J ∩ J x)y = J ∩J x = Gω.
Also Jy2 = J andJxy2 = Jx soy2 ∈ J ∩ J x = Gω, and(J, y) is a solution pair since
J y = J x ; it is equivalent to(J, x) sincey ∈ Jx.

Conversely, if(J, y) is a solution wherey2 ∈ Gω then the orbital(J, Jy)G must be
self-paired, since(J, Jy)y = (Jy, J ). Equivalence of solutions respects whether the cor-
responding orbital is self-paired, as is easily seen from Proposition3.2.

Corollary 7.2. If (J, x) and (J, y) are equivalent solution pairs withy2 ∈ Gω (so the
corresponding orbitals are self-paired) andGω 6 J ′ 6 J , then(J ′, y) is a solution pair
corresponding to a self-paired orbital; if̄J > J and one of(J̄ , x) and(J̄ , y) is a solution
pair, then so is the other one; they are equivalent and correspond to a self-paired orbital.
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Proof. The first part is immediate from Lemma2.4and Proposition7.1(using the fact that
y normalizesGω); the second is immediate from Corollary3.5and Proposition7.1.

This means that if we only wish to recognise self-paired orbitals, we need only look at
pairs(J, x) for whichx ∈ NG(Gω) andx2 ∈ Gω. No solution pair arising ‘above’ such a
pair will ever be non-self-paired, and every self-paired solution arises in this way.

On the other hand, if we only wish to recognise non-self-paired orbitals, we need only
consider solution pairs that are non-self-paired, as exploring the possible pairs above a
self-paired solution can only ever yield self-paired solutions. We will, however, expect to
generate self-paired solutions as we proceed, but they can safely be discarded without losing
any non-self-paired solutions. However, to do this we need to be able to identify quickly
whether a solution is self-paired.

Lemma 7.3. Suppose(J, y) is a solution pair withy2 ∈ Gω, so by Proposition7.1,y ∈
NG(Gω). If y ′ ∈ Gωy, theny′2 ∈ Gω andy′ ∈ NG(Gω).

This means that to decide whether a solution(J, x) is self-paired, we need only look
at representatives of the elements ofωJx ∩NG(Gω); if any of them have squares inGω then
(J, x) is self-paired, otherwise it is not self-paired.

8. Improved algorithm for Specification1.1

The algorithm in this section was suggested by Peter Neumann as an improvement to
the algorithm described in Theorem6.1. Its asymptotic complexity is better than that of
Theorem6.1by a factor ofn (the improvement is fromO(ln3 logn) to O(ln2 logn)), but
its practicality has not been tested.

Theorem 8.1. Algorithm8.2on page18 fulfils Specification1.1and can be implemented
to run inO(ln2 logn) time andO(sn) space.

Proof. We first show correctness. The first eleven lines of Algorithm8.2 are essentially
the same as the first 9 lines of Algorithm4.1. As the reader will recall from the proof of
Theorem6.1, and the discussion preceding it, this part of the algorithm finds a solution
(J, x) wherex does not normalizeGω, if one exists. If no such solution exists, then, as in
the earlier algorithm, we may restrict our search to pairs(J, x) whereJ containsGω as
a maximal subgroup andx ∈ X ∩ N (note thatN = NG(Gω) from the first line of the
algorithm). The algorithm for Theorem6.1checked every one of these pairs; in the present
case we analyse the situation a little more closely and eliminate some of the search.

If there is a solution withJ 6 N , then a minimal such solution(J, x) with J > Gω

will correspond under the natural map to a subgroup ofN/Gω of prime order, which is not
normalized byx; moreover, any non-normal subgroup ofN/Gω of prime order must yield
a solution in this way, as its intersection with a non-trivial conjugate must be trivial.

