London Mathematical Society ISSN 1461-1570

ALGORITHMIC RECOGNITION OF GROUP ACTIONS ON
ORBITALS

GRAHAM R. SHARP

Abstract

An algorithm is given that recognises ((/N?logN) time,
whereN is the size of the input andthe depth of a precalculated
Schreier tree) when a transitive grou@, 2) is the action on one
orbit of the action ofG on the sef"® of ordered pairs of distinct
elements of som&-setT" (that is, <2 is isomorphic to an orbital of
(G, T)). This may be adapted to list all essentially different such
actions inO (IN*log N) time, whereN is the sum of the sizes of the
input and output. This will be a useful tool for reducing the degree
of a permutation group as an aid to further study of the group.

This algorithm is then extended to provide an algorithm that will
(in O(IN®log N) time) recognise when a transitive group is the ac-
tion on one orbit of the action off on the set"? of unordered
pairs of distinct elements of sonte-setI". An algorithm for find-
ing all essentially different such actions is also provided, running
in O(IN*logN) time. (Again,N is the sum of the input and out-
put sizes.) It is also indicated how these results may be applied to
the more general problem of recognising when an intransitive group
(G, Q) is isomorphic to G, I'?) for someG-setT.

All the algorithms are practical; most have been implemented in
GAP, and the code is made available with this paper. In some cases
the algorithms are considerably more practical than their asymptotic
analyses would suggest.

1. Introduction

Let (G, I') be a transitive permutation group. Defifé to be the set of all ordered
pairs(e, B) of distinct elements of, andI"2 to be the set of all unordered paies g} of
distinct elements of'. Recall that the orbitals afr are the orbits of5 on the set of pairs
I'2, and that the non-trivial orbitals are those orbitals)® wherea # g; that is, those
orbitals that are contained In@.

Given an arbitrary transitive permutation groi(p, 2), we ask whether there is a tran-
sitive action ofG on a sefl” such that(G, ©2) is isomorphic to the action af on one of
the orbitals of(G, I'). In Section to 8, we describe an algorithmic method by which this
question may be answered for any gradh €2) input to our algorithm by means of a list
of generators. The principal application envisaged for this algorithm is to provide a fa:
method of reducing the degree of an input permutation group to a more manageable si

The author was supported by the EPSRC.

Received 25 June 1998; published 23 April 1999.

1991 Mathematics Subject Classification 20B40, 68Q40
© 1999, Graham R. Sharp

https://doi.org/10.1112/5146115700000005X Publistgdooerhy Tarietiye X (VOB aly-F2ess

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/2
https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

to aid further calculation and investigation of the group. Other applications are discuss
below.

In Sections9 to 12 we consider the related question of identifying whether there is ar
action (G, I') of G such that2 is G-isomorphic to an orbit o on ', The algorithm
presented in the first part of this paper will form an integral part of the solution to this secor
problem.

Initially, we therefore seek an algorithm with the following specification.

Specification 1.1.

Input Permutationsgs, ..., gs € Sym(2) generating a transitive permutation group
on Q.

Output An action(G, ') where#I" < # and an orbital(e, 8)¢ < I'® such that G, Q)
is isomorphic to the action af on («, 8)°, or the information that no such action
and orbital exist.

Here and throughout this paper, we regard two acti@ns21) and (G, Q22) as being
isomorphic, or two set§2; and Q22 as beingG-isomorphic, if and only if there exists a
bijectionn : Q1 — Q2 such thatwn® = w8y forallw € Q1 and allg € G.

Since a principal application of this algorithm will lie in reducing the degree of an input
permutation group, we insist in Specificatirl that ' < #Q. There will be situations
when one is interested in orbitals of the same size as the underlying group, and it is ec
to modify the algorithm given below for the above specification, so that it can find sucl
actions.

Another application of the algorithms in this paper is to enable one to recognise whe
the input actionG, Q) (which may be intransitive) is theholeof I'® (the set of ordered
pairs of distinct elements df) or "2}, rather than just one orbit. The special case where
(G, Q) is transitive and we ask whethgris isomorphic tol'#2 for some sef” on which
G (necessarily) acts 2-homogeneously has been cover&yl in [

To approach the general case we can start with one orbit of the input action, and se
actions ofG on setd” of a particular size: (i.e.,where #2 = n = m(m—1)orn = (’g)).We
are therefore interested in an algorithm fulfilling Specificatiohwhere we may stipulate
in advance the size of the sgt This is a difficult problem, and instead we formulate a
problem that asks faall possible actions, from which we may choose the ones we want
Of course, the number of such actions may be very large, and the resulting algorith
infeasibly slow, but we provide techniques to speed up the procedure in practice, partly
removing redundancies from the output. It is, however, a theme of this paper that some
the algorithms are theoretically infeasible, but that they are in practice applicable to the ve
majority of permutation groups of suitable degree; the practical upper limit on the degree
the input group is quite high, somewhere between 4000 and 10 000 on a 200 MHz Pentiu

Specification 1.2.

Input Permutationses, ..., gs € Sym(£2) generating a transitive permutation group
on .

Output The set of all (essentially different) pairs, where each pair consists of an actiol
(G, T") and an orbital(a, 8)¢ such that(G,) is isomorphic to the action af on

(@, B)°.

https://doi.org/10.1112/5146115700000005X Published online by Car@bridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

By ‘essentially different’ we mean that if two actio6g, I'1) and(G, I'2) in the output
are isomorphic by an isomorphism that identifies the corresponding orbitals, then we wou
like to regard them as the same. This will be formalized in Definiidn

One further application of these algorithms is to find graphs (directed or undirectec
where the edge set can be identified with the inpusét such a way that the grou@
embeds in the automorphism group of the graph.

In [8], special techniques based on the classification of finite 2-transitive groups are us
to obtain a recognition algorithm that, for a very special case, runs in nearly linear time (
the orbits of a point stabilizer are known). The algorithms in the present paper are bas
on far more elementary mathematics, and have significantly worse asymptotic complexi
When the results of the present paper are applied to actions with a solution in the sense
[8], we find that the algorithms for Specificatiohd and9.1, which return just one action,
do not in general return a solution in the sense8df The algorithms for Specificatioris2
and9.2, which return all possible actions, include in their output all ‘essentially different’
solutions in the sense d8], and these can easily be extracted by reference to the degree |
the output actions.

Itwould be interesting to examine the various case8Jdfjinvestigate the consequences
of the definitions of equivalence of solutions contained in this paper. For example, one cot
ask how many different inequivalent solutions there can be in each case, and one co
investigate the consequences for the algorithms$jrmof the various results in the present
paper which use equivalence of solutions to reduce the effort involved in the search fol
solution. Unfortunately, the author has not had time to undertake these investigations,
they are left as open questions for the reader to ponder.

In practice, when running algorithms from the present paper on groups that have
solution in the sense oB], one finds that in most cases these groups do not have ver
many solutions in the sense of the present paper, and the program does not therefore
inordinately longer than the implementation of the algorithm in [8].

Throughout this paper, will be the cardinality of the (finite) se®, ands will be the
cardinality of the (finite) input set of generators used to define

2. Finding solution pairs

Let w be a fixed element dk. Suppose&G, 2) is isomorphic to the action aff on an
orbital A of (G, I'). Thenw corresponds to some elemént 8) of A, andA = («, B)°,
andG, = G4, N Gg. Letx € G mapa to B. ThenGg = G}, so in factG, = G, N Gy,.
On the other hand, whenever we have a subgtbwith G, = J N J* then we can tak&
to be the action o6 by right multiplication on the set c¢§ : J) of cosets of/ in G, and
(G, Q) is isomorphic to the orbital/, Jx)¢ (and also to the orbital/x, J)°, which may
be distinct from the first one). We have proved:

Proposition 2.1. Fix w € Q. If the action(G, 2) is isomorphic to the action aff on an
orbital A of (G, I'), then there is a stabilize;y = G, for somex € I', and an element
x € G such that/ N J* = G, for somew € Q. Conversely, it/ < G andx € G satisfy
JNnJ* =G, then(G, Q) is isomorphic to the action af on an orbital of its action on
cosets of/. O

Definition 2.2. A solution pair will be a pair (J, x) whereJ < G andx € G satisfy
JNJ* =G,.

https://doi.org/10.1112/5146115700000005X Published online by Cargoridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Our approach to Specificatidn2will be a search over the set of paits x) whereJ is
a subgroup of; containingG,,, andx an element ofz. We shall later show that we need
not consider very many elementsWe shall find that part of the same search will suffice
for Specificationl.1. The restriction on subgroupsfor a particularx follows from two
simple lemmas.

Lemma 2.3. Suppos&, < J < Gandx € G,andJNJ* = G,. ThenJ = (G, fo).

Proof. SinceG,, < J*, we have C’[{l < J. O

Lemma 2.4. Suppos€G,,, Gif)_l) <J' < JandJNJ* =G, ThenJ' N J* = G,.

Proof. CertainlyJ’ N J’* < J N J* = G,. On the other hand]’ > G~ s0J* > G,
and as/ > G, as well; the result follows. O

Therefore for a fixed value of, we can enumerate all subgroupsvith J N J* = G,
by starting withJ = (G,,, Ggf;l), and checking whethef N J* = G,, for this J. Then
recursively for anyJ satisfying this equation we form all proper supergroupsf J in
which J is maximal, and test each of these in turn to see whethiev* = G,,.

The following procedure uses this technique to enumerate all solution pairs for the chos
value ofx.

Algorithm 2.5.

Input Permutation grougG, 2) as a list of generators, a point € 2 and an element
x eqG.

Output List of all solution pairs (for the givem) (J, x) for J < G andx as it was input.

