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N-colored generalized Frobenius partitions:
generalized Kolitsch identities
Zafer Selcuk Aygin and Khoa D. Nguyen
Abstract. Let N ≥ 1 be squarefree with (N , 6) = 1. Let cϕN(n) denote the number of N-colored
generalized Frobenius partitions of n introduced by Andrews in 1984, and P(n) denote the number
of partitions of n. We prove

cϕN(n) = ∑
d∣N

N/d ⋅ P ( N
d2 n − N2 − d2

24d2 ) + b(n),

where C(z) ∶= (q; q)N
∞∑∞n=1 b(n)qn is a cusp form in S(N−1)/2(Γ0(N), χN). This extends and

strengthens earlier results of Kolitsch and Chan–Wang–Yan treating the case when N is a prime.
As an immediate application, we obtain an asymptotic formula for cϕN(n) in terms of the classical
partition function P(n).

1 Introduction

Let N, N0, Z, Q, C, and H denote the sets of positive integers, non-negative integers,
integers, rational numbers, complex numbers, and upper half plane of complex
numbers, respectively. Throughout the paper, we denote q = e2πiz , where z ∈ H.

In 1984, Andrews [1] introduced the function cϕN(n) counting the number of
N-colored generalized Frobenius partitions of n with N ∈ N and n ∈ N0. The gener-
ating function of cϕN(n) is denoted by

CΦN(q) ∶=
∞

∑
n=0

cϕN(n)qn .

Andrews [1] determined CΦN(q) in terms of a theta function divided by an infinite
product, as follows. Let

θN(x) ∶=
N
∑
i=1

x2
i + ∑

1≤i< j≤N
x i x j .

be a quadratic form in N variables, and

fθ N (z) ∶= ∑
x∈ZN

qθ N(x) ,
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be the associated theta function. Then, by [1, Theorem 5.2], we have

CΦN(z) = fθ N−1(z)
(q; q)N

∞

,

where

(q; q)∞ = ∏
n≥1

(1 − qn).

There has been a plethora of research concerning the congruence properties of
cϕN(n); we leave the discussion of this topic and related results to [3] and its
references. In this paper, we investigate relations between cϕN(n) and P(n), where
P(n) denotes the number of partitions of n. We define P(0) = 1 and P(a) = 0 when
a /∈ N0. From the description of cϕN(n) (see [1, 3]), or from the formula for CΦN(z)
and the product formula for the partition generating function, we clearly have

cϕ1(n) = P(n).

In [7, 8], Kolitsch has shown rather surprising relationships between these two types
of partitions which are stated below.

Theorem 1.1 (Kolitsch [8]) For all n ∈ N0, we have

cϕ5(n) = 5P(5n − 1) + P(n/5),(1.1)

cϕ7(n) = 7P(7n − 2) + P(n/7),(1.2)

and

cϕ11(n) = 11P(11n − 5) + P(n/11).(1.3)

The proof of these beautiful identities relies on q-series identities from [5, equations
(2.2) and (3.1)] that relate the generating function of t-cores to theta series.

Very recently in [3], Chan et al. have discovered the following more general
relationships between cϕp(n) and P(n). Below, noting that the Dedekind eta function
is defined by η(z) = q1/24(q; q)∞, we restate the main aspects of their Theorem 4.1.

Theorem 1.2 (Chan–Wang–Yan [3]) For all n ∈ N0, we have

cϕ13(n) = 13P(13n − 7) + P(n/13) + a(n),(1.4)

where q (q13; q13)∞
(q; q)2

∞

=
∞

∑
n=1

a(n)qn . When p ≥ 17 is a prime, then we have

∞

∑
n=0
(cϕp(n) − p ⋅ P (pn − p2 − 1

24
) − P(n/p)) qn = hp(z) + 2p(p−11)/2(η(pz)/η(z))p−11

(qp ; qp)∞
,

where hp(z) is a modular function on Γ0(p) with a zero at ∞ and a pole of order
(p + 1)(p − 13)/24 at 0. Additionally, the function hp(z)(η(z)η(pz))p−13 is a holo-
morphic modular form of weight p − 13 with a zero of order (p − 1)(p − 11)/24 at ∞
and hp(z) is congruent to p times a cusp form on Γ0(1) of weight p − 1 modulo p2.
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These results rely on some delicate residue calculations and properties of modular
functions. The goal of this paper is to extend the above results of Kolitsch and
Chan–Wang–Yan to give relations between cϕN(n) and P(n), where N is a squarefree
integer that is coprime to 6. The method we use is quite different than that of [3] or [8].
We describe our method after stating our main theorem.

We fix χa(b) to be the Kronecker symbol
⎛
⎝
(−1)(a−1)/2a

b
⎞
⎠

K

. Whenever a is a

squarefree odd integer, χa(b) is a primitive Dirichlet character modulo a. The space
of modular forms of weight k for the modular subgroup Γ0(N) with multiplier system
χN is denoted by Mk(Γ0(N), χN), and its subspace of cusp forms is denoted by
Sk(Γ0(N), χN).

Theorem 1.3 (Main Theorem) Let N be a squarefree positive integer with
gcd(N , 6) = 1.

(i) Then for all n ∈ N0, we have

cϕN(n) = ∑
d ∣N

N/d ⋅ P ( N
d2 n − N2 − d2

24d2 ) + b(n),(1.5)

where

C(z) ∶= (q; q)N
∞

∞

∑
n=1

b(n)qn

is a cusp form in S(N−1)/2(Γ0(N), χN).
(ii) We have C(z) = 0 if and only if N = 5, 7, or 11.

(iii) If N ≠ 5, 7, or 11, then there is no M ≥ 0 such that b(n) = 0 for all n > M.

Theorem 1.3 is the result of a chain of modular identities. We first discover an
identity that relates the theta function fθ N−1(z) to Eisenstein series. Then we find
another identity that relates these Eisenstein series to the partition function P(n)
using an intimate relationship between eta quotients and Eisenstein series. This
relationship between eta quotients and Eisenstein series is not valid unless N2−d2

24d ∈ N0
for d ∣ N , see Theorem 5.1. Therefore, we put the restriction gcd(N , 6) = 1. These
modular identities are determined using [2, Theorem 1.1]. Finally, we combine these
identities to obtain Theorem 1.3.

In contrast with [3, Theorem 4.1 (c)], when N = p a prime greater than 13, our
theorem gives slightly more information about hp(z). As a result of our Theorem 1.3
we obtain that

hp(z) + 2p(p−11)/2(η(pz)/η(z))p−11

is simply a cusp form in S(N−1)/2(Γ0(N), χN). Therefore, it is evident that hp(z) is
congruent to a cusp form modulo p2.