If there is no solution (other thanGω) with J 6 N , then by Lemma2.4, any solution
(J, x) must haveJ ∩ N = Gω. If J is minimal with respect to properly containingGω,

thenJ = 〈Gω, G
y−1

ω 〉 for anyy ∈ J \ Gω, since suchy cannot normalizeGω. So we can
restrict our search to groupsJ of this form; observe that if two elementsy are in the same

coset ofN then they generate the same subgroup〈Gω, G
y−1

ω 〉. Thus the outer loop in the
last section of the algorithm (lines18to 26) loops over sufficiently many subgroupsJ to be
sure of finding a solution if one exists. The inner loop checks sufficiently many possibilities
for x for each subgroupJ .
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Algorithm 8.2.

1. FormN := NG(Gω);
2. FormD , the set of double cosets ofGω in G;
3. LetR be a subset ofD containing one double coset from each orbit ofN in its action

onD by conjugation;
4. LetX be a subset ofG containing one element from each double coset inR;
5. Forx ∈ X \ N do
6. LetJ := 〈Gω, Gx−1

ω 〉;
7. If J ∩ J x = Gω then
8. Output(J, x);
9. Exit;

10. End if;
11. End for;
12. If N/Gω contains a non-normal subgroupY of prime order then
13. LetJ be the inverse image ofY in N ;
14. Choosex ∈ N such thatYx 6= Y in N/Gω;
15. Output(J, x);
16. Exit;
17. Else
18. Fory in a set of coset representatives forN in G do

19. LetJ := 〈Gω, G
y−1

ω 〉;
20. Forx ∈ X ∩ N do
21. If J ∩ J x = Gω then
22. Output(J, x);
23. Exit;
24. End if;
25. End for;
26. End for;
27. End if;
28. OutputFalse;
29. End.

We now consider the complexity of the algorithm. It was shown earlier that the first loop
runs inO(ln2 logn) time. The groupQ = N/Gω has sizeO(n), and so we can find a
generating set (stored as elements of the blockωN ) of size at most logn in O(ln logn) time
(Proposition5.3). We can find the prime subgroups ofQ in O(ln logn) time (for example
using the Schönert–Seress method).

We claim that testing the prime subgroups for normality inQ can be done inO(ln logn)

time. We do this by conjugating a generator of each subgroup by each member of a generating
set forQ in turn, and deciding whether the conjugate lies in the subgroup that we started
with. The conjugation can be done inO(ln logn) time as there areO(n) subgroups and so
O(n logn) conjugates to form, each one takingO(l) time (elements ofQ being represented
as elements of the blockωN , so group operations with them require a Schreier tree). The
membership testing can be done inO(n logn) time. This is because for a subgroup of size
k, the membership testing takes at mostCk logn time (faster if a binary search is used) for
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some constantC, independent of the choice of subgroup, as there are at most logn tests,
each taking a timeCk. As prime subgroups ofQ intersect trivially, the sum of the sizesk
of all the subgroups in question is at most 2n, so summing over all prime subgroups gives
a bound ofCn logn, that is,O(n logn).

Finally if there are no non-normal prime subgroups ofQ, we pass into the nested loops at
the end. Each iteration of the inner loop takesO(ln logn) time. There are|G : N | elements
y to consider, and for each one, at most|N : Gω| elementsx, so the total number of iterations
of the inner loop is at most|G : Gω|. Thus the nested loops run inO(ln2 logn) time.

The bound on the space used comes from the size of the input and the data structures
used; the only tricky issue is the generating set forQ, but this is stored as a subset of the
blockωN , so in fact causes no problems.

9. Actions on unordered pairs

In the remaining sections we shall consider the problem: is there an algorithm which,
given a permutation group(G, �) as input can tell if there exists an action ofG on a set0
such that� is G-isomorphic to an orbit ofG on0{2} (the set of unordered pairs of distinct
elements of0)? Thus, if we replace0{2} by 0(2) in that last sentence, we get the problem
of recognition of actions on orbitals that we have up to now been considering. Formally we
have two more specifications:

Specification 9.1.