1. Function:ProcessSubgroup(J)

2. If J N J* =G, then

3 Output(J, x);

4. Formg :={J < G | J <max J };

5 ForJ e g doProcessSubgroup(J); End for;
6 End if;

7. End function;

8. ProcessSubgroup((G,, ij)_l));

9. End.

We shall show later how this theoretical procedure can be translated into a practic
algorithm.

3. Equivalence of solution pairs

As we saw earlier, every action 6f with an orbital action isomorphic taG, 2) has a
point stabilizerJ for which there exists € G with J N J* = G, and for a given value
of x we can find all subgroup$ fulfilling this condition. We now consider which values
of x we need to look at to make sure we find all the actions in which we are interested, ai
identify the corresponding orbitals. We introduce a notion of equivalence of solution pait
to formalize the ‘essentially the same’ aspect of Specificati@n it will also reduce the
number of elements that need to be considered for Specificatioh.

https://doi.org/10.1112/5146115700000005X Published online by Carbridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Definition 3.1. Two solution pairgJ1, x1) and(Jz, x2) are callecequivalentf there exists
go € G such that, = J{° andxz € Jox§s.

A simple calculation shows that the relation of Definiti®ii is an equivalence relation
on the set of solution pairs.

Proposition 3.2. Two solution pairgJ1, x1) and(J2, x2) are equivalent if and only if there
exists aG-isomorphisn® : cos(G: J1) — cos(G: J2) such that

((J1, J1x1) D)0 = (J2, J2x2)C.

Proof. Suppose is a G-isomorphism as described. Then the trivial cagemaps under
0 to a coset of/y, sayJog. As 6 is aG-isomorphism, the stabilizers of these cosets are the
same, so/; = J§. As maps(J1, J1x1) to (J2, Jox2), it must map/ixa to Joxohg for
someh € J,. But sinced is a G-isomorphism, it must also mafx1 to (J16)x1, which
equalsJogxi. ThusJoxohg = Jogxi and soxa € szf lh—l, which is as required (with
go = g1 in Definition 3.1).

Conversely, supposg € G is such that/; = Jf" andx; € szfojz. Defined : cos(G:
J1) — cos(G: J2) by (J1g)0 = ngglg forall g € G. Itis easily checked that this is a
well-definedG-isomorphism with the required property. O

Remark 3.3. Since any orbitalJ, Jx)¢ is isomorphic to the reverse orbitalx, J)° or

(7, Jx~1HG | in a natural way, DefinitioB.1 could be extended to reflect this. We could do
this by replacing the conditionty € Jox{°J>’ in that definition by ‘eitherxy € Jox{%/
orx» € Jz(xl_l)gojz’. Most of the following results based on the above definition could
be altered to take account of the changed definition, but the alterations would be qu
complicated. It turns out not to be as easy to test for this sort of equivalence and, as we o
ever expect to gain a small factor with this change, it was left out of the final algorithm.

We now prove an important characterization of equivalence of solution pairs, and dedu
as a corollary that if we have two solution pairs that are equivalent, then any further solutic
found by starting from one of them is equivalent to one found by starting from the other.

Theorem 3.4. Let (J1, x1) be a solution pair and let> < G andxz € G. Then(Jz, x2)
is a solution pair equivalent t6J1, x1) if and only if there existg € Ng(G,,) such that
Jo = Jf andx; € szi.

Proof. Suppose first that, N Jé‘z = G, and that there existsy € G such that/, = Jfo
andx, € Jox;%5. Thenthere exists € Jo suchthat, € Joxi°z, and since/a2NJ5? = G,
we get that

80 1

X
JoN le = Gi .
It follows that
g0 x180 _ ~z 1
JE M g0 = G
sinceJ, = J;°, and so
-1 -1
hNJit =G, © .

HoweverJy N J;* = G, by hypothesis, sa‘lgg ! hormalizesG,,. We can therefore take

g = goz, Which normalizesG,,, and alsa/ = J£% = J5 = Jp andJox] = Jox{% =

J2x5°z, which containsc.

https://doi.org/10.1112/5146115700000005X Published online by Carfbridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Conversely, suppose that there exist®rmalizingG,, such that/, = Jf andx; € szf.
If we can show thatJ,, x2) is a solution pair, then it will immediately follow that it is
equivalent ta(J1, x1) by takinggo = g in the definition of equivalence.

So it suffices to prove thak N 15‘2 = G,. We have

nnit =68’

since(Jy, x1) is a solution pair ang normalizesG,,. Now

xg
JoN le =G,
and so
JNJ2 =G,

sincex; € Jox;. O

Corollary 3.5. SupposéJi, x1) and(Jz, x2) are equwalentsoluuon pairs, and thak;, x1)
is also a solution pair, wherdy > J;. Then there existd, > J» such that(Ja, x») is a
solution pair that is equivalent ta/, x1).

Proof. By Theorem3.4there existg € Ng(G,,) such that/; = J; andx; € Jox§. Let

J» = J{. ThenJ, contains/, and so the result now follows from a second application of
Theorem3.4. O

This means that not only can we safely discard one of a pair of equivalent solutions
the output, we actually need to process only one of any pair of equivalent solutions wh
looking for solutions containing ones that have already been found. This is very importar
and will reduce the workload of the algorithm considerably (even though it will probably
not reduce its overall worst-case complexity).

There now follow two results, which between them characterize the equivalence ¢
solutions in a more practical way.

Proposition 3.6. Let (J, x1) be a solution pair. Ifx; € Jx1G,, then(J, x2) is a solution
pair and is equivalent t@J, x1).

Proof. There existg € G, such thatv; € Jx1g. ThenJ$8 = J asG, < J andef =
Jx1g, and so the result follows by Theoresm. O

Itis natural to define a set of pairs whose elements correspond to collections of equivale
solution pairs that are closely related as in ProposiBid@n

={(J, JxG,) | (J, x) is a solution pair}.
Each elementJ, JxG,,) of X satisfies the condition that for every € JxG,,, the pair
(J, x") is a solution pair equivalent t@/, x).
Proposition 3.7. The normalizetN = N¢(G,,) acts onX by conjugation:
(J,JxG,)8 = (J8,J8x8G,) forall g e Nand all(J, JxG,) € X.

The kernel of this action containg,, and so the action induces an action of the quotient
N/G,.

The orbits of this action are the equivalence classes under the equivalence relation
Definition 3.1, in the sense that solution pait$:, x1) and (J2, x2) are equivalent if and
only if the orbit of N on X that containg(J1, J1x1G,,) also containg Jz, J2x2G,).

https://doi.org/10.1112/5146115700000005X Published online by Car@oridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Proof. Observe that the sg¥x8G,, is simply the image of the sétxG,, under the action
of conjugation of elements @f by g, sinceg normalizesG,,, and it follows that the image
J8x8G,, is not dependent on the choicexofThe imagegJé, J8x8G,,) lies in X whenever
(J, JxG,,) does, by Theorerd.4. The mapping defined above is an action since it is derivec
from the action ofV on G by conjugation.

If g € Gy, thenJ¢ = J asG, < J, andJ8x8G, = g 1JxGng = JxG,,, for
all solution pairs(J, x), so G, lies in the kernel of the action aV on X. Finally the
characterization of orbits in terms of equivalence is a consequence of Th8otend
Definition 3.1. O

Corollary 3.8. Suppose there existss N suchthat, € waf G, fortwo elementsy, x»

—1 -1
of G. If one of (G, Gi}), x1) and ((G, G2), x2) is a solution pair, then the other is
as well, and they are equivalent.
-1 -t
Proof. Let J; = (G, Go) fori = 1,2, 1f xo € G,x{ G, thenxy € G,x§ G, and
vice-versa, so without loss we may assume thiat J1x1G,,) lies in X. We have gl €
-1 -1 -1 -1 -1

Gog tx;tgh for someh € G, S0G,? = G}t * Thent, = (G Gl yeh =
th but ash € J7, we getJo = J£. By Proposition3.7, therefore,X contains the pair

(J2, J2x5G,) and sinceG,x{G., € Jox{G,, it follows that(J2, x2) is a solution pair, and
that it is equivalent t@Jy, x1). O

This corollary is even more helpful than previous results on equivalence; rather the
merely enabling us to discard solutions after considering them, it significantly reduces tl
number of elements that we need to consider to start with.

4. High-level algorithm

We present a high-level version of the algorithm for Specificati@{an algorithm for
Specificatiorl.1can be easily deduced). Discussion of how this procedure is to be converte
into a practical procedure with reasonable asymptotic complexity is deferred until the ne
section.

The algorithm is in two parts, a main procedure (Algorithr on page9) and a sub-
routine, calledAdd (Algorithm 4.2 on page9). Instead of a recursive approach (as in Algo-
rithm 2.5), we store solutions awaiting processing in a list of pair§he purpose of the
subroutineAdd is to updatel. by adding newly discovered solutions, and to find and filter
out solutions that are equivalent to previously discovered solutions. Much of the remaind
of the algorithm is similar to the corresponding parts of Algorithrs.

Each entry of_ is a pair(J, X) such that the solution pairs to be processed &re) for
eachx € X. They are stored i in increasing order of the size df, and each subgroup
J will be the subject of at most one entry In(although that entry will move withird,
eventually working its way to the head of the list). We always process the first entry il
L, thus ensuring that the smallest outstanding subgroup is processed. This means tha
subgroup will ever need to be processed twice, since whenever a new solution that w
need processing is produced, the subgroup in that solution is always strictly larger than 1
subgroup currently being processed.

As in Algorithm 2.5, processing a set of solutioq, X) involves finding all minimal
overgroups/ of J (i.e., all subgroups that have/ as a maximal subgroup) and for each

https://doi.org/10.1112/5146115700000005X Published online by Canfbridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

suchJ and each € X, checking whethey N J* = G,,. For each/ for which there exists
x satisfying this condition, the pai/, X) is added td. in an appropriate place according
to the size of/. HereX is the subset ok of elements: for which J N J* = G,,.