On the other hand, when N = p a prime greater than 3, our Theorem 1.3 leads to
the equation

cϕp(n) = p ⋅ P (pn − p2 − 1
24

) + P (n/p) + b(n),
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where

C(z) ∶= (q; q)p
∞

∞

∑
n=1

b(n)qn

is a cusp form in S(p−1)/2(Γ0(p), χp). Therefore, (1.1)–(1.4) can easily be deduced from
our Theorem 1.3. Using Sturm’s Theorem, one observes that in the cases N = 5, 7,
and 11, we have C(z) = 0, which leads to (1.1)–(1.3).

As an application of Theorem 1.3, we establish the following asymptotic formula
for cϕN(n) in terms of linear combinations of partition functions.

Theorem 1.4 Let N be a squarefree positive integer with (N , 6) = 1. We have

cϕN(n) ∼ ∑
d ∣N

N/d ⋅ P ( N
d2 n − N2 − d2

24d2 )

as n → ∞.

The organization of the paper is as follows. In Section 2, we introduce fur-
ther notation and prove an important theorem concerning the modular forms in
Mk(Γ0(N), χN), see Theorem 2.1. In Section 3, we compute the constant terms of
fθ N−1(z) at the cusps 1/c where c ∣ N . This requires computing some Gauss sums
related to the quadratic form θN−1. These Gauss sum computations could be of
independent interest to an audience with particular interest in the subject. In Sec-
tion 4, we compute the constant terms of the eta quotient ηN((N/d)z)

η(dz) at the cusps
1/c where c ∣ N . In Section 5, we use Theorem 2.1 and the calculations of Sections 3
and 4 to give fθ N−1(z) and ηN((N/d)z)

η(dz) in terms of Eisenstein series. We then use

the relationship between ηN((N/d)z)
η(dz) and the partition function to prove an identity

relating Eisenstein series and the partition function. Then we combine these identities
to prove Theorem 1.3. In Section 6, we show that the error term b(n) is much smaller
than

∑
d ∣N

N/d ⋅ P ( N
d2 n − N2 − d2

24d2 )

by combining estimates involving coefficients of various q-series and this proves
Theorem 1.4.

2 Notation and preliminaries

In this section, we introduce further notation and prove a theorem on a certain space
of modular forms, see Theorem 2.1. This theorem is the backbone of the paper. We
start with some notation.

Recall that χa(b) denotes the Kronecker symbol
⎛
⎝
(−1)(a−1)/2a

b
⎞
⎠

K

. Let k ∈ N. The

generalized sum of divisors function associated with χd and χN/d is defined by

σk−1(χN/d , χd ; n) ∶= ∑
1≤t∣n

χN/d(n/t)χd(t)tk−1 .
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Let Bk , χN denote the kth generalized Bernoulli number associated with χN defined
by the series

∞

∑
k=0

Bk , χN

k!
tk =

N
∑
a=1

χN(a)teat

eNt − 1
.

Let a ∈ Z and c ∈ N0 be coprime. For an f (z) ∈ Mk(Γ0(N), χ) we denote the
constant term of f (z) in the Fourier expansion of f (z) at the cusp a/c by

[ f ]a/c = lim
z→i∞

(cz + d)−k f ( az + b
cz + d

) ,

where b, d ∈ Z are such that [a b
c d] ∈ SL2(Z). The value of [ f ]a/c does not depend

on the choice of b, d. Throughout the paper we denote

εc =
⎧⎪⎪⎨⎪⎪⎩

1 if c ≡ 1(mod 4),
i if c ≡ 3(mod 4).

We are now ready to state and prove the following statement.

Theorem 2.1 Let N be a squarefree integer with gcd(N , 6) = 1. Let f (z) ∈
M(N−1)/2(Γ0(N), χN). Then we have

f (z) = [ f ]1/N + ∑
d ∣N

[ f ]1/d

A(d , N) ⋅ (1 − N)(N/d)(N−2)/2

B(N−1)/2, χN

∑
n≥1

σ(N−3)/2(χN/d , χd ; n)qn

+ C(z),

where C(z) is some cusp form in S(N−1)/2(Γ0(N), χN) and

A(d , N) = (−1)
(d+1)(N/d−1)

4 εN/d =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if d ≡ 1(mod 4) and N ≡ 1(mod 4),
i if d ≡ 3(mod 4) and N ≡ 1(mod 4),
−i if d ≡ 1(mod 4) and N ≡ 3(mod 4),
1 if d ≡ 3(mod 4) and N ≡ 3(mod 4).

Proof This theorem is a direct application of [2, Theorem 1.1]. The specialized version
of the set of tuples of characters defined in [2] and given below simplifies to

E((N − 1)/2, N , χN) ∶={(ε, ψ) ∈ D(L,C) × D(M ,C) ∶ ε, ψ primitive,

ε(−1)ψ(−1) = (−1)(N−1)/2 , εψ = χN and LM ∣ N}
= {(χN/d , χd) ∶ d ∣ N}.

Therefore, using [2, Theorem 1.1], we obtain

f (z) = ∑
d ∣N

χN/d(−1)[ f ]1/d

× (χN/d(0) + W(χd)
W(χN)

(1 − N)(N/d)(N−1)/2

B(N−1)/2, χN

∑
n≥1

σ(N−3)/2(χN/d , χd ; n)qn)

+ C(z),(2.1)
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for some C(z) in S(N−1)/2(Γ0(N), χN), where the Gauss sum W(χd) is defined by

W(χd) ∶=
d
∑
a=1

χd(a)e2πia/d .

On the other hand, since N , d are squarefree and odd we have

χN = ∏
p∣N

χp , and χd = ∏
p∣d

χp .

Additionally, we have

W(χp) =
⎧⎪⎪⎨⎪⎪⎩

√p if p ≡ 1 (mod 4),
i√p if p ≡ 3 (mod 4).

By the multiplicative properties of the Gauss sums W(χN) for p an odd prime divisor
of N we have

W(χN) = (−1)(p−1)(N/p−1)/4W(χp)W(χN/p),

see [9, Lemma 3.1.2]. Using this iteratively, we deduce that

W(χN) = εN
√

N =
⎧⎪⎪⎨⎪⎪⎩

√
N if N ≡ 1 (mod 4),

i
√

N if N ≡ 3 (mod 4).