Input Permutationsg1, . . . gs ∈ Sym(�) generating a transitive permutation groupG on
�.

Output An action(G, 0) with #0 6 #� and an orbit{α, β}G ⊆ 0{2} (with α 6= β) in the
action ofG on unordered pairs of elements of0, such that(G, �) is isomorphic to
the action ofG on {α, β}G, or the information that no such action and orbit exist.

Specification 9.2.

Input Permutationsg1, . . . gs ∈ Sym(�) generating a transitive permutation groupG on
�.

Output The set of all(essentially different)pairs, where each pair consists of an action
(G, 0) with #0 6 #� and an orbit{α, β}G (with α 6= β) of G on unordered pairs of
elements of0 such that(G, �) is isomorphic to the action ofG on (α, β)G.

In Definition10.3, we define a formal notion of equivalence of solutions, which enables
us to give a precise meaning to the notion of ‘essentially different’ in this specification.

We rule out the pathological case where #0 > #�, as to recognise this requires different
techniques, and it is not thought likely to be of interest. Note that in this case #0 = 2#�
and� corresponds to a block system in(G, 0) with blocks of size 2. The action induced on
this block system may not be faithful, and so there may be larger groups thanG that have
systems of blocks of size 2 that are isomorphic to�. However, given(G, �) we can find
every action(G, 0) with a system of blocks of size 2 that is isomorphic to�, simply by
finding all the subgroups ofGω of index 2. The action on the cosets of any such subgroup
clearly has such a block system, and all actions with such block systems arise this way.

Lemma 9.3. Suppose(G, 0) is a transitive permutation group, and that� is an orbit in
the action ofG on0{2}, such that#� > #0. Then
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(i) for anyα ∈ 0, there existβ, γ ∈ 0 such thatα, β, γ are all distinct and such that
{α, β} and{α, γ } both lie in�; and

(ii) G acts faithfully on�.

Proof. By transitivity, it suffices to prove the first part for just oneα ∈ 0. But if each
element of0 appears in no more than one of the pairs in� then #� 6 #0/2, so there must
be at least one elementα appearing in more than one pair in�.

The second part now follows, for supposeg ∈ G fixes every pair in�. Then for every
α ∈ 0, there are at least two distinct pairs{α, β} and{α, γ } fixed byg, and sog must fix
α. The result follows, sinceG acts faithfully on0.

10. Solutions and equivalence for the unordered pair problem

Fix ω ∈ �.

Definition 10.1. A solution pair for the unordered pair problem for(G, �) is a pair(J, x)

whereJ 6 G andx ∈ G such that the setwise stabilizer (in the action ofG by right
multiplication) of the pair{J, Jx} of cosets ofJ is Gω.

Proposition 10.2. Let (J, x) be a solution to the unordered pair problem for(G, �). Let
H be the stabilizer inG of the ordered pair(J, Jx), soH = J ∩ J x . Then eitherH = Gω

or |Gω : H | = 2 and for ally ∈ Gω \ H , we have(J, Jx)y = (Jx, J ).

Proof. CertainlyH E Gω andGω/H embeds in the symmetric group on two points. The
result follows.

Solutions where|Gω : H | = 1 will be said to be ofindex 1 type; similarly those where
|Gω : H | = 2 will be said to be ofindex 2 type.

Definition 10.3. Suppose(J1, x1) and (J2, x2) are solution pairs for the unordered pair
problem for(G, �). We say they are equivalent precisely when there existsg0 ∈ G such
thatJ2 = J

g0
1 andx2 lies in eitherJ2x

g0
1 J2 or J2(x

−1
1 )g0J2.

Proposition 10.4. Solution pairs(J1, x1) and(J2, x2) for the unordered pair problem for
(G, �) are equivalent if and only if there exists aG-isomorphismθ : cos(G : J1) →
cos(G: J2) such that({J1, J1x1}G)θ = {J2, J2x2}G. If they are equivalent then they have
the same index type (as defined above), and if they are equivalent and of index 2 type then
there existsg0 ∈ G such thatJ2 = J

g0
1 andx2 ∈ J2x

g0
1 J2.