The purpose of the subroutireld is to ensure that only one representative from each
equivalence class (under the relation of Definitdoh) is actually added tb. It also ensures
that only one subgroup from eaéfrconjugacy class of subgroups is used, thus reducing
the number of subgroupsfor which the set of minimal overgroups must be calculated.

Those set$J, X) of solutions which, according to the description in the previous para-
graph, are to be added o are in fact passed to this subroutine. For each solution pair
(J, x), one of three things can happen.

(i) It can be entered as a new entry irto

(ii) Itcan be conjugated to give an equivalent solutigh, x’) whereJ’ already appears
in L, though no solution equivalent td’, x) yet appears in that entry (or anywhere
else); thent’ is added to the second component of the current entry contaiing

(iii) It may be decided thatJ/, x) is equivalent to a solution already iy and so it is not
added.

The first few lines of Algorithm4.1 use the results of Corollar3.8to restrict the number
of x with which to start, and then initiate the process by forming and testing the subgrouy
(G, ij;l), and adding those that pass the tedttAgain the proceduradd is used for this
because Corollarg.8 does not pick up every equivalence between solutions of this form:
also, we need to check for conjugacy between the subgroups of non-equivalent solutior
The subroutiné\dd (Algorithm 4.2) takes a paiftJ, X) to add toL, as described above.
It starts by identifying those entrigg’, X’) in L for which J’ has the same size ds and
then decides which, if any, has conjugate ta/ by an element of the normalizéf. Note
that by construction of., there will be at most one such entry. The entry.|$]; if none
were found then a new entry i is created with/ as subgroup, immediately after all the
other entries i, whose subgroups have the same sizé .a<hough the entry is created
with an empty second componentXif# ¢ (as is always the case whedd is called) then
this second component can be guaranteed not to be empty at the end of the subroutine.
The second part of the subroutine handles the elemeiis\ée know that any solution
in L that is equivalent to a solution iy, X) must be in the entry [i] = (J', X'). Let Y
denote the subset 6¢ consisting of pairs whose first component/is Then the stabilizer
N, of N/G, in its action onX acts onY. Each orbit ofN /G, on X that contains a pair
(J', x) containingJ’ obviously meetsy, and the intersection of such an orbit withis
precisely the orbit ofJ’, x) undern,..
The setX is then the set of equivalence classes of the relatio& dmat relatesc and
y if and only if (J/, J/'xG,) and(J’, J'yG,) are in the sam&',,-orbit. Thus, solutions
(J',x) and (J', y) are equivalent if and only it andy are in the same member set of
X 1. The setT will be the union of those sets %4 that contain elements df’. As X’ is
enlargedT is expanded correspondingly.
If (J, x)isequivalenttqJ’, x") (forx € X, x’ € X')thensoiqJ$, x8) foranyg € N,
in particular for theg € N chosen in the algorithm, for which$ = J'. But (J', x8) is
equivalent to soméJ’, x’) if and only if x8 € T, by Propositior8.7. Therefore, for each
x € X, we test whether® < T; if not, then(J’, x¢) is an equivalent solution ¢/, x) that
is not equivalent to any solution currently in so x8 is added to the second component of
L[i] andT is updated accordingly.

https://doi.org/10.1112/5146115700000005X Published online by Carfbridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Algorithm 4.1.

1.
2.
3.

4
5
6
7
8
9

10

11

12.

13.

14

15

16

17

18

19

FormN := Ng(G,);

Form®D, the set of double cosets 6%, in G;

LetR be a subset op containing one double coset from each orbihoi its action
on D by conjugation;

. LetX be a subset off containing one element from each double coseRin
. LetL :=1];
. Forx € X do

1

LetJ := (G, GY);
If J N J¥ =G, thenAdd(J, {x}); end if;

. End for;
. WhileL # []do

Let(J, X) := L[1]; removeL[1] from L;
Output(J, X);
Formg :={J < G | J <max J};
ForJ € g do
LetX :={x e X | JNJ" =G,};
If X # ¢ thenAdd(J, X); end if;

. End for;

. End while;

. End.
Algorithm 4.2.

1. Subroutineddd(J, X)

2. Setig to be the smallest positive integer such that #L or the first component
of L[ip] has the same size ds seti; to be the smallest positive integer
such that; > #L or the first component af [i1] has size strictly greater
than that of/;

3. Find the first value of with ig < i < i1 for which there existg € N/G,, such
thatJ’¢ = J, where(J’, X") = L[i]; if none exists then sét:= i1;

4, If i = i1 then insert a new entry/,) into the list L with indexi, shifting all
entries beyond that point up by one,5p + 1] is the oldL[i], etc.;

5 Let(J', X') := L[i];

6 LetNy :={g e N/G, | J'* =J'};

7 Form® := {J'xG,, | x € G};

8. FormZ, whose elements are the orbits)éf in its action by conjugation o;

9. FormxXy := {(J A | 4 € Z};

10 LetT := J{D € X1 | X'N D # 0};

11. Fixg € N such that/¢ = J/;

12. Forx € X do

13. If x8 ¢ T then

14. Addx8 to the second component bfi];
15. Join the element dX;; containingx$ to T';
16. End if;

17. End for;

18. End subroutine.

https://doi.org/10.1112/5146115700000005X Published online by Carfbridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

By this construction, we ensure that no two elements of the set of solytigns) ’
Fi, X)((x € X) A (L[i] = (J, X)))} are equivalent, and that no two subgroups from the
set{J | 3i, X)(L[i] = (J, X))} are conjugate under the action@f

5. Lower-level algorithm

In this section we introduce computationally efficient ways of representing and maniy
ulating the objects required for the above algorithm.

Fora € Q, letr(«) denote a representativem@fthat is,- («) is an element of; mapping
o to «. We will assume that the(w) are stored as words in the elements of a generating
set in a Schreier tree of depth(A Schreier tree, sometimes called a Schreier vector, is an
efficient means of storing a transversal for a point stabilizer in a permutation group withot
storing the permutations explicitly. See [4] for example. If the maximum depth of the tre
is [then the image of ang € Q under anyr(«) can be calculated i@ (/) time, and the
whole permutation («) in O (nl) time.)

There is a one-to-one correspondence between subgroGpsooitainingG, and blocks
of imprimitivity of (G, Q) containingw. Instead of the subgroupswe store the correspond-
ing blockw” . Accordingly, a lot of calculations with blocks will be necessary. We will often
work with a small subsef of 2, and will want to find the smallest block containi§gnd
. Thisiso® whereH = (G, {r(a) | « € S}).

It is easier to calculate the orbits 6f, (which can be done i (sn?logn) time and
O (ns) space using the Schreier generators, or much more quickly and with high probabili
by taking a small random subset of the Schreier generators) than it is to find a sm
generating set foG,. Furthermore, we will need to know the orbits@f, anyway when
we use the algorithm of Schonert and Seré&$4dr calculating minimal blocks in a group
action. We will therefore assume that we know the orbitsGef, but not necessarily a
generating set foG,,. This will save a significant amount of space (and some time), as by
using a Schreier tree we can avoid having to explicitly store any permutation apart from tl
original generators of the group.

The following lemma and proposition show that the usual algorithm for calculating orbit:
given the generators of a group can be adapted to cope with this situation. Note that we
not assume that the orbit to be calculated is a block.

Lemma5.1. Let H = (Hy, Hp, ..., H;). Thenw! is the unique minimal (with respect to
inclusion) subset af?2 that contains» and is a union of;-orbits fori =1, ..., .
Proof. The proof is straightforward, and is omitted here. O

The following proposition will only be applied either with = G, or as part of a se-
quence of applications that start with= G, and gradually extend (see PropositioB.3).

Proposition 5.2. Suppose we are given the orbits of a subgrdwd G in the form of linked
lists, together with an array indexed 3, mapping each element &fto the first element
of the list containing that element. Suppose also that a transvgrga) | a € Q}isgiven,
in the form of a Schreier tree of depthLet 7, S be subsets a, andwg a given element
of Q. The following algorithm will calculata)g’ whereH is the subgroup of2 generated
by the groups/” @ for eacha e T together with the elementgx) for eacha € S. (Note
that if J containsG,, and eitherw € T or § = @, thenH is independent of the choice of
transversal.) The running time @ ((#T + #S)l#wg’), and the space used @n#T).

https://doi.org/10.1112/5146115700000005X Published online by Caf@ridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

1. SetA =@, Q := {wo};

2. While Q # ¢ do

3. Choose& € Q; addé to A and remové from Q;
4, Fora € T do

5. ife/"” ¢ AU Qthen

6. SetQ := QU (") \ A);

7. End if;

8. End for;

9. Fora € S do
10. If£" @ ¢ AU QthensetQ := Q U (" ®}; end if;
11. End for;
12. End while;
13. OutputA;
14. End.

Proof. It is easy to see that after executiak,containswo, is a union ofJ” @ -orbits for
eacha € T and a union ofr («))-orbits for eachw € S, and that it is the smallest such set,
so correctness follows from Lemnaal.

The time bound is obtained by taking care in the implementation. We use an array index
by 2, each of whose entries indicates whether the corresponding elenteiid afmember
of A or Q, so membership oA U Q can be tested in constant time; for each elemefit of
we also maintain an array of flags indexed by the heads of the linked lists representing t
J-orbits; the flag corresponding to an elemerd 7 and a/-orbit A will be set when it has
been shown that the whole af @ is contained inQ U A, that is when lines 5-7 have been
executed for this value of and arg such that” @' ¢ A. This will enable us to decide in
line 5 whether the image undetx) of the J-orbit containingg’(‘”‘r1 has previously been
added toQ; using the data structure described this test can be done in constant time on
we know&” @ Line 5 is executed :##wg times, and a Schreier tree calculation is needed
each time to find"®. Thus all these checks can be made in total toi&#T #w{).