Putting this in (2.1), we obtain the desired result. ∎
In order to get necessary modular identities from Theorem 2.1, we need to compute

[ fθ N−1]1/d and [ ηN((N/d)z)
η(dz) ]

1/d
for each d ∣ N . Computation of [ ηN((N/d)z)

η(dz) ]
1/d

can be
done using [6, Proposition 2.1]. This is carried out in Section 4. By [10, (10.2)] (see [2,
(1.9)] for a refined version), we have

[ fθ N−1]1/d = (−i
d

)
(N−1)/2 GN−1(1, d)√

N
,(2.2)

where the quadratic Gauss sum GN(a, c) for N , a, c ∈ N is defined by

GN(a, c) ∶= ∑
x∈(Z/cZ)N

e2πiaθ N(x)/c .

Therefore, to calculate [ fθ N−1]1/d , we need to calculate GN−1(1, d), which is carried out
in the next section.

3 Gauss sums and constant terms of fθN−1(z)

Let N be an odd squarefree positive integer. In this section, we compute GN−1(a, d)
for all d ∣ N and a ∈ N with gcd(a, d) = 1. Then when gcd(N , 6) = 1, we use our
computations together with [10, (10.2)] to obtain the constant term [ fθ N−1(z)]1/d of
fθ N−1(z) in its Fourier series expansion at 1/d, see Theorem 3.7. In this section, for
a set A and an N-tuple x ∈ AN , we use the notation x = (x1 , . . . , xN), i.e., x i denotes
the ith coordinate of the tuple x. We first prove a multiplicativity result concerning
GN(a, c).
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Lemma 3.1 Let N ∈ N. Let α, β, γ ∈ N be mutually coprime. Then we have

GN(γ, αβ) = GN(βγ, α)GN(αγ, β).

Proof The map Z/αZ ×Z/βZ → Z/αβZ given by (x , y) ↦ z = βx + αy is bijective.
Therefore, each z ∈ (Z/αβZ)N can be expressed as z = βx + αy for a unique x ∈
(Z/αZ)N , y ∈ (Z/βZ)N . From

z i = β ⋅ x i + α ⋅ y i ,

we have

z2
i ≡ (α + β)(β ⋅ x2

i + α ⋅ y2
i )(mod aβ),(3.1)

z i ⋅ z j ≡ (a + β)(β ⋅ x i x j + α ⋅ y i y j)(mod αβ).(3.2)

Using (3.1) and (3.2), we have

N
∑
i=1

z2
i +

N
∑

i , j=1,
i< j

z i z j ≡ (α + β)
⎛
⎜⎜⎜
⎝

N
∑
i=1

(β ⋅ x2
i + α ⋅ y2

i ) +
N
∑

i , j=1,
i< j

(β ⋅ x i x j + α ⋅ y i y j)
⎞
⎟⎟⎟
⎠

≡ (α + β)
⎛
⎜⎜⎜
⎝

β
N
∑
i=1

x2
i + β

N
∑

i , j=1,
i< j

x i x j + α
N
∑
i=1

y2
i + α

N
∑

i , j=1,
i< j

y i y j

⎞
⎟⎟⎟
⎠

.

Therefore, using the notation e(x) ∶= e2πix , we have

GN(γ, αβ) = ∑
z∈(Z/αβZ)N

e (γ θN(z)
αβ

) = ∑
z∈(Z/αβZ)N

e (γ∑ z2
i +∑ z i z j

αβ
)

= ∑
x∈(Z/αZ)N

e (βγ∑ x2
i +∑ x i x j

α
) ∑

y∈(Z/βZ)N

e (αγ∑ y2
i +∑ y i y j

β
)

= ∑
x∈(Z/αZ)N

e (βγ θN(x)
α

) ∑
y∈(Z/βZ)N

e (αγ θN(y)
β

)

= GN(βγ, α)GN(αγ, β). ∎

For an odd prime p, in order to relate the relevant quadratic Gauss sums (over
Z/pZ) in N variables to quadratic Gauss sums in N − 1 or N − 2 variables, we need
the function Cp ∶ (Z/pZ)/{1 mod p} → Z/pZ given by Cp(R) ∶= 1

4(1 − R) . When p

is clear from the context, we can omit it from the subscript and use C(R) instead.
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Lemma 3.2 Let p be an odd prime. Let N , R and a be positive integers such that
gcd(a, p) = 1. We have

∑
x∈(Z/pZ)N

e (a θN(x)
p

− a
Rx2

N
p

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p if R ≡ 1(mod p), and N ≤ 2,

p ∑
x∈(Z/pZ)N−2

e (a θN−2(x)
p

) = p ⋅ GN−2(a, p) if R ≡ 1(mod p), and N > 2,

εp
√p( a(1 − R)

p
)
K

∑
x∈(Z/pZ)N−1

e (a θN−1(x)
p

− a
C(R)x2

N−1
p

) if R /≡ 1(mod p).

Proof The following easily proved identities are used throughout the proof:

θN(x1 , . . . , xN) = θN−1(x1 , . . . , xN−1) + xN
N
∑
j=1

x j ,

∑
x∈Z/pZ

e (Ax2 + Bx + C
p

) = ∑
y∈Z/pZ

e (Ay2

p
) e (C − (4A)−1B2

p
)

= e (C − (4A)−1B2

p
)(A

p
)
K

εp
√

p

for A, B, C ∈ Z/pZ with A ≠ 0 by the change of variables y = x + (2A)−1B.
The case R ≡ 1(mod p) and N = 1 is obvious:

p−1

∑
x1=0

e (a θ1(x1) − x2
1

p
) =

p−1

∑
x1=0

1 = p.

When R ≡ 1(mod p) and N = 2, we have

∑
x∈(Z/pZ)2

e (a θ2(x1 , x2) − x2
1

p
) = ∑

x∈(Z/pZ)2
e ( ax2

2 + ax1x2

p
)

= ∑
y1 , y2∈Z/pZ

e ( y1 y2

p
)

= p,

where in the last second line, we make the change of variables y1 = ax2 and y2 = x2 +
x1 and the last line follows from orthogonality.

Next, we prove the case R ≡ 1(mod p) and N > 2. We have

∑
x∈(Z/pZ)N

e (a θN(x)
p

− a
Rx2

N
p

)

= ∑
x∈(Z/pZ)N

e (a θN(x)
p

− a
x2

N
p

)
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= ∑
x∈(Z/pZ)N

e
⎛
⎝

a
θN−1(x1 , . . . , xN−1) + xN ∑N−1

j=1 x j

p
⎞
⎠

=
p−1

∑
A=0

∑
x∈(Z/pZ)N−1

∑ x i≡A mod p

e (a θN−1(x)
p

)
p−1

∑
xN=0

e ((aA)xN

p
) .(3.3)

Now, we observe that if A /≡ 0 mod p then ∑
xN∈Z/pZ

e ((aA)xN

p
) = 0. Therefore, the

right hand side (RHS) of (3.3) is

p ∑
x∈(Z/pZ)N−1

∑ x i=0

e (a θN−1(x)
p

) .(3.4)

We use −∑N−2
j=1 x j = xN−1 to eliminate xN−1 so that the above expression is

p ∑
x∈(Z/pZ)N−1

∑ x i≡0

e (a θN−2(x1 , . . . , xN−2)
p

) = p ∑
x∈(Z/pZ)N−2

e (a θN−2(x)
p

) .