Proof. Suppose first thatθ is as described. Thenθ maps some cosetJ1g of J1 to J2, and
asθ is aG-isomorphism, we getJ g

1 = J2. Now the other condition onθ gives us that

{J1, J1x1}θ = {J2g
′, J2x2g

′}
for someg′ ∈ G, and now either (i)J1θ = J2g

′ andJ1x1θ = J2x2g
′, so g′ ∈ J2g

−1 and
J2g

′x1 = J2x2g
′ whencex2 ∈ J2g

−1x1gJ2, or (ii) J1θ = J2x2g
′ andJ1x1θ = J2g

′, so
g′ ∈ J2g

−1x1 andJ2g
−1 = J2x2g

′, whencex2 ∈ J2g
−1x−1

1 gJ2.
Conversely, ifJ g0

1 = J2 andx2 ∈ J2x
g0
1 J2∪J2(x

−1
1 )g0J2 then the mapθ : J1x 7→ J2g

−1
0 x

is aG-isomorphism, which is readily seen to have the desired property.
Now suppose thatθ exists as described above. Then the stabilizer of the ordered pair

(J1, J1x1) is a conjugate of that of the ordered pair(J2, J2x2), and so they have the same
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size. Finally suppose these stabilizers have index 2 inGω, so there isy ∈ Gω \ (J2 ∩ J
x2
2 ).

If case (ii) above arises then in fact we haveJ1θ = J2yg′ andJ1x1θ = J2x2yg′ since
J2y = J2x2 andJ2x2y = J2, and thenyg′ ∈ J2g

−1 andJ2yg′x1 = J2x2yg′, whence
x2 ∈ J2g

−1x1gJ2 as required.

Note that the stabilizers of the ordered pairs(J1, J1x1) and(J2, J2x2) may be different
even if the solutions are equivalent as unordered pair solutions.

The index 1 case is essentially a search for non-self-paired solutions to the ordered
pair problem for(G, �), except that each solution(J, x) is now considered equivalent to
the reverse solution,(J, x−1). Recall that such a definition of equivalence was the subject
of Remark3.3. As checking for this extended form of equivalence is difficult (although
analogues do exist for most of the results on equivalence), the simplest way to check for
this case is to run a search for non-self-paired orbitals as described in the preceding section,
and throw away half the solutions.

We now prove a version of Theorem3.4for the unordered pair case, index 2 type.

Theorem 10.5. Let (J1, x1) be an unordered pair solution of index2 type, letJ2 6 G and
x2 ∈ G and letHi = Ji ∩ J

xi

i for i = 1,2. Then(J2, x2) is an unordered pair solution
that is equivalent to(J1, x1) if and only if there existsg ∈ NG(Gω) such thatJ2 = J

g

1 and
x2 ∈ J2x

g

1 ; furthermore if that is the case thenH2 = H
g

1 .

Proof. Suppose(J2, x2) is an unordered pair solution, equivalent to(J1, x1), so J2 = J
g0
1

andx2 ∈ J2x
g0
1 J2 for someg0 ∈ G. Choosez ∈ J2 such thatx2 ∈ J2x

g0
1 z. ThenGω

is the stabilizer of{J2, J2x2}, and so of{J2, J2x
g0
1 z} and of {J2, J2x

g0
1 }z. The mapθ :

cos(G : J1) → cos(G : J2) given byθ : J1x 7→ J2g
−1
0 x is aG-isomorphism, soGω is

also the stabilizer of{J1g0, J1x1g0}z. ThusGω is is the stabilizer of both{J1, J1x1} and
{J1, J1x1}g0z, and so is normalized byg whereg = g0z. Furthermore,J g