It follows that we only need to do an element-by-element check in lines 5 and 6 onc
for each paire, A wherea € T and A is a J-orbit. Using the linked list structure, the
number of individual element checks made in lines 5 and 6 during the whole execution:
the algorithm is thereforeﬁ#a){;’, and as each check requires a Schreier tree calculation
these also take® (l#T#wé’) time. It is straightforward to see that the same data structure:
allow for the execution of lines 9-11 iﬁ(l#S#a)é{) time, and it is clear that all the other
lines execute within the time bound stated in the proposition. The space bound is clear fr
the use of the data structures described. O

Proposition 5.3. If G, < J < G and the blocko is known, then given the orbits 6f,
on$ and a Schreier tree of depthwe can calculate a subsgt@f’ of size at modbg #w”’
that generates’ as a block containing, in O (I#w’ log #»”) time.

Proof. We will obtain a chain of subgroupg with G, = Jo < J1 < --- < J, = J as
follows. We will haveJg = G, andJi41 = (J;, r(e;)) Wherea; € o’ \ »’i, as long as
this is possible. Each; will be determined by calculating the orbits #fon »’ and then
choosing a suitable point.

The procedure is to use Propositibr repeatedly. For each value gfstarting with
i = 0, several calls will be made, with = {w}, J = J; andS = {¢;}, using various

https://doi.org/10.1112/5146115700000005X Published online by Cafinridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

elements asyg sufficient to find all the orbits of; on w’. Thus we find the orbits of
Ji+1 onw”’; when the orbits of/; ;1 are known we can then choosg 1 and (in O (#0”)
time) process the orbits of 1 to get into a suitable form to be used as input on the next
iteration. O

As mentioned earlier, there is a one-to-one correspondence between subgraups o
containingG,, and blocks of imprimitivity of(G, 2) containingw. Instead of the subgroups
J we store the corresponding bloeK . The manipulations we require with these subgroups
are: conjugation by elements where the resulting subgroup also contaihs, testing
whether the intersectioi N J* is G,,, testing the equality of two such subgroups, and
forming the set of minimal overgroups for a subgrolup

Lemma5.4. Let S € © and letB be the smallest block containirjg} U S. Letg € G.

8
Thenw®® is the smallest set containing which is a union ofG¢,-orbits and which is
closed under the action of the deta)? | o € S}

Proof. We haveG{y, = (G, {r(@)$ | « € S}), and the result follows by Lemntal. [

A suitable setS can be calculated and stored with each block; indeed, the block can b
calculated fromS, the orbits ofG,, and a Schreier tree to obtain the representatives.

This idea of calculating blocks from the orbits@f, and the representatives of one or more
points which, together witl@;,,, generate the stabilizer of the block, is taken from Beals
[2].

Observe that we may apply Propositie2 to calculate the smallest blodk containing
o and a given sef in time O ((#B#S), wherel is the depth of our Schreier tree, and a
one-off cost ofO (n) for setting up the data structure, assuming that we know the orbits o
Gy.

In general, of course, the siétorresponding to the subgroumeeds have size no more
thanlog|J : G|, andsince all our blocks are to be built up by repeated extensions of smalle
blocks with each enlargement being minimal, we will have no difficulty in maintaining this
condition.

Lemma 5.5. Supposd > (G, ij;l). ThenJ NJ* = G, ifand only ifo’ Nw’" = {w}.
Proof. The initial hypothesis giveg N J* > G, and the result is now immediate. [

Since the algorithm arranges that all subgrougder which we want to know whether
JNnJ* =G, contain{G,, Gfo_l), this lemma enables us to perform this test efficiently.

The real advantage of the use of blocks to represent subgroups is the ease with which
can find the block®’ corresponding to the minimal subgroupgontaining the subgroup
J corresponding to a given blocek’. The blocks we require correspond to the minimal
blocks of the action o6& on the block system of translates of the bleck and these can
be found by the extension of an algorithm by Schdnert and SedgsBHeir paper gives a
deterministic algorithm, running i® (/n logn) time (and which runs quickly in practice),
which, given a Schreier tree of deptland the orbits oiG,,, will return all the minimal
blocks of the input action (of degreS.

We will be calling it with various actions a¥ on the sets of translates of different blocks
B of (G, @), so we will need to calculate the action corresponding to the known lBock
taking O (sn) time, and then convert our Schreier tree fbto one for the induced action,
and find the suborbits of the induced action. As we can easily work out the orhitg of

https://doi.org/10.1112/5146115700000005X Published online by CafnBridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

on the translates aB from knowledge of its orbits o2, and we know a sef such that
Gy = (Go, {r(@) | a € S}), we can then apply Propositidn2 to obtain the suborbits in
only O (In#S) time, and using a smaf$l of size at most log B, this works out a®) (In logn)
time. As conversion of the Schreier tree is straightforward to d@ (n) time, we can set
up and make each call to the Schénert—Seress routiogris + [logn)) time.

Observe that finding a small generating set for eatlas a block containing is easy,
given that we know one fap’: simply extend the generating set fof by the addition of
one point fromw” \ w”; this works because of the minimality dfas an overgroup af .

Each elementG,g of N/G, can of course be represented by the peifif and the
Schreier tree can be used to calculate the im.m}feandaeg_1 as required. We can also
represent the group elemenin the solution pairJ, x) by the pointw*, since whenever
(J, x) is a solution pair(J, x) is an equivalent one, for any in G,x, by PropositiorB.6.

6. Implementation and analysis

We consider the implementation of each line in Algorithdnsand4.2in terms of these
representations of our data. We assume that we have a Schreier tree of degqthble,
and that we know the orbits @f,, on 2.

Finding N andN/G,, represented by the set of pointd’ is straightforward because
oV ={o € Q| a% = {a}}, so we take the set of points that are singlefporbits; this
requiresO (n) time.

The setR will be represented by the sgb™ | A € R}; that is, take the image @b
under each of the sets iR (all the sets are unions of cosets@f,). Formation of this
representation involves starting with the orbits(yf and calculating the orbits @ /G,
in its action on this set of orbits. This is a straightforward orbit calculation, except that th
action involved is a little different: fo6,¢g € N/G,, and aG,,-orbit «®> then the image
required is thes ,-orbit containingoflr(a)g; sinceg is represented by$, this means that
three Schreier tree calculations will be necessary to form each image. We also note t
we need a generating set ftf/ G,,, and that if we use the whole of the group then the
calculation will requireO (In|N : G,|) time, whereas if we pre-calculate a subsedf
that generates it as a block containiagnd has size logV : G|, we can do the whole
thing, including the precalculation, i (in log|N : G,|) time. (See Propositios.3for the
precalculation.) The set will appear out of our construction &k, but of course is stored
as a set of points (frorf2), not as a set of group elements.

Note that these calculations assume that we represent the orGijsradt just as a set of
sets but also as a look-up table, indexed by the elemerses with each entry containing
some reference or pointer to the relevant orbit.

Formation of(G,,, Gfufl) requires a straightforward application of PropositioR. The

calculation of the block8 = w9) therefore require® (in) time.

Recall that we need to know not only the blagkbut also a subsetof B of size at most
log #B that generateB as a block containing. This can be calculated either by modifying
the process for calculating, or afterwards, as in Propositi@n3, in timeO (/#B log #B).

By Lemmas5.4 and5.5, conjugating and testing whethemn J_x_: G, can be done
by forming w/" and testing whethes’ N /" = {w}. Forminge’" from o’ requires
O(|J : Gy|log|J : G,|) time, by Propositiors.2. Testing whethep’ Nw’" = {w} can
also be done it (|J : G,|log|J : G,|) time.

https://doi.org/10.1112/5146115700000005X Published online by CafnBridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

This means that the first part of Algorith#nl, up to the start of the main loop, can be
executed im0 (In?logn) time, plusO (n) calls toAdd, since # is O (n). In particular, this
is sufficient to answer the question posed in Specificatidn

Theorem 6.1. Specificatiori.1can be implemented it (In2 log) time andO (sn) space,
given a Schreier tree of deptland the orbits of5,,.

Proof. It suffices to run Algorithmt. 1until the first call toAdd in whichJ > G,,. Since we
stop as soon as a solution, x) is found withJ > G,,, we only need to implememidd, to
handle calls made witli = G,,. This means that no equivalence checking is needed within
Add as equivalent solutions withh = G, will arise from the sameV-conjugacy class of
double cosets dfi, and so will be eliminated in the early lines of Algorithhi. Therefore
Add can be implemented in constant time. We may need one iteration of the main loo
and therefore one call to the Schonert—Seress routine. We may then have to test whe
J N J* =G, afurtherO(n?) times, as there may be up tovalues ofx and up ton — 1
subgroups/.

The spatial bound is easily seen from the discussion preceding the theorem; the ol
point worth commenting on is thdt requires onlyO (n) storage space as it has only one
entry, which stores a block of size 1 aodn) values ofx (which are of course stored as
pointsw” in). O

Peter Neumann has suggested an improvement to this algorithm, which is the subjec
Section8.