Finally, we prove the case R /≡ 1(mod c). We have

∑
x∈(Z/pZ)N

e (a θN(x)
p

− a
Rx2

N
p

)

= ∑
x∈(Z/pZ)N

e
⎛
⎝

a
θN−1(x1 , . . . , xN−1) + (1 − R)x2

N + xN ∑N−1
j=1 x j

p
⎞
⎠

=
p−1

∑
A=0

∑
x∈(Z/pZ)N−1

∑ x i≡A

e (a θN−1(x)
p

) ∑
xN∈Z/pZ

e ( a(1 − R)x2
N + (aA)xN

p
) .(3.5)

Now in (3.5), we use

∑
xN∈Z/pZ

e ( a(1 − R)x2
N + (aA)xN

p
) = εp

√
p( a(1 − R)

p
)
K

e (−C(R)aA2

p
)

so that the RHS of (3.5) becomes

εp
√

p( a(1 − R)
p

)
K

p−1

∑
A=0

∑
x∈(Z/pZ)N−1

∑ x i≡A

e (a θN−1(x) − C(R)A2

p
)

= εp
√

p( a(1 − R)
p

)
K

p−1

∑
A=0

∑
x∈(Z/pZ)N−1

∑ x i≡A

e
⎛
⎝

a
θN−2(x1 , . . . , xN−2) + xN−1∑N−1

j=1 x j − C(R)A2

p
⎞
⎠

.

(3.6)
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We employ xN−1 = A −∑N−2
j=1 x j in (3.6) so that its RHS is

εp
√

p( a(1 − R)
p

)
K

p−1

∑
A=0

∑
x∈(Z/pZ)N−2

e
⎛
⎝

a
θN−2(x) + A(A −∑N−2

j=1 x j) − C(R)A2

p
⎞
⎠

= εp
√

p( a(1 − R)
p

)
K

p−1

∑
A=0

∑
x∈(Z/pZ)N−2

e
⎛
⎝

a
θN−2(x) + A2 − A∑N−2

j=1 x j − C(R)A2

p
⎞
⎠

.

(3.7)

Then we replace A by −A in (3.7) to obtain

εp
√

p( a(1 − R)
p

)
K

p−1

∑
A=0

∑
x∈(Z/pZ)N−2

e
⎛
⎝

a
θN−2(x) + A2 + A∑N−2

j=1 x j − C(R)A2

p
⎞
⎠

= εp
√

p( a(1 − R)
p

)
K

∑
x∈(Z/pZ)N−1

e (a
θN−1(x) − C(R)x2

N−1
p

) ,(3.8)

where x ∈ (Z/pZ)N−1 in the last sum has the form x = (x1 , . . . , xN−1 , A) for an
arbitrary (x1 , . . . , xN−1) ∈ (Z/pZ)N−1 and A ∈ Z/pZ. ∎

We want to show that sufficiently many iterations of Lemma 3.2 will relate GN1(a, c)
to GN2(a, c) where N1 > N2. For any positive integer t, letCt denote the tth fold iterate
of C. The value of Ct(R) is well defined when none of the R,C(R), . . . ,Ct−1(R) is
1 mod p. When t = 0, we let Ct be the identity function on Z/pZ/{1 mod p}. The next
lemma describes the orbit of 0 mod p under C.

Lemma 3.3 Let p be an odd prime. We have the following:

(i) Ct((p + 1)/2) = (p + 1)/2 for every t ∈ N.
(ii) {Ct(0) ∶ t = 0, 1 . . . , p − 2} = {0, 1 . . . , (p − 1)/2, (p + 3)/2, . . . , p − 1} mod p

with Cp−2(0) = 1 mod p.

Proof Part (a) follows from the fact that C((p + 1)/2) = (p + 1)/2. For part (b), one
can prove by induction on t the formula:

Ct(0) = t
2t + 2

mod p for 0 ≤ t ≤ p − 2. ∎

Proposition 3.4 Let p be an odd prime, N ∈ N be such that N ≥ p − 1 and a ∈ N are
coprime to p. Then we have

GN(a, p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i(p−p2)/2 ⋅ ( a
p
)
K

pp/2 if N = p − 1, or p,

i(p−p2)/2 ⋅ ( a
p
)
K

pp/2GN−p(a, p) if N > p.

Proof By Lemma 3.3, we have Ct(0) /≡ 1(mod p) for 0 ≤ t ≤ p − 3. Therefore, we
apply Lemma 3.2 repeatedly for p − 2 many times and obtain
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GN(a, p) = (εp
√

p( a
p
)
K
)

p−2 p−2

∏
t=1

( 1 − Ct−1(0)
p

)
K

× ∑
x∈(Z/pZ)N−(p−2)

e
⎛
⎝

a
θN−(p−2)(x)

p
− a

Cp−2(0)x2
N−(p−2)

p
⎞
⎠

= (εp
√

p( a
p
)
K
)

p−2 p−2

∏
t=1

( 1 − Ct−1(0)
p

)
K

× ∑
x∈(Z/pZ)N−(p−2)

e
⎛
⎝

a
θN−(p−2)(x)

p
− a

x2
N−(p−2)

p
⎞
⎠

,(3.9)

where in the second step, we use Cp−2(0) ≡ 1(mod p) that comes from Lemma 3.3.
When N > p, we apply Lemma 3.2 to (3.9) to obtain

GN(a, p) = (εp
√

p( a
p
)
K
)

p−2 p−2

∏
t=1

( 1 − Ct−1(0)
p

)
K
⋅ p ⋅ ∑

x∈(Z/pZ)N−p

e (a
θN−p(x)

p
)

= (εp)
p−2 ( a

p
)
K

p−2

∏
t=0

( 1 − Ct−1(0)
p

)
K
⋅ pp/2 ⋅ GN−p(a, p).

Finally, the desired result follows by employing the elementary identities

εp = i(1−p)/2((p + 1)/2
p

)
K

(3.10)

and
p−2

∏
t=1

( 1 − Ct−1(0)
p

)
K
= (−1)(p−1)/2((p + 1)/2

p
)
K

.(3.11)

When N = p − 1, or p, by similar arguments, we obtain

GN(a, p) = (εp
√

p( a
p
)
K
)

p−2 p−2

∏
t=1

( 1 − Ct−1(0)
p

)
K
⋅ p.