1 = J z
2 = J2 and

J2x
g

1 = J2z
−1x

g0
1 z which containsx2 asz−1 ∈ J2. Finally,H2 = J2 ∩ J

x2
2 = J2 ∩ J

x
g
1

2 =
J

g

1 ∩ J
x1g

1 = H
g

1 .
Conversely supposeJ2 = J

g

1 and x2 ∈ J2x
g

1 , whereg normalizesGω. It is clear
from Definition 10.3 that if (J2, x2) is an unordered pair solution then it is equivalent
to (J1, x1); we show that it is such a solution. NowGω is the stabilizer of{J1, J1x1} and so
of {J1g, J1x1g}. As before the mapJ1x 7→ J2g

−1x is aG-isomorphism, soGω is also the
stabilizer of{J2, J2x

g

1 }, and asx2 ∈ J2x
g

1 , it follows thatGω is the stabilizer of{J2, J2x2},
as required.

Corollary 10.6. If H1 and H2 are subgroups ofGω of index2 and H
g

1 = H2 where
g ∈ NG(Gω), then to every solution(J1, x1) with J1 ∩J

x1
1 = H1 there is an equivalent one

(J2, x2) with J2 ∩ J
x2
2 = H2.

Proof. By Theorem10.5, we can takeJ2 = J
g

1 andx2 = x
g

1 .

Proposition 10.7. Fix H 6 Gω of index 2. There is a one-to-one correspondence between
equivalence classes of solutions(J, x) of the unordered pair problem whereJ ∩ J x = H

and the equivalence classes of solutions(J, x) of the ordered pair problem for the action
of G on cosets ofH (with ω taken as the trivial cosetH ), with the added restriction that
x ∈ Gω \ H .
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Proof. The correspondence is the obvious one: a solution(J, x) of the ordered pair problem
for cos(G : H) with x ∈ Gω \ H hasJ ∩ J x = H and the stabilizer of{J, Jx} is
〈H, x〉 = Gω, so (J, x) is a solution of the unordered pair problem withJ ∩ J x = H .
To see that the correspondence between equivalence classes goes the other way, note that
if (J, x) is a solution of the unordered pair problem withJ ∩ J x = H andy ∈ Gω \ H

then(Jy, Jxy) = (Jx, J ) soy ∈ Jx and thus(J, y) is equivalent (as unordered solution)
to (J, x). Finally note that the correspondence respects equivalence of solutions: this is
immediate from Definitions3.1and10.3and Proposition10.4.

It follows that a suitable algorithm to handle the index 2 case is to find the subgroups
of Gω of index 2 and then, for one subgroupH from eachNG(Gω)-conjugacy class of
such subgroups, form the action on cosets ofH and run the algorithm described earlier,
restricting to the special case where we only consider one value ofx, taken fromGω \ H .
(By Proposition3.6, we need consider only one elementx from Gω \ H .)

Observe that the algorithm of Section4 sometimes conjugates a solution by an element
of NG(H) to reduce the number of calls to the Schönert–Seress routine, and (since the
conjugating element may not normalizeGω in the present situation) this can lead to a value
of x not fromGω \H appearing. This is not a problem as it can be proved that the algorithm
is still restricted to ordered pair solutions(J, x) that are equivalent to a solution(J ′, x′)
wherex′ ∈ Gω \ H , so all that is necessary is to conjugate the solution back to one where
x lies inGω \ H at the end of the algorithm. Alternatively, one can restrict to conjugating
by elements ofNG(Gω) ∩ NG(H), but this may lead to extra calls to the Schönert–Seress
routine.

11. Subgroups of index2 in Gω

It remains to find the subgroupsH that should be tested in this way from amongst the
(possibly exponentially many) subgroups ofGω of index 2.

Assumeω = {α, β}. Under the condition that #� > #0 that we imposed earlier, we
know (by Lemma9.3) that there is a pointω′ = {α, γ } ∈ �. ThenGω,ω′ = Gα,β,γ 6 Gα,β .
We cannot easily identify a suitable pointω′, but nevertheless we see thatGα,β contains
Gω,ω′ for at least oneω′ ∈ �.

