
ANZIAM J. 57(2015), 166–174
doi:10.1017/S1446181115000140

EFFICIENT ALGORITHMS FOR TRAVELLING SALESMAN
PROBLEMS ARISING IN WAREHOUSE ORDER PICKING

H. CHARKHGARD) 1 and M. SAVELSBERGH2

(Received 12 November, 2013; accepted 6 May, 2015; first published online 22 September 2015)

Abstract