The desired result in this case follows similarly by employing (3.10) and (3.11). ∎

Proposition 3.5 Let N > 1 be an odd positive squarefree integer and let p be a prime
divisor of N. If gcd(a, p) = 1, then we have

GN−1(a, p) = i(N−N p)/2 ⋅ ( a
p
)
K

pN/2 .

Proof We apply Proposition 3.4 to GN−1(a, p) for N/p − 1 many times and obtain

GN−1(a, p) = (i(p−p2)/2 ⋅ ( a
p
)
K

pp/2)
N/p

= i(N−N p)/2 ⋅ ( a
p
)
K

pN/2 . ∎
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Theorem 3.6 Let N be an odd positive squarefree integer, let d be a divisor of N, and
let a ∈ Z with gcd(a, d) = 1. Then we have

GN−1(a, d) = ( a
d
)
K
⋅ i(N−Nd)/2 ⋅ dN/2 .

Proof First, we compute GN−1(1, d). By Lemma 3.1 and Proposition 3.5, we have

GN−1(1, d) = ∏
p∣d

GN−1(d/p, p) = ∏
p∣d

i(N−N p)/2 ⋅ (d/p
p

)
K

pN/2

= dN/2 ∏
p∣d

i(N−N p)/2 ⋅ (d/p
p

)
K

.

We let

B(d , N) ∶=
∏p∣d i(N−N p)/2 ⋅ (d/p

p
)
K

i(N−Nd)/2 .

Now, let p1 be an odd prime such that p1 ∤ N . Then for all d ∣ N , we have

B(d , Np1) =
∏p∣d i(N p1−N p1 p)/2 ⋅ (d/p

p
)
K

i(N p1−N p1 d)/2 = (B(d , N))p1 ,(3.12)

and

B(d p1 , Np1) =
∏p∣d p1 i(N p1−N p1 p)/2 ⋅ (d p2/p

p
)
K

i(N p1−N p1 d)/2

=
i(N p1−N p2

1 )/2 ⋅ ( d
p1

)
K
∏
p∣d

( p1

p
)
K
∏
p∣d

i(N p1−N p1 p)/2 ⋅ (d/p
p

)
K

i(N p1−Nd p2
1 )/2

=
(−1)(p1−1)(d−1)/4 ∏p∣d i(N p1−N p1 p)/2 ⋅ (d/p

p
)
K

i(N p2
1−Nd p2

1 )/2

= (−1)(p1−1)(d−1)/4(B(d , N))p1

i(N p2
1−Nd p2

1−N p1+Nd p1)/2

= (−1)(p1−1)(d−1)/4(B(d , N))p1

(i(p1−1)(1−d)/2)N p1

= (B(d , N))p1 .(3.13)

Clearly B(1, 1) = 1. Therefore, by (3.12) and (3.13), we have B(d , N) = 1 and this proves

GN−1(1, d) = i(N−Nd)/2 ⋅ dN/2 .
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We now compute GN−1(a, d) when gcd(a, d) = 1. For d ∈ N, let ζd ∶= exp(2πi/d).
Let σ be the automorphism of Q(ζd) such that σ(ζd) = ζ a

d . This yields

GN−1(a, d) = σ(GN−1(1, d)).(3.14)

Let k be the number of prime divisors of d that are congruent to 1 mod 4. From

∏
p∣d

(εp
√

p)N = iN k dN/2

and the fact that k and (1 − d)/2 have the same parity, we have

GN−1(1, d) = ±∏
p∣d

(εp
√

p)N .(3.15)

For each prime p ∣ d, the field Q(εp
√p) is the unique quadratic subfield of Q(ζp)

which is also the fixed field of the quadratic residues in (Z/pZ)∗ ≅ Gal(Q(ζp)/Q).
Therefore the restriction of σ on Q(εp

√p) maps

εp
√

p ↦ ( a
p
)
K

εp
√

p.

Together with (3.14) and (3.15), we have

GN−1(a, d) = ∏
p∣d

( a
p
)
K

GN−1(1, d) = ( a
d
)
K

GN−1(1, d)

and this finishes the proof. ∎

Theorem 3.7 Let N be a positive squarefree integer such that gcd(N , 6) = 1 and d be a
divisor of N. Then we have

[ fθ N−1(z)]1/d = i(1−Nd)/2 ⋅
√

d/N .

Proof We put the result of Theorem 3.6 in (2.2) to obtain the desired result. ∎

4 Constant terms of ηN((N/d)z)
η(dz)

Throughout this section, we let N be a positive squarefree integer such that
gcd(N , 6) = 1. We denote by V1/c ( ηN((N/d)z)

η(dz) ) the order of vanishing of the eta

quotient ηN((N/d)z)
η(dz) at the cusp 1/c. We first show that ηN((N/d)z)

η(dz) vanishes at all 1/c
except when c = d.

Lemma 4.1 We have V1/c ( ηN((N/d)z)
η(dz) ) = 0 if c = d and V1/c ( ηN((N/d)z)

η(dz) ) > 0 other-
wise.

Proof By [4, Proposition 5.9.3] (with cusp width N/c), we have

V1/c (
ηN((N/d)z)

η(dz) ) = N
24c

(d2 gcd(N/d , c)2 − gcd(d , c)2

d
) .
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Since N is squarefree gcd(N/d , d) = 1, we have

V1/d (ηN((N/d)z)
η(dz) ) = N

24d
(d2 gcd(N/d , d)2 − gcd(d , d)2

d
) = 0.

If c ≠ d, then we have d > gcd(d , c) and clearly gcd(N/d , c) ≥ 1, therefore,
d2 gcd(N/d , c)2 > gcd(d , c)2. Hence, we have

V1/c (
ηN((N/d)z)

η(dz) ) = N
24c

(d2 gcd(N/d , c)2 − gcd(d , c)2

d
) > 0. ∎

Now, we compute [ ηN((N/d)z)
η(dz) ]

1/c
for all c ∣ N . Recall that we use the notation

e(x) = e2πix .

Lemma 4.2 Let c ∣ N. Then we have

[ηN((N/d)z)
η(dz) ]

1/c
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(N/d
d

)
K
⋅ ( d

N
)

N/2
⋅ i

1−Nd
2 if c = d ,

0 otherwise.

Proof The case where c ≠ d is a direct result of Lemma 4.1. Now, we prove the case

when c = d. Let L1 = [1 0
1 1]and L2 = [N/d v

d w] ∈ SL2(Z). Then by [6, Proposition

2.1] we have

[ηN((N/d)z)
η(dz) ]

1/d
= νN(L2)e(−dv/24)

ν(L1)
( d

N
)

N/2
,

where

ν(L1) = e (−1
24

) ,

ν(L2) = (w
d
)
K

e ( 1
24

((N/d + w)d − vw(d2 − 1) − 3d)) .