Proposition 11.1. SupposeGω hask orbits on�, and#� = n. Then there are at most
n − k subgroupsH of index2 in Gω for which there existsω′ ∈ � such thatH > Gω,ω′ .

Proof. Letω′ ∈ �. LetA be the intersection of the subgroups ofGω of index 2 that contain
Gω,ω′ . ThenA E Gω, and the quotient is an elementary abelian 2-group, of size at most
|Gω : Gω,ω′ |. The number of subgroups of index 2 in a finite elementary abelian 2-group is
one less than the size of the group. Also note that the subgroups of index 2 inGω containing
Gω′′ for anyω′′ in the sameGω-orbit asω′ are the same as those containingGω′ , since they
are all normal inGω. Therefore, for each orbitX of Gω on �, there are at most #X − 1
subgroups of index 2 inGω containing the point-wise stabilizer ofω and any point inX.
The result follows by summing over allGω-orbits.

Lemma 11.2. Supposeω′′ = ω′g for someg ∈ N = NG(Gω). If Gω,ω′′ 6 H < Gω for

some subgroupH of index2 in Gω, thenGω,ω′ 6 Hg−1
< Gω andHg−1

also has index2
in Gω.
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Proof. We haveGω,ω′′ = Gω ∩G
g

ω′ , and sinceg normalizesGω this equalsGg
ω ∩G

g

ω′ , and
so

Gω,ω′′ = G
g

ω,ω′ .

The result follows.

By Corollary10.6, this means that once we have considered all subgroups of index 2 in
Gω that containGω,ω′ , we do not need to consider the subgroups of index 2 that contain
Gω,ω′′ for anyω′′ in the sameN -orbit asω′, as the only solutions they can yield will be
equivalent to ones we have already found.

The subgroupA of Gω in the proof of Proposition11.1is the product ofG2
ω (the group

generated by the squares of all elements ofGω, which is also the intersection of the index 2
subgroups ofGω) andGω,ω′ .

Lemma 11.3. The subgroupA = Gω,ω′G2
ω is equal toB, the normal closure inGω of

〈Gω,ω′ , {r(α)2
∣
∣ α ∈ 1}〉, where1 is theGω-orbit containingω′, andr(α) is an element

of Gω mappingω′ to α.

Proof. ClearlyGω,ω′ 6 B 6 A. Suppose for a contradiction thatB < A. It follows that
there isg ∈ Gω such thatg2 /∈ B. We can writeg = hr(α) = r(α)h′ for somer(α) and
someh, h′ ∈ B (by normality ofB), sog2 = hr(α)2h′ lies inB if and only if r(α)2 does;
this is a contradiction, sinceB containsr(α)2, and we conclude thatB = A.

We construct notA but the block (in the action ofGω) ω′A. We first construct the block
ω′H whereH = 〈Gω,ω′ , {r(α)2

∣∣ α ∈ 1}〉 using standard techniques, then close it under
conjugation by the elements of a transversal for it inGω. We do this by constructing the
block system of translates ofω′H under the action ofGω, and looking for a block in this
block system that is not fixed by the action ofH ; if none exists thenH is normal; otherwise,
we say(ω′H )g is not fixed byH . That means thatHg−1

does not fixω′H , and ifh ∈ H does
not fix (ω′H )g thenghg−1 ∈ HG \ H . We find such an element, add it toH , recalculate
ω′H and repeat the whole process until all orbits ofH in its action on the translates ofω′H
by elements ofGω are singletons. Of course,H can only be so extended log #1 times.