Leaving aside the subroutimeld for the moment, the only remaining question about
the implementation and complexity of Algorithénlis how many iterations of the main
loop there will be. This is bounded by the numberMdfconjugacy classes of subgroups
containingG,,, but this can easily be seen to grow exponentially as a function fof
certain classes of groups.§.,elementary abelian groups acting regularly). In what follows
the number of iterations will be denoted K&y, observe that this is bounded linearly by the
size of the output. Thus our complexity analyses will be in terms of the sizes of both th
input and the output, rather than (as is more usual) just the input. Secondly, observe t
in most practical casek is very small, although experiments have been undertaken witt
groups with largek, with successful results. Even thouglka term appears in the final
analysis, this does not appear to be a serious restriction on the practicality of the algorith

There areK calls to the Schénert—Seress algorithm, and at mast: K calls toAdd,
where the: term arises from the calls before the main loop anditkifrom the calls in the
main loop, since there are at mastinimal blocks in any action of degree no more than

We turn now to the implementation of the subroutitdd, Algorithm 4.2. If size in-
formation is calculated and stored with each block as it is constructed, finglisugd i1
requires onlyO (log K) time. To findi we need to calculate a lot of conjugates of blocks;
however in this case the conjugating element®rmalizeG,, and so the conjugate block
! is generated as a block containiagoy the set{w”©* | a € S} whereS generates

J' as a block containing. Therefore we can test whethe?* = o/, whereg € N, by
taking a subse$ of /' that generates it as a block containingand forming the conju-
gate sefw? @3 | @ € S). This set will be a subset @’ if and only if 0/ = o”,
since the two blocks are known to have the same size. Therefore findiag be done
in O((i1 — ig)[|IN : Gy,llog|J : G,]) time if an array indexed by the points & and
indicating membership ab”’ is prepared and used. In the theoretical analigsis ig will
be taken a®) (K), but note that it is normally going to be a small fractionkof

https://doi.org/10.1112/5146115700000005X Published online by Cafipdridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Insertion of a new entry intd requiresO (K) time, but note that this happens on at most
K of the calls toAdd. If L were stored as a linked list, this would take constant time, but
finding ig andi; would beO (K) instead ofO (log K'), and this happens every tindeld is
called. In practice, we could implementby a technique such as hashing, or as an array
of linked lists indexed by the divisors af but K is anticipated to be sufficiently small for
these techniques to be unnecessary. Anyway, we cannot eliminate teem arising from
the search for.

Forming N is a similar process to that of finding and so can be done iQ(/|N :
Gy,llog|J : Gyl time.

Formation ofX; is similar to that ofR in Algorithm 4.1, except that here we start with
the block system of translates®f , then form the orbits of5,, on this system, and then the
orbits of N ;.. Forming the block system can be don&lsn) time; although we will need
this system many times, we do not store it between calsltbas this would unacceptably
increase the storage requirement of the algorithm. Forming the orbits, @ the block
system require® (n) time, as we know the orbits @, on Q2. As before, the orbits oV,
can now be formed i@ (In log #N) time.

Naturally,T is stored as a subset@frather than a set of elements@f Using a suitable
look-up table constructed whil$€; was being formed, we can both forand extend it
as necessary in a total time of no more tl@fx). In doing this we will provide a look-up
table indexed by the elements@fto determine membership @f.

The setX certainly has size at most(n) (usually much less), and so the loop executes
O (n) times. Each execution of the body of the loop (apart from the extensidigakes no
more thanO (/) time for testing the condition in the ‘If’ statement, plus a constant time for
the storage of$. Therefore the total time taken to buildand execute the loop is at worst
O(n(s+11log#N,1)), sothe total time to executeld is atworstO (n(s+1 log #N ;) +KI|N :
Gyllog|J : G,l), whichisO(n(s + Kllogn)).

We conclude this section by giving the overall complexity of the algorithm in terms of
n,s andk.

The first tranche of calls tadd require no more tha® (n?(s + K1 logn)) time (thek
here could be taken &(n) but K can on the whole be expected to be significantly smaller
thann) as there ar® (n) of them.

The calls to the Schonert—Seress routine require at Mmo&t/n logn) time as there
areK of them. The calls ta\dd made from within the main routine require no more than
O(Kn?(s + Kllogn)) time. The remaining parts of the main loop require a total time of
at mostO (K In®logn), since in each iteration of the main loop there are upta?) tests
of the form ‘isJ' N J™* = G,?'.

Itis easyto see fromthe preceding discussion that the spatial requirement of the algorit|
is dominated by the size of the input, whichdssn), and the space needed to stbrevhich
is O(Kn), as each entry can take up@n) space.

We have proved:

Theorem 6.2. Algorithms4.1and4.2can be implemented i@ (K n2(s + (K +n)l logn))
time, andO ((s + K)n) space, provided that th€,, orbits and a Schreier tree of depth
are known in advance. O

We can calculate thé ,-orbits in O (sin?) time, using the Schreier generators &y;,
stored as words in the original generators. In practice, a much faster method would be u:
to approximate the orbits, or we would find the orbits in the process of finding a whol
strong generating set if that were needed for other purposes.

https://doi.org/10.1112/5146115700000005X Published online by Cafbridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Forming a Schreier tree of depth(n) takes justO(sn) time, but more complicated
techniques such as cube-doubling (s&k for example) enable one to construct one of
depth! < 2log#G intime O (n log#G (s +log #G)), which for families of so-called ‘small
base groups’ is better asymptotically. In practice, the stan@&sd) algorithm is used with
a breadth-first search since the possibility of the worst case arising is small, and the de|
is on average much better than(n).

In practice. The algorithm has been implementedsAP [7]. Results to date are pleasing:
groups of degree up to 4000 are handled efficiently on a P200MMX with 32MB RAM
running Linux; the time taken varies considerably, but all the groups tried to date at
handled within a quarter of an hour of CPU time (after the calculation of the suborbits), ar
many much faster. The implementation is to be foundppendix A.

A comparison was made between two programs implementing different versions of tt
algorithm. One implemented the full strength of the definition of equivalence, guaranteeir
that no two solution pairs that it output were equivalent. The other was a simpler algorithi
whose only check to reduce the number of equivalent solutions produced was that it star
off with only one value of from each double coset &f,,; thereafter, the number of solutions
was allowed to grow freely. Not only were there dramatically fewer solutions produced b
the more complicated algorithm (so it in fact produced significantly more information
as the complete sets of solutions can be constructed quickly from representatives of e:
equivalence class of solutions), but in virtually every case where there were solutions
find it was faster by a factor of 2 or more (often very much more than that: in at least on
case there was a speed-up by a factor of about 70), even when there were very few soluti
for either algorithm to find.

7. Self-paired and non-self-paired orbitals

Orbitals fall into two classes: those that contéfn«) for each paii(a, 8) in the orbital,
and those that, for each pdi, 8) in the orbital, do not contain the reversed p@r «).
The former are termesklf-paired, the lattenon-self-paired.

Proposition 7.1. Supposé.J, x) is a solution pair. The corresponding orbitel, Jx)¢ is
self-paired if and only ifJ, x) is equivalent to a solution paif/, y) wherey? € G,,. If
this is the case then € Ng(G,), and, additionally,y can be chosen idx.

Proof. We have(Jx, J) € (J, Jx)©,sothereis € G mapping/ to Jx andJx to J by right
multiplication. In particularJy = Jx, soy € Jx; considering the stabilizers of the action
on cosets of, we getthat/? = J* andJ*’ = J. ThusG,, = (J N J*)’ = JNJ* = G,,.
Also Jy2 = J andJxy? = Jx soy? € J N J* = G,, and(J, y) is a solution pair since
JY = J*¥; itis equivalent ta(/, x) sincey € Jx.

Conversely, if(J, y) is a solution wherg? € G, then the orbitakJ, Jy)¢ must be
self-paired, sincéJ, Jy)’ = (Jy, J). Equivalence of solutions respects whether the cor-
responding orbital is self-paired, as is easily seen from Propogtiin O

Corollary 7.2. If (J,x) and (J, y) are equivalent solution pairs with? € G,, (so the
corresponding orbitals are self-paired) ar@, < J' < J, then(J’, y) is a solution pair
corresponding to a self-paired orbital; if > J and one of J, x) and(J, y) is a solution
pair, then so is the other one; they are equivalent and correspond to a self-paired orbital

https://doi.org/10.1112/5146115700000005X Published online by Cafridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Proof. The first part is immediate from Lemn2a4 and Propositior?.1 (using the fact that
y normalizesG,); the second is immediate from Corolladys and Propositiorr.1. [

This means that if we only wish to recognise self-paired orbitals, we need only look &
pairs(J, x) for whichx € Ng(G,,) andx? € G,,. No solution pair arising ‘above’ such a
pair will ever be non-self-paired, and every self-paired solution arises in this way.

On the other hand, if we only wish to recognise non-self-paired orbitals, we need on|
consider solution pairs that are non-self-paired, as exploring the possible pairs abowve
self-paired solution can only ever yield self-paired solutions. We will, however, expect t
generate self-paired solutions as we proceed, but they can safely be discarded without los
any non-self-paired solutions. However, to do this we need to be able to identify quickl
whether a solution is self-paired.

Lemma 7.3. SupposéJ, y) is a solution pair withy? € G, so by PropositiorY.1,y €
NG(Gy). If y' € Gy, theny? € G, andy’ € Ng(G).

This means that to decide whether a solutidnx) is self-paired, we need only look
at representatives of the elements.dft "Ve(Go): if any of them have squares @, then
(J, x) is self-paired, otherwise it is not self-paired.

8. Improved algorithm for Specificatiah 1

The algorithm in this section was suggested by Peter Neumann as an improvement
the algorithm described in Theore®nl. Its asymptotic complexity is better than that of
Theorem6.1 by a factor ofn (the improvement is fron® (in2logn) to O (In?logn)), but
its practicality has not been tested.

Theorem 8.1. Algorithm 8.2 on pagel8 fulfils Specificatiorl.1and can be implemented
to run in O (In?logn) time andO (sn) space.

Proof. We first show correctness. The first eleven lines of Algorithuhare essentially
the same as the first 9 lines of Algorithnl. As the reader will recall from the proof of
Theorem6.1, and the discussion preceding it, this part of the algorithm finds a solutio
(J, x) wherex does not normaliz€&,,, if one exists. If no such solution exists, then, as in
the earlier algorithm, we may restrict our search to péirsc) whereJ containsG,, as
a maximal subgroup and € X N N (note thatN = Ng(G,,) from the first line of the
algorithm). The algorithm for Theoref1checked every one of these pairs; in the present
case we analyse the situation a little more closely and eliminate some of the search.