Then we have

νN(L2)e(−dv/24)
ν(L1)

= (w
d
)
K

N
e ( 1

24
(N(N/d + w)d − Nvw(d2 − 1) − 3Nd + 1 − dv))

= (w
d
)
K

N
e ( 1

24
(vd − 3Nd + 3 − dv))

= (N/d
d

)
K

e ( 1
8
(1 − Nd)) ,

where in the first step, we use d2 − 1 ≡ 0(mod 24), N2 ≡ 1(mod 24) and Ndw ≡ 1 + dv
(mod 24), in the last step we use N is an odd integer, and w ⋅ N/d ≡ 1(mod d). ∎
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5 Relations among ηN((N/d)z)
η(dz) , Eisenstein series, P(n), and fθN−1(z)

The end goal of this section is to prove Theorem 1.3. We first prove a relationship
between ηN((N/d)z)

η(dz) and Eisenstein series, see Theorem 5.1. Next, we prove a rela-
tionship between Eisenstein series and the partition function, see Theorem 5.2. To do
this, we uncover a relationship between ηN((N/d)z)

η(dz) and the partition function using
arithmetic properties of Eisenstein series. We then prove another identity relating
fθ N−1(z) to Eisenstein series, see Theorem 5.3. Finally, we show that Theorem 1.3 is
a result of combination of these relations.

Now, we state and prove the relationship between ηN((N/d)z)
η(dz) and Eisenstein series.

Theorem 5.1 Let N be a positive squarefree integer such that gcd(N , 6) = 1. Then we
have

ηN((N/d)z)
η(dz) =χN/d(0) + (

N/d
d
)
K

C(d , N) ⋅ d
N
⋅ (1 − N)

B(N−1)/2, χN

⋅ ∑
n≥1

σ(N−3)/2(χN/d , χd ; n)qn

+ C1(z),

where C1(z) ∈ S(N−1)/2(Γ0(N), χN) and

C(d , N) ∶= i(1−Nd)/2

A(d , N) = (−8
N

)
K
( 8

d
)
K
(−4

d
)
K

(N−1)/2
.

Proof Let N be a positive squarefree integer such that gcd(N , 6) = 1. Then by
[4, Propositions 5.9.2 and 5.9.3] and Lemma 4.1, we have

ηN((N/d)z)
η(dz) ∈ M(N−1)/2(Γ0(N), χN).

Now the desired result follows by combining Theorem 2.1 and Lemma 4.2. ∎
Next we state and prove a relationship between P(n) and Eisenstein series.

Theorem 5.2 Let N be a positive squarefree integer such that gcd(N , 6) = 1. Then we
have

χN/d(0) + C(d , N) ⋅ (N/d)(N−3)/2 (1 − N)
B(N−1)/2, χN

⋅ ∑
n≥1

σ(N−3)/2(χN/d , χd ; n)qn

= N/d ⋅ (q; q)N
∞ ⋅ ∑

n≥0
P ( N

d2 n − N2 − d2

24d2 ) qn + C2(z),

where C2(z) is some cusp form in S(N−1)/2(Γ0(N), χN).
Proof For m ∈ N, we define the operator U(m) by

U(m)∣ ∑
n≥0

an qn = ∑
n≥0

anm qn .

Then we have

U(N/d)∣ηN((N/d)z)
η(dz) = (q; q)N

∞ ∑
n≥0

P ( N
d2 n − N2 − d2

24d2 ) qn .(5.1)
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On the other hand, we observe that

σ(N−3)/2(χN/d , χd ; n ⋅ N/d) = χd(N/d)(N/d)(N−3)/2σ(N−3)/2(χN/d , χd ; n).

Therefore, we have

U(N/d)∣ (χN/d(0) + C(d , N)(N/d
d
)

K
⋅ d

N
⋅ (1 − N)

B(N−1)/2, χN

⋅ ∑
n≥1

σ(N−3)/2(χN/d , χd ; n)qn)

= χN/d(0) + C(d , N)(N/d
d
)

K
χd(N/d)(N/d)(N−3)/2 (1 − N)d/N

B(N−1)/2, χN

⋅ ∑
n≥1

σ(N−3)/2(χN/d , χd ; n)qn .

(5.2)

Finally the result follows from combining (5.1), (5.2), Theorem 5.1, and the elementary
equation

(N/d
d

)
K

χd(N/d) = 1,

and the property of modular forms that if C1(z) ∈ S(N−1)/2(Γ0(N), χN) then

C2(z) ∶= U(N/d)∣C1(z) ∈ S(N−1)/2(Γ0(N), χN). ∎

Theorem 5.3 Let N be a positive squarefree integer such that gcd(N , 6) = 1. We have

fθ N−1(z) =1 + ∑
d ∣N

C(d , N)(N/d)(N−3)/2 (1 − N)
B(N−1)/2, χN

⋅ ∑
n≥1

σ(N−3)/2(χN/d , χd ; n)qn

+ C3(z),

where C3(z) is some cusp form in S(N−1)/2(Γ0(N), χN).

Proof By [3, Theorem 2.1], we have fθ N−1(z) ∈ M(N−1)/2(Γ0(N), χN). Therefore, the
result follows from combining Theorems 2.1 and 3.7. ∎

Now, we give the proof of Theorem 1.3.

Proof We start by proving part (i). By combining Theorems 5.2 and 5.3, we obtain

fθ N−1(z) = (q; q)N
∞∑

d ∣N

N
d ∑

n≥0
P ( N

d2 n − N2 − d2

24d2 ) qn + C(z)(5.3)

for some C(z) ∈ S(N−1)/2(Γ0(N), χN). We divide both sides of (5.3) by (q; q)N
∞ to

obtain

∑
n≥0

cϕN(n)qn = ∑
n≥0

⎛
⎝∑

d ∣N
N/d ⋅ P ( N

d2 n − N2 − d2

24d2 )
⎞
⎠

qn + C(z)
(q; q)N

∞

.(5.4)

(1.5) follows by comparing coefficients of qn in (5.4).
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Now, we prove part (ii) of Theorem 1.3. When N ≥ 29 a squarefree positive integer
coprime to 6 and d < N a divisor of N then N

d2 − N2−d2

24d2 ≤ 0. Therefore by (1.5) and
cϕN(1) = N2, we have

b(1) = cϕN(1) − ∑
d ∣N

N/d ⋅ P ( N
d2 − N2 − d2

24d2 )

= cϕN(1) − P ( 1
N

) = N2 ≠ 0.