If we know a generating set forGω,ω′ in its action on1 of sizeO(#1) (for example
through a Sims-style base and strong generating set calculation, and a base-change if nec-
essary) then this process runs in timeO(l(#1)2 log #1) wherel is the depth of a Schreier
tree, since it can all be done within the action induced byGω on1. Therefore the total time
needed to findω′A for eachGω-orbit1 (or all those for which it is needed; see Lemma11.2)
is at mostO(ln2 logn). By [3], the base-change can be done deterministically inO(n2)

time andO(n2) space (note that we only need a cyclic base-change). Alternatively, if we are
working with so-called small-base groups (groups with a base of sizeO(logc n) for some
constantc, so log #G is O(logc+1 n)), the base-change can be executed in deterministic
nearly linear time and space using a result stated in [5]; and by [1] a strong generating set of
sizeO(log2 #G) can be found in Monte-Carlo nearly linear time, so the whole procedure
runs in nearly linear time and space.

12. Algorithmic results

Algorithm12.1is designed to test whether(G, �) is isomorphic to an orbit on unordered
pairs of an action(G, 0) of G.
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Algorithm 12.1.

1. Use an adaptation of Algorithms4.1and4.2to decide whether there is a solution pair
(J, x) corresponding to a non-self-paired orbital; if so the orbit{J, Jx}G is as
required;

2. SetB = ∅;
3. For eachN -orbit 1 (whereN = NG(Gω)) with #1 > 1 do
4. Chooseω′ ∈ 1;
5. Formω′A, whereA = G2

ωGω,ω′ ; this is a block in the action ofGω on1;
6. Add to the setB those blocks in the action ofGω on translates ofω′A whose

stabilizer has index 2 inGω;
7. End for;
8. Form the blocks inB into equivalence classes corresponding to the action ofN by

conjugation on the stabilizers of the blocks (note that this will identify any
pairs of blocks inB that have the same stabilizer);

9. For each of these equivalence classes choose a representativeB from the class and
do

10. Form the action ofG on cosets of the stabilizerH of B;
11. Letx ∈ Gω \ H ;
12. Use Algorithms4.1 and4.2 on the action ofG on cosets ofH , restricting the

search to just this one value ofx; if (J, x) is a solution pair then the orbit
{J, Jx}G is as required;

13. End for;
14. End.

Correctness follows immediately from the discussion above (using the correspondence
between blocks of imprimitivity containing a pointα and subgroups containingGα). Notice
that the purpose of forming equivalence classes of the blocks inB is to ensure that none of
the solutions produced are equivalent, and also to reduce the number of calls to the ordered
pair algorithm; at the same time we eliminate duplicates, where different blocks inB have
the same stabilizer. This step can be implemented by finding generators for the stabilizer of
each block inB, and conjugating them as appropriate; membership testing in the stabilizers
can of course be done by observing whether the element leaves the corresponding block
invariant. Asymptotically this step is quite expensive: there areO(n) elements ofB, each
with O(n) generators (depending on how many generators we have forGω (from which
Schreier generators can be constructed) or for the variousGω,ω′ , which can be extended).
There areO(n) conjugates of each stabilizer, and each one has to be checked againstO(n)

other blocks. Thus the complexity of this stage isO(n4). However the stage can be omitted,
or replaced with a cheaper stage to simply remove duplicate subgroups; this will certainly be
possible if only one solution is required, or if it is not important that all solutions produced
are pairwise inequivalent. In practice, however, there may well be use for this step as the
cost of processing each subgroup of index 2 is high.

Finding subgroups of index 2 from the action on translates ofω′A should present no
difficulty since this action is the regular action of an elementary abelian 2-group, and it is
merely a matter of finding a basis and writing down generators for each block of index 2
in this action in terms of the basis. If we can show that this can be done in timeO(k logk)
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wherek is the number of blocks found, then doing this for all theω′A previously calculated
will take O(n logn) time.