If there is a solution with/ < N, then a minimal such solutio¢/, x) with J > G,
will correspond under the natural map to a subgroupy o6, of prime order, which is not
normalized byr; moreover, any non-normal subgroupf G, of prime order must yield
a solution in this way, as its intersection with a non-trivial conjugate must be trivial.

If there is no solution (other thai,,) with J < N, then by Lemma&.4, any solution
(J,x) must have/ N N = G,,. If J is minimal with respect to properly containir@,,,

—1 . .
thenJ = (G, G,,) foranyy € J \ G, since suchy cannot normaliz&,,. So we can
restrict our search to groupsof this form; observe that if two elemengsare in the same

coset ofN then they generate the same subgrodp, G, l). Thus the outer loop in the
last section of the algorithm (lindsBto 26) loops over sufficiently many subgroups$o be
sure of finding a solution if one exists. The inner loop checks sufficiently many possibilitie
for x for each subgroug.

https://doi.org/10.1112/5146115700000005X Published online by Caflnridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Algorithm 8.2.

1. FormN := Ng(G);
2. Form®, the set of double cosets 6f, in G;
3. LetR be a subset aD containing one double coset from each orbidoih its action
on D by conjugation;
. LetX be a subset of; containing one element from each double coseRin
. Forx e X\ N do
LetJ := (Go, G5);
If J N J* =G, then
Output(J, x);
Exit;
10. End if;
11. End for;
12. If N/G, contains a non-normal subgrotipof prime order then
13. LetJ be the inverse image of in N;
14. Chooser € N suchthatr* # Y in N/G,;
15. Output(J, x);

©Cc®~No oA

16. Exit;

17. Else

18. Fory in a set of coset representatives /6iin G do
19. Let/ := (Gu, G))
20. Forx e XN N do

21. IfJNJ*=G,then
22. Output(J, x);

23. Exit;

24. End if;

25. End for;

26. End for;

27. End if;

28. OutputFALSE;

29. End.

We now consider the complexity of the algorithm. It was shown earlier that the first looj
runs in O (In?logn) time. The groupQ = N/G,, has sizeO(n), and so we can find a
generating set (stored as elements of the blgkof size at most log in O (In logn) time
(Propositions.3). We can find the prime subgroups®@fin O (In logn) time (for example
using the Schonert—Seress method).

We claim that testing the prime subgroups for normalit@ican be done i (/n logn)
time. We do this by conjugating a generator of each subgroup by each member of agenera
set forQ in turn, and deciding whether the conjugate lies in the subgroup that we starte
with. The conjugation can be donedn(n logn) time as there ar@® (n) subgroups and so
O (nlogn) conjugates to form, each one takifg/) time (elements 0P being represented
as elements of the bloek", so group operations with them require a Schreier tree). The
membership testing can be donediin logn) time. This is because for a subgroup of size
k, the membership testing takes at méstlogn time (faster if a binary search is used) for

https://doi.org/10.1112/5146115700000005X Published online by Cafn8ridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

some constant, independent of the choice of subgroup, as there are at mosttésys,
each taking a tim&€k. As prime subgroups af intersect trivially, the sum of the sizés

of all the subgroups in question is at moat 80 summing over all prime subgroups gives
a bound ofCr logn, that is,O (nlogn).

Finally if there are no non-normal prime subgroupglfve pass into the nested loops at
the end. Each iteration of the inner loop takegrn logn) time. There aréG : N| elements
yto consider, and for each one, at ma@ét: G| elements, so the total number of iterations
of the inner loop is at MosG : G, |. Thus the nested loops run @(In? logn) time.

The bound on the space used comes from the size of the input and the data structt
used; the only tricky issue is the generating set@rbut this is stored as a subset of the
block w?, so in fact causes no problems. O

9. Actions on unordered pairs

In the remaining sections we shall consider the problem: is there an algorithm whic
given a permutation grouf, ©2) as input can tell if there exists an action@fon a sef”
such that? is G-isomorphic to an orbit o& onT't? (the set of unordered pairs of distinct
elements of")? Thus, if we replac&? by '@ in that last sentence, we get the problem
of recognition of actions on orbitals that we have up to now been considering. Formally w
have two more specifications:

Specification 9.1.

Input Permutations, ... gs € Sym(2) generating a transitive permutation grodpon
Q.

Output An action(G, I') with #I" < #Q and an orbit{a, }¢ < I'? (with #) in the
action of G on unordered pairs of elements Bf such that(G, Q) is isomorphic to
the action ofG on{«, B}°, or the information that no such action and orbit exist.

Specification 9.2.

Input Permutations, ... gs € Sym(£2) generating a transitive permutation grodpon
Q.

Output The set of allessentially differentpairs, where each pair consists of an action
(G,) with#I' < #Q and an orbit{e, 8}¢ (witha #) of G on unordered pairs of
elements of" such that(G, Q) is isomorphic to the action @ on («, 8)°.

In Definition 10.3, we define a formal notion of equivalence of solutions, which enable:
us to give a precise meaning to the notion of ‘essentially different’ in this specification.

We rule out the pathological case whelé # #, as to recognise this requires different
techniques, and it is not thought likely to be of interest. Note that in this cBse 2#Q
andQ corresponds to a block system(ii, I") with blocks of size 2. The action induced on
this block system may not be faithful, and so there may be larger groupstiiaat have
systems of blocks of size 2 that are isomorphi€taHowever, givenG, ©2) we can find
every action(G, I') with a system of blocks of size 2 that is isomorphictosimply by
finding all the subgroups af,, of index 2. The action on the cosets of any such subgroup
clearly has such a block system, and all actions with such block systems arise this way.

Lemma 9.3. SupposdG, I') is a transitive permutation group, and th&tis an orbit in
the action ofG on ", such thattQ > #I". Then

https://doi.org/10.1112/5146115700000005X Published online by Cafn®ridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

(i) foranya € T, there exisi, y € I' such thatw, 8, y are all distinct and such that
{a, B} and{a, v} both lie in2; and

(i) G acts faithfully on€2.

Proof. By transitivity, it suffices to prove the first part for just onec I'. But if each
element ofl” appears in no more than one of the pairQithen #2 < #I"/2, so there must
be at least one elememtappearing in more than one pairdn

The second part now follows, for suppoge G fixes every pair irR2. Then for every
a € T, there are at least two distinct pajis 8} and{«, y} fixed by g, and sog must fix
a. The result follows, sincé& acts faithfully onl". O

10. Solutions and equivalence for the unordered pair problem
Fixw e Q.

Definition 10.1. A solution pair for the unordered pair problem i@, 2) is a pair(J, x)
whereJ < G andx € G such that the setwise stabilizer (in the action(hy right
multiplication) of the paifJ, Jx} of cosets of/ is G,,.

Proposition 10.2. Let (J, x) be a solution to the unordered pair problem f@r, 2). Let
H be the stabilizer irG of the ordered pai(J, Jx), SoH = J N J*. Then eitheiH = G,
or|G,: Hl=2andforally € G, \ H, we haveJ, Jx)” = (Jx, J).

Proof. CertainlyH < G, andG,/H embeds in the symmetric group on two points. The
result follows. O

Solutions wheréG,, : H| = 1 will be said to be ofndex 1 typesimilarly those where
|Gy : H| = 2 will be said to be ofndex 2 type.

Definition 10.3. Suppose(J1, x1) and (Jz2, x2) are solution pairs for the unordered pair
problem for(G, ©2). We say they are equivalent precisely when there exists G such
thatJ, = J£° andx; lies in eitherJox$°J; or Jo(xy 1)U,

Proposition 10.4. Solution pairs(J1, x1) and (J2, x2) for the unordered pair problem for
(G, Q) are equivalent if and only if there exists@-isomorphismp : cos(G : J1) —
cos(G: Jo) such that({J1, J1x1}9)0 = {J, Jox2}C. If they are equivalent then they have
the same index type (as defined above), and if they are equivalent and of index 2 type i
there existgo € G such that/, = J;° andxz € Jox{%5.

Proof. Suppose first that is as described. Thehmaps some coseh g of J1 to J,, and
asf is aG-isomorphism, we gelf = J2. Now the other condition oé gives us that

{J1, Jix1}0 = {J2g', Jox2g'}

for someg’ € G, and now either (iy16 = Jog’ andJix10 = Joxog', S0 ¢ € Jog~ ! and
Jog'x1 = Joxag' whencexs € ng_lxngz, or (i) J10 = Jox2g’ and J1x10 = Jog’, SO
g € Jog~txiandJog ! = Joxog’, whencers € ng_lxl_lgjg.

Conversely, if/{° = Joandx; € szfOJZUJz(xl_l)gOJQ thenthe map : Jix — ngglx
is aG-isomorphism, which is readily seen to have the desired property.

Now suppose that exists as described above. Then the stabilizer of the ordered pa
(J1, J1x1) is a conjugate of that of the ordered pailp, J2x2), and so they have the same

https://doi.org/10.1112/5146115700000005X Published online by Cag@ridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

size. Finally suppose these stabilizers have index@,jnso there iy € G, \ (J2N Jg‘z).
If case (ii) above arises then in fact we hal® = Joyg’ and Jix10 = Joxoyg' since
Joy = Joxp and Joxay = Jo, and thenyg’ € Jog~! and Joyg'x1 = Jaxoyg’, whence
x2 € Jog~1x1gJ> as required. O

Note that the stabilizers of the ordered pdirs, J1x1) and(J2, Jox2) may be different
even if the solutions are equivalent as unordered pair solutions.