Hence, when N ≥ 29 is a squarefree positive integer coprime to 6, we have C(z) ≠ 0.
Similarly when N = 13, 17, 19, or N = 23 by (1.5), we have

b(1) = cϕN(1) − N ⋅ P (N − N2 − 1
24

) − P ( 1
N

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

26 ≠ 0 if N = 13,
170 ≠ 0 if N = 17,
266 ≠ 0 if N = 19,
506 ≠ 0 if N = 23.

This shows that C(z) ≠ 0 when N = 13, 17, 19, or N = 23. Therefore by (1.1)–(1.3), we
have C(z) = 0 if and only if N = 5, 7, or 11.

Finally we prove part (iii) of the theorem. We prove it by contradiction. Assume
that there is an M ≥ 0 such that b(n) = 0 for all n > M, then we would have

M
∑
n=1

bn qn = C(z)
(q; q)N

∞

.

The RHS of this equation is a meromorphic modular function and the left hand side
is an exponential sum. This is possible only if C(z)

(q;q)N
∞

= 0, which is shown to be false
unless N = 5, 7, or 11 in the proof of part (ii) of the theorem. ∎

6 Proof of Theorem 1.4

Throughout this section, let N be a positive integer such that gcd(N , 6) = 1. We will
use the Vinogradov symbols and various asymptotic notations in estimates involving
functions in n where n ∈ N is large. The implicit constants in these estimates might
depend on N but they are independent of n. Let

U(n) ∶= 1 − N
B(N−1)/2, χN

∑
d ∣N

C(d , N)(N/d)(N−3)/2σ(N−3)/2(χN/d , χd ; n).

We start by investigating the size of U(n).

Lemma 6.1 We have U(n) > 0 for every n ∈ N and

U(n) ≫ n(N−3)/2 if N > 5,
U(n) ≫ n/ log log n if N = 5.

Proof Let n = ∏p∣n pep be the prime factorization of n and write k = (N − 3)/2.
Then we have
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σk(χN/d , χd ; n) = ∏
p∣n

(χd(p)pk)ep+1 − χN/d(p)ep+1

χd(p)pk − χN/d(p)

= ∏
p∣n
p∣d

χN/d(pep) ∏
p∣n

p∣N/d

χd(pep)pkep ∏
p∣n

p∤N

(χd(p)pk)ep+1 − χN/d(p)ep+1

χd(p)pk − χN/d(p)

= ∏
p∣n
p∣d

χN/d(pep) ∏
p∣n
p∤d

χd(pep) ∏
p∣n

p∣N/d

pkep ∏
p∣n

p∤N

(pk)ep+1 − χN(p)ep+1

pk − χN(p) .

Therefore, by elementary manipulations, we obtain

∑
d ∣N

C(d , N)(N/d)(N−3)/2 ⋅ σ(N−3)/2(χN/d , χd ; n)

= ∑
d ∣N

C(d , N)(N/d)(N−3)/2 ⋅∏
p∣n
p∣d

χN/d(pep) ∏
p∣n
p∤d

χd(pep) ∏
p∣n

p∣N/d

pkep

× ∏
p∣n

p∤N

(pk)ep+1 − χN(p)ep+1

pk − χN(p)

= (−8
N

)
K

N(N−3)/2 ∏
p∣n
p∣N

pkep ∏
p∣n

p∤N

(pk)ep+1 − χN(p)ep+1

pk − χN(p)

× ∑
d ∣N

(−8
N

)
K

C(d , N)(1/d)(N−3)/2 ⋅ ∏
p∣n
p∤d

χd(pep)∏
p∣n
p∣d

χN/d(pep)
pkep

.

On the other hand,

(−8
N

)
K

C(d , N)(1/d)(N−3)/2 ⋅ ∏
p∣n
p∤d

χd(pep)∏
p∣n
p∣d

χN/d(pep)
pkep

is a multiplicative function of d ∣ N . Therefore, we have

1 − N
B(N−1)/2, χN

∑
d ∣N

C(d , N)(N/d)(N−3)/2 ⋅ σ(N−3)/2(χN/d , χd ; n)

= (−8
N

)
K

1 − N
B(N−1)/2, χN

N(N−3)/2 ∏
p∣n
p∣N

pkep ∏
p∣n

p∤N

(pk)ep+1 − χN(p)ep+1

pk − χN(p)

× ∏
s∣N

s prime

⎛
⎜⎜⎜
⎝

1 + (−8
N

)
K

C(s, N)(1/s)(N−3)/2 ⋅∏
p∣n
p∤s

χs(pep)∏
p∣n
p∣s

χN/s(pep)
pkep

⎞
⎟⎟⎟
⎠
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= (−8
N

)
K

1 − N
B(N−1)/2, χN

N(N−3)/2nk ∏
p∣n

p∤N

1 − χN(p)ep+1/(pk)ep+1

1 − χN(p)/pk

× ∏
s∣N

s prime

⎛
⎜⎜⎜
⎝

1 + (−8
N

)
K

C(s, N)(1/s)(N−3)/2 ⋅∏
p∣n
p∤s

χs(pep)∏
p∣n
p∣s

χN/s(pep)
pkep

⎞
⎟⎟⎟
⎠

.

The product over primes s ∣ N is at least

∏
s∣N

(1 − 1
s
)

while the first product

∏
p∣n

p∤N

1 − χN(p)ep+1/(pk)ep+1

1 − χN(p)/pk = ∏
p∣n

p∤N

(1 + χN(p)p−k − χN(p)ep+1 p−k(ep+1)

1 − χN(p)p−k )

≥ ∏
p∣n
p≥3

(1 − p−k + p−2k

1 − p−k ) .

When N > 5 and hence k > 1, we have

∏
p∣n
p≥3

(1 − p−k + p−2k

1 − p−k ) > ∏
p≥3

(1 − p−k + p−2k

1 − p−k )

which converges to a positive number. When N = 5, we have

∏
p∣n
p≥3

(1 − p−1 + p−2

1 − p−1 ) ≫ ∏
p∣n

(1 − 1
p
) = φ(n)

n
≫ 1

log log n
.

It remains to show (−8
N

)
K

1 − N
B(N−1)/2, χN

N(N−3)/2 > 0. We have the relation between

Dirichlet L-functions and Bernoulli numbers [9, Theorem 3.3.4]:

B(N−1)/2, χN = 2k!N k

(−1)(N−3)/2(2πi)(N−1)/2W(χN)L((N − 1)/2, χN)

= 1
(−1)(N−3)/2 i(N−1)/2εN

2k!N k−1/2L((N − 1)/2, χN)
(2π)(N−1)/2 .