A basis is simply a generating set without redundancies and has size logk, so finding
one inO(k logk) time presents no problems. To write down generators for each subgroup
of index 2 is best done by recursion over the length of the basis. If the 2r − 1 subgroups
of index 2 of the elementary abelian 2-groupH generated by basis elementsb1, . . . , br are
H1, . . . , H2r−1 then the 2r+1 − 1 subgroups of index 2 of the elementary abelian 2-group
H̄ generated by basis elementsb1, . . . , br , br+1 are the group〈b1, . . . , br 〉, and for each
Hi , the groups〈Hi, br+1〉 and〈Hi, xibr+1〉 wherexi is an element ofH \Hi . The recursive
algorithm should store a suitablexi with the generators for eachHi . Theith recursive step
takes time proportional toi(2i − 1) since it involves writing downi generators for each of
2i − 1 subgroups. Thus the whole process takesO(k logk) time.

Finding the action on cosets of a subgroupH of index 2 can be done efficiently by
forming an action on the Cartesian product� × {0, 1}; if g ∈ G and(α, z) ∈ � × {0, 1}
then(α, z)g = (αg, z′) wherez′ = z if Br(α)gr(αg)−1 = B andz′ = 1−z otherwise. HereB
is the block (under the action ofGω) whose stabilizer is the desired subgroupH of index 2.
This will takeO(sln) time for each action formed.

It remains to consider the complexity of each call to the ordered pair algorithm. We
consider the version of this algorithm in which the normalizerN of the stabilizerH of one
point in the action on which the procedure is called is replaced by its intersection with the
normalizer ofGω; by Theorem10.5this leads to the correct notion of equivalence (given that
H is fixed when we call this algorithm). In this version, if a solution(J, x) hasx ∈ Gω \H ,
then no conjugate(J g, xg) by an elementg ∈ N of this solution hasxg /∈ Gω \ H , as that
coset is fixed under conjugation byN . That means that every entry intoL has the same value
of x, and there is no need at all to build the setT in Algorithm 4.2. Thus the complexity
of the call to Algorithm4.1 is reduced toO(n2K2

1 l logn), whereK1 is the length of the
output of that call to Algorithm4.1. The time needed for all the calls to Algorithm4.1 in
the ‘index 2’ part of the algorithm is therefore at mostO(n2K2l logn), whereK is now the
size of the output of Algorithm12.1.

The spatial requirements of this process are dominated by the input and the requirements
of the ordered pair algorithm, except possibly for the demands of whatever algorithm is used
to perform the base-change. To enable us to give a precise result, we shall assume that the
cyclic base-change algorithm of [3] is used, with a space requirement ofO(n2).

Theorem 12.2. Specification9.2can be implemented by an algorithm that runs in time at
mostO(n4 + Kn2(s + (K + n)l logn)) time, if a base and strong generating set and a
Schreier tree of depthl are known in advance. HereK is the number of distinct actions
returned, ands is the original number of generators given for(G, �). The algorithm uses
O(n(n + s + K)) space.

Proof. By the preceding discussion and Theorem6.2.

We turn now to the situation of Specification9.1, where only one solution is required.

Theorem 12.3. Specification9.1can be implemented by an algorithm that runs in time at
mostO(ln3 logn) time andO(n(n + s)) space, if a base and strong generating set and a
Schreier tree of depthl are known in advance.

Proof. There areO(n) calls to the algorithm of Theorem6.1, corresponding to theO(n)

relevant subgroups ofGω of index 2. However each call requires onlyO(ln2 logn) time
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as there is only one value ofx to consider. The first call, where a non-self-paired solution
is sought, also takes onlyO(ln2 logn) time, as there is no need to enter the main loop of
Algorithm 4.1to find a smallest non-self-paired solution.

In practice. This algorithm has also been implemented, and again, practical results are
encouraging, handling groups of a similar size as the implementation of the algorithm for
recognising actions on orbitals, and in similar lengths of time. TheGAP implementations
are available inAppendix A.
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Appendix A. GAP code for implementing the algorithm

This appendix is available to subscribers to the journal at:
http://www.lms.ac.uk/jcm/2/lms98006/appendixa/.
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