The index 1 case is essentially a search for non-self-paired solutions to the order
pair problem for(G, 2), except that each solutiqiy, x) is now considered equivalent to
the reverse solutior(,/, x~1). Recall that such a definition of equivalence was the subject
of Remark3.3. As checking for this extended form of equivalence is difficult (although
analogues do exist for most of the results on equivalence), the simplest way to check
this case is to run a search for non-self-paired orbitals as described in the preceding sect
and throw away half the solutions.

We now prove a version of Theored for the unordered pair case, index 2 type.

Theorem 10.5. Let (J1, x1) be an unordered pair solution of ind@type, let/> < G and
x2 € GandletH; = J; N Jl.x" fori = 1,2. Then(J2, x2) is an unordered pair solution
that is equivalent t@Jy, x1) if and only if there existg € Ng(G,,) such that/, = Jf and
x2 € Jox}; furthermore if that is the case thefl, = H.

Proof. Supposd.J, x2) is an unordered pair solution, equivalenit, x1), SO b = Jfo
andxz € Jox{%o for somego € G. Choosez € Jp such thatry € Jox{°z. ThenG,,
is the stabilizer of{J2, Jox2}, and so of{Jo, Jox1{°z} and of {J2, Jox{°}*. The mapd :
cos(G: J1) — cos(G: Jo) given byf : Jix +—> Jggglx is a G-isomorphism, sa, is
also the stabilizer of J1g0, J1x1g0}*. ThusG,, is is the stabilizer of bottJ1, J1x1} and
{J1, J1x1}8%¢, and so is nhormalized by whereg = goz. Furthermore,lf =J; = J2and

8
Jox§ = Joz~1x§°z which contains;; asz~t € Jp. Finally, Ho = Jo N Jy2 = Jo N Jyt =
JPnut = Hf.

Conversely supposé, = Jf andxy € ngf, where g normalizesG,,. It is clear
from Definition 10.3 that if (J2, x2) is an unordered pair solution then it is equivalent
to (J1, x1); we show that it is such a solution. Nai, is the stabilizer of J1, J1x1} and so
of {J1g, Jix1g}. As before the magix — Jog Ixis aG-isomorphism, s@;,, is also the
stabilizer of{J2, Jox{}, and ast> € Jox3, it follows thatG,, is the stabilizer of J2, Jox2},
as required. O

Corollary 10.6. If H; and H» are subgroups of5,, of index2 and Hf = H> where
g € Ng(G,), then to every solutiof/1, x1) with J1 N Jfl = Hj there is an equivalent one
(J2, x2) with Jo N ng = H>.

Proof. By Theorem10.5, we can také, = J5 andx = x. O

Proposition 10.7. Fix H < G, of index 2. There is a one-to-one correspondence betweet
equivalence classes of solutiofis x) of the unordered pair problem wheren J* = H

and the equivalence classes of solutigrisx) of the ordered pair problem for the action
of G on cosets o (with w taken as the trivial cosell), with the added restriction that
xeGy\H.

https://doi.org/10.1112/5146115700000005X Published online by Caghfbridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Proof. The correspondence is the obvious one: a solutiow) of the ordered pair problem
for cos(G : H) with x € G, \ H hasJ N J* = H and the stabilizer ofJ, Jx} is
(H,x) = G, S0 (J, x) is a solution of the unordered pair problem withn J* = H.

To see that the correspondence between equivalence classes goes the other way, note
if (J, x) is a solution of the unordered pair problem witn J* = H andy € G, \ H
then(Jy, Jxy) = (Jx, J) soy € Jx and thugJ, y) is equivalent (as unordered solution)
to (J, x). Finally note that the correspondence respects equivalence of solutions: this
immediate from Definition8.1and10.3and Propositiori0.4. O

It follows that a suitable algorithm to handle the index 2 case is to find the subgroug
of G, of index 2 and then, for one subgroup from eachN¢g(G,,)-conjugacy class of
such subgroups, form the action on cosetgfoénd run the algorithm described earlier,
restricting to the special case where we only consider one valugtaken fromG,, \ H.

(By Proposition3.6, we need consider only one elemeritom G,, \ H.)

Observe that the algorithm of Sectidsometimes conjugates a solution by an element
of Ng(H) to reduce the number of calls to the Schénert—Seress routine, and (since t
conjugating element may not normali@g, in the present situation) this can lead to a value
of x notfromG,, \ H appearing. This is not a problem as it can be proved that the algorithn
is still restricted to ordered pair solutiorig, x) that are equivalent to a solutiga’, x”)
wherex’ € G, \ H, so all that is necessary is to conjugate the solution back to one wher
x liesinG,, \ H at the end of the algorithm. Alternatively, one can restrict to conjugating
by elements oiNg (G,,) N Ng(H), but this may lead to extra calls to the Schénert—Seress
routine.

11. Subgroups of indeRin G,,

It remains to find the subgroup$ that should be tested in this way from amongst the
(possibly exponentially many) subgroups@f, of index 2.

Assumew = {«, B}. Under the condition that@® > #I" that we imposed earlier, we
know (by Lemmad.3) that there is a poit’ = {«, y} € Q2. ThenG,, v = Gugy < Gag-
We cannot easily identify a suitable poiat, but nevertheless we see tHG¢ g contains
G, . foratleast one’ € Q.

Proposition 11.1. Suppos&;,, hask orbits on2, and#Q = n. Then there are at most
n — k subgroupsH of index2 in G,, for which there existae’ € Q such thatd > G, ..

Proof. Letw’ € Q. Let A be the intersection of the subgroups®j of index 2 that contain
G,.«- ThenA < G,, and the quotient is an elementary abelian 2-group, of size at mos
|Go : Gy.o|- The number of subgroups of index 2 in a finite elementary abelian 2-group i
one less than the size of the group. Also note that the subgroups of ind€ Ziontaining

G, foranye” in the sames ,-orbit ase’ are the same as those contain@ig, since they

are all normal inG,,. Therefore, for each orbX of G, on 2, there are at mostX¥ — 1
subgroups of index 2 i, containing the point-wise stabilizer af and any point inX.

The result follows by summing over all ,-orbits. O

Lemma 11.2. Suppose” = «'¢ for someg € N = Ng(Gy). If Gy v < H < G,, for

some subgroup/ of index2 in G, thenG,, .y < HE ' < G, and H¢ " also has inde®
in Gg.

https://doi.org/10.1112/5146115700000005X Published online by CaghBridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Proof. We haveG,, . = G,NG?,, and sincg normalizesG, this equalszs, NG, and
so

Goow' = Gf;)w,.
The result follows. O

By Corollary 10.6, this means that once we have considered all subgroups of index 2
G, that containG,, ., we do not need to consider the subgroups of index 2 that contair
G, .. for anyw” in the sameV-orbit as«’, as the only solutions they can yield will be
equivalent to ones we have already found.

The subgroupt of G, in the proof of Propositiod 1.1is the product oGi (the group
generated by the squares of all element§ gf which is also the intersection of the index 2
subgroups ot5,,) andG,, . .

Lemma 11.3. The subgroupd = Gw,w/Gf) is equal toB, the normal closure ifG,, of
(G ir(@)? | @ € A}), whereA is the G,,-orbit containinge’, andr («) is an element
of G, mappinge’ to «.

Proof. ClearlyG,, ., < B < A. Suppose for a contradiction thBt < A. It follows that
there isg € G, such thatg2 ¢ B. We can writeg = hr(a) = r(a)h’ for somer(a) and
someh, i’ € B (by normality of B), sog? = hr(a)?h’ lies in B if and only if r(«)? does;
this is a contradiction, sincB contains-(«)2, and we conclude that = A. O

We construct no#t but the block (in the action af) »’4. We first construct the block
o' whereH = (G, {r(a)? | a € A}) using standard techniques, then close it under
conjugation by the elements of a transversal for iGig. We do this by constructing the
block system of translates af ¥ under the action o0& ,,, and looking for a block in this
block system that is not fixed by the action#f if none exists the! is normal; otherwise,
we say(w'H)¢ is not fixed byH . That means tha¢ " does not fixo'?, and ifh € H does
not fix (w'")8 thenghg™t € H \ H. We find such an element, add it i, recalculate
«'" and repeat the whole process until all orbitsbn its action on the translates of
by elements ot5,, are singletons. Of coursé] can only be so extended logwtimes.

If we know a generating set fa%,, ., in its action onA of size O (#A) (for example
through a Sims-style base and strong generating set calculation, and a base-change if |
essary) then this process runs in tif€ (#A)? log #A) wherel is the depth of a Schreier
tree, since it can all be done within the action inducediyon A. Therefore the total time
needed to find/4 for eachG,,-orbit A (or all those for which itis needed; see Lemiria2)
is at mostO (In?logn). By [3], the base-change can be done deterministicallg in?)
time andO (n?) space (note that we only need a cyclic base-change). Alternatively, if we ar
working with so-called small-base groups (groups with a base of@i#eg° n) for some
constante, so log#5 is O(log°™!n)), the base-change can be executed in deterministic
nearly linear time and space using a result statefllirahd by [1] a strong generating set of
size O (log? #G) can be found in Monte-Carlo nearly linear time, so the whole procedure
runs in nearly linear time and space.

12. Algorithmic results

Algorithm 12.1is designed to test wheth@®, 2) is isomorphic to an orbit on unordered
pairs of an actioniG, I'") of G.

https://doi.org/10.1112/5146115700000005X Published online by CaghBridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Algorithm 12.1.

1. Use an adaptation of Algorithmsland4.2to decide whether there is a solution pair
(J, x) corresponding to a non-self-paired orbital; if so the ofBit/x}¢ is as

required;
2. SetB = 0;
3. For eachiv-orbit A (whereN = Ng(G,,)) with #A > 1 do
4, Choosey’ € A;
5. Forme'4, whereA = G2G,, .; this is a block in the action of, on A;
6. Add to the setB those blocks in the action &, on translates of,y’4 whose
stabilizer has index 2 i7,;
7. End for;

8. Form the blocks inB into equivalence classes corresponding to the actia¥ by
conjugation on the stabilizers of the blocks (note that this will identify any
pairs of blocks inB that have the same stabilizer);

9. For each of these equivalence classes choose a represefBtétdra the class and

do
10. Form the action of; on cosets of the stabilizéf of B;
11. Letx € G, \ H;
12. Use Algorithmst.1 and 4.2 on the action ofG on cosets of, restricting the

search to just this one value of if (J, x) is a solution pair then the orbit
{J, Jx}C is as required;

13. End for;

14. End.

Correctness follows immediately from the discussion above (using the corresponder
between blocks of imprimitivity containing a poimtand subgroups containirgg,). Notice
that the purpose of forming equivalence classes of the blocsigto ensure that none of
the solutions produced are equivalent, and also to reduce the number of calls to the orde
pair algorithm; at the same time we eliminate duplicates, where different blockhigve
the same stabilizer. This step can be implemented by finding generators for the stabilizer
each block inB, and conjugating them as appropriate; membership testing in the stabilize
can of course be done by observing whether the element leaves the corresponding bl
invariant. Asymptotically this step is quite expensive: there@(e) elements ofB, each
with O (n) generators (depending on how many generators we hav@ fdfrom which
Schreier generators can be constructed) or for the vafigus, which can be extended).
There areD (n) conjugates of each stabilizer, and each one has to be checked a@@inst
other blocks. Thus the complexity of this stag®@ié:*). However the stage can be omitted,
or replaced with a cheaper stage to simply remove duplicate subgroups; this will certainly |
possible if only one solution is required, or if it is not important that all solutions producec
are pairwise inequivalent. In practice, however, there may well be use for this step as t
cost of processing each subgroup of index 2 is high.

Finding subgroups of index 2 from the action on translates’éfshould present no
difficulty since this action is the regular action of an elementary abelian 2-group, and it
merely a matter of finding a basis and writing down generators for each block of index
in this action in terms of the basis. If we can show that this can be done inQithéog k)

https://doi.org/10.1112/5146115700000005X Published online by Cagridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

wherek is the number of blocks found, then doing this for all #ié previously calculated
will take O (nlogn) time.

A basis is simply a generating set without redundancies and has sikedodinding
one inO(klogk) time presents no problems. To write down generators for each subgrou
of index 2 is best done by recursion over the length of the basis. If'the Rsubgroups
of index 2 of the elementary abelian 2-grotpgenerated by basis elements. . ., b, are
Hy, ..., Hr_1thenthe 2t1 — 1 subgroups of index 2 of the elementary abelian 2-group
H generated by basis elememis ..., b,, b, .1 are the grougbs, ..., b,), and for each
H;,the groups H;, b, 1) and({H;, x;b, 1) wherex; is an element ol \ H;. The recursive
algorithm should store a suitablewith the generators for eadts;. Theith recursive step
takes time proportional ta2' — 1) since it involves writing dowrn generators for each of
2/ — 1 subgroups. Thus the whole process taiek log k) time.

Finding the action on cosets of a subgrolipof index 2 can be done efficiently by
forming an action on the Cartesian prodertx {0, 1}; if ¢ € G and(a, z) € Q2 x {0, 1}
then(a, z)¢ = (a8, 7') wherez’ = zif B"@er@)™ — g and;’ = 1— 7 otherwise. Her@
is the block (under the action ©f,,) whose stabilizer is the desired subgratlipf index 2.
This will take O(sin) time for each action formed.

It remains to consider the complexity of each call to the ordered pair algorithm. W
consider the version of this algorithm in which the normaliXeof the stabilizerH of one
point in the action on which the procedure is called is replaced by its intersection with th
normalizer ofG,,; by Theoreni 0.5this leads to the correct notion of equivalence (given that
H is fixed when we call this algorithm). In this version, if a solutidhx) hasx € G, \ H,
then no conjugaté/é, x8) by an elemeng € N of this solution has® ¢ G, \ H, as that
cosetis fixed under conjugation by, That means that every entry intchas the same value
of x, and there is no need at all to build the gein Algorithm 4.2. Thus the complexity
of the call to Algorithm4.1is reduced tCD(nzKlzl logn), whereK is the length of the
output of that call to Algorithmi.1. The time needed for all the calls to AlgorithirLin
the ‘index 2’ part of the algorithm is therefore at mast?K 21 logn), wherek is now the
size of the output of Algorithni2.1.

The spatial requirements of this process are dominated by the input and the requireme
of the ordered pair algorithm, except possibly for the demands of whatever algorithmis us
to perform the base-change. To enable us to give a precise result, we shall assume tha
cyclic base-change algorithm of [3] is used, with a space requirementof).

Theorem 12.2. Specificatiord.2 can be implemented by an algorithm that runs in time at
mostO (n* + Kn?(s + (K + n)llogn)) time, if a base and strong generating set and a
Schreier tree of depthare known in advance. Herg is the number of distinct actions
returned, and is the original number of generators given f@s, 2). The algorithm uses
O(n(n+ s+ K)) space.

Proof. By the preceding discussion and Theorém. O
We turn now to the situation of Specificati®ril, where only one solution is required.

Theorem 12.3. Specificatiord.1 can be implemented by an algorithm that runs in time at
mostO (Inlogn) time andO (n(n + s)) space, if a base and strong generating set and a
Schreier tree of depthare known in advance.

Proof. There areO(n) calls to the algorithm of Theore® 1, corresponding to th@ (n)
relevant subgroups af,, of index 2. However each call requires ordyin?logn) time

https://doi.org/10.1112/5146115700000005X Published online by Cagbridge University Press

https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

as there is only one value ofto consider. The first call, where a non-self-paired solution
is sought, also takes onl§ (In?logn) time, as there is no need to enter the main loop of
Algorithm 4.1 to find a smallest non-self-paired solution. O

In practice. This algorithm has also been implemented, and again, practical results a
encouraging, handling groups of a similar size as the implementation of the algorithm f
recognising actions on orbitals, and in similar lengths of time. A implementations
are available irAppendix A.

Acknowledgements.l am grateful to my supervisor, Peter Neumann, for suggesting that

study algorithms in this area, for much helpful advice whilst | was working on this papel

and for suggesting the algorithm of Sect®whilst reading an early draft. | am grateful to

Robert Beals for a helpful discussion, out of which many of the ideas in this paper develope
My doctoral research was supported by the EPSRC.

Appendix A. GAP code for implementing the algorithm

This appendix is available to subscribers to the journal at:
http://mww.Ims.ac.uk/jcm/2/lms98006/appendixa/.

References

1. L. BaBaIl, G. CoOPERMAN, L. FINKELSTEIN and A. SErEss, ‘Nearly linear time algo-
rithms for permutation groups with a small base’, Proceedings 1991 ACM Internation:
Symposium on Symbolic and Algebraic Computation (1991) 200-2@923

2. R. Bravs, ‘Computing blocks of imprimitivity for small-base groups in nearly linear
time’, Groups and Computatio®IMACS Ser. Discrete Math. Theoret. Comput. Sci.
11 (ed. L. Finkelstein and W. M. Kantor, Amer. Math. Soc., Providence, RI, 1993
17-26.12

3. CyNTHIA A. BROWN, LARRY FINKELSTEIN andPAauL W. PurDoM, ‘A new base change
algorithm for permutation groupsSIAM J. Computl8 (1989) 1037-104723,25

4. GRrEGORY BUTLER, Fundamental algorithms for permutation groups, Lecture Notes in
Computer Science 559 (Springer-Verlag, 1991D

5. GEeNE CoopPErMAN and LArRrY FINKELSTEIN, ‘Random algorithms for permutation
groups’, CWI Quarterly5 (1992) 107-125.23

6. MARTIN SCHONERT and Axos SEREss, ‘Finding blocks of imprimitivity in small-base
groups in nearly linear time’, Proceedings 1994 ACM-SIGSAM International Sympo-
sium on Symbolic and Algebraic Computation (1994) 154-15@,12

7. MARTIN SCHONERT et al., GAP — Groups, algorithms and programmind.ehrstuhl
D fur Mathematik, Rheinisch Westische Technische Hochschule, Aachen, Germany,
1994). 16

8. GrAHAM SHARP, ‘Algorithmic recognition of actions of 2-homogeneous groups on
pairs’, LMS J. Comput. Mathl (1998) 109-147.
http://www.Ims.ac.uk/jcm/1/Ims97008L, 3, 3, 3,3, 3,3,3,3

https://doi.org/10.1112/5146115700000005X Published online by Cagridge University Press

http://www.lms.ac.uk/jcm/2/lms98006/appendixa/
http://www.lms.ac.uk/jcm/1/lms97008/
https://doi.org/10.1112/S146115700000005X

Algorithmic Recognition of Group Actions on Orbitals

Graham R. Sharp GRSharp@smithgroup.co.uk

The Queen’s College
Oxford
OX1 4AW

Current address:
31 Oaklands
Haslemere
GU27 3RD

https://doi.org/10.1112/5146115700000005X Published online by CaghiBridge University Press

mailto:GRSharp@smithgroup.co.uk
https://doi.org/10.1112/S146115700000005X

	Introduction
	Finding solution pairs
	Equivalence of solution pairs
	High-level algorithm
	Lower-level algorithm
	Implementation and analysis
	Self-paired and non-self-paired orbitals
	Improved algorithm for Specification 1.1
	Actions on unordered pairs
	Solutions and equivalence for the unordered pair problem
	Subgroups of index 2 in G_omega
	Algorithmic results
	 GAP code for implementing the algorithm