We have
2k!N k−1/2L((N − 1)/2, χN)

(2π)(N−1)/2 > 0 and it is easy to check

1
(−1)(N−3)/2 i(N−1)/2εN

= −(−8
N

)
K

. This completes the proof. ∎
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For each non-negative integer r, we define Vr(n) for n ≥ 0 by

∑
n≥0

Vr(n)qn = 1
(q; q)r

∞

= (∑
n≥0

P(n)qn)
r

= ∑
n≥0

∑
x∈Nr

0
∑ x i=n

r
∏
i=1

P(x i)qn .

We have

Proposition 6.2 For r ≥ 1,

(i) lim
n→∞

Vr(n)
Vr(n − 1) = 1.

(ii) lim
n→∞

Vr−1(n)
Vr(n) = 0.

Proof We use induction on r. When r = 1, both (i) and (ii) hold since V1(n) = P(n)
andV0(n) = 0 for n > 0. Consider r ≥ 2 and assume that both (i) and (ii) hold for r − 1.

First, we prove part (ii) for r. We have

Vr(n) = Vr−1(n) +Vr−1(n − 1)P(1) +Vr−1(n − 2)P(2) +⋯ +Vr−1(0)P(n).

By part (i) for r − 1, for each fixed positive integer k, we have

lim
n→∞

Vr−1(n)
Vr−1(n − k) = 1.

Therefore, part (ii) for r holds.
Finally, we prove part (i) for r. It suffices to show that for any given ε > 0, we have

Vr(n)
Vr(n − 1) < 1 + ε for all sufficiently large n.

Fix k such that P(m)/P(m − 1) < 1 + ε/2 for every m ≥ k. Let

S = {x ∈ Nr
0 ∶ ∑ x i = n and x1 ≥ k},

S′ = {x ∈ Nr
0 ∶ ∑ x i = n and x1 < k}.

For each x = (x1 , . . . , xr) ∈ S, put y = (y1 , . . . , yr) with y1 = x1 − 1 and y i = x i for
i ≥ 2. Then we have

r
∏
i=1

P(x i)/
r

∏
i=1

P(y i) = P(x1)/P(x1 − 1) < 1 + ε/2,

which implies

(∑
x∈S

r
∏
i=1

P(x i))/Vr(n − 1) < 1 + ε/2.(6.1)

On the other hand, we have

∑
x∈S′

r
∏
i=1

P(x i) =
k−1
∑
j=0

P( j)Vr−1(n − j).
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And since each Vr−1(n − j)/Vr(n) → 0 as n → ∞, we have

(∑
x∈S′

r
∏
i=1

P(x i))/Vr(n − 1) < ε/2

for all sufficiently large n. Combining this with (6.1), we finish the proof that
Vr(n)/Vr(n − 1) < 1 + ε for all sufficiently large n. ∎

Now, we prove Theorem 1.4.

Proof When N = 5, 7, or 11 from (5.3) and Sturm’s theorem, we have cϕN(n) =
∑d ∣N N/d ⋅ P ( N

d2 n − N2−d2

24d2 ) (≠ 0). Therefore, the statement for N = 5, 7, or 11 follows
immediately. From now on assume N > 11. By Theorem 5.3, we have

fθ N−1(z) − 1 − ∑
n≥1

U(n)qn ∈ S(N−1)/2(Γ0(N), χN).

Thus, by [4, Theorem 9.2.1.(a)], we have

fθ N−1(z) − 1 − ∑
n≥1

U(n)qn = ∑
n≥1

O(n(N−1)/4)qn .

On the other hand, by Theorem 5.2, we have

(q; q)N
∞∑

d ∣N
(N/d) ∑

n≥0
P ( N

d2 n − N2 − d2

24d2 ) qn − 1 − ∑
n≥1

U(n)qn ∈ S(N−1)/2(Γ0(N), χN).

Hence, by [4, Theorem 9.2.1.(a)], we have

(q; q)N
∞∑

d ∣N
(N/d) ∑

n≥0
P ( N

d2 n − N2 − d2

24d2 ) qn − 1 − ∑
n≥1

U(n)qn

= ∑
n≥1

O(n(N−1)/4)qn .

Now we let V(n) ∶= VN(n) so that

1
(q; q)N

∞

= ∑
n≥0

V(n)qn .

With this notation and the earlier arguments, we obtain

cϕN(n) − ∑
�+m=n

V(m)U() = O ( ∑
�+m=n

V(m)�(N−1)/4) ,(6.2)

and

∑
d ∣N

(N/d) ∑
n≥0

P ( N
d2 n − N2 − d2

24d2 ) − ∑
�+m=n

V(m)U(�)

= O ( ∑
�+m=n

V(m)�(N−1)/4) .(6.3)
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From (6.2) and (6.3), we have

lim
n→∞

cϕN(n)

∑
d ∣N

(N/d)P ( N
d2 n − N2 − d2

24d2 )

= lim
n→∞

∑
�+m=n

V(m)U(�) + O ( ∑
�+m=n

V(m)�(N−1)/4)

∑
�+m=n

V(m)U(�) + O ( ∑
�+m=n

V(m)�(N−1)/4)
.

To obtain the desired result, we prove

∑
�+m=n

V(m)�(N−1)/4 = o ( ∑
�+m=n

V(m)U(�)) as n → ∞.(6.4)

Let ε > 0. Since N > 11, we have that U(�) ≫ �(N−3)/2 dominates �(N−1)/4 when � is
large. Choose Lε > 0 such that for every � ≥ Lε , we have �(N−1)/4 < εU(�). This yields:

∑
�+m=n ,�≥Lε

V(m)�(N−1)/4 < ε ∑
�+m=n

V(m)U(�)(6.5)

Choose a positive integer L′ε such that

U(�) > ε−1L(N+3)/4
ε for every � ≥ L′ε .(6.6)

We now consider � < Lε . We have

V(n − �)�(N−1)/4 ≤ V(n − �)L(N−1)/4
ε ≤ ε

Lε
V(n − �)U(L′ε�).

Proposition 6.2 implies that V(n − �) < 2V(n − L′ε�) for every � < Lε and for every
sufficiently large n. This yields

V(n − �)�(N−1)/4 ≤ 2ε
Lε

V(n − L′ε�)U(L′ε�)

and hence

∑
�+m=n ,�<Lε

V(m)�(N−1)/4 < 2ε ∑
�+m=n

V(m)U(�)(6.7)

for all sufficiently large n. From (6.5) and (6.7), we have

∑
�+m=n

V(m)�(N−1)/4 < 3ε ∑
�+m=n

V(m)U(�)

for all sufficiently large n and this finishes the proof. ∎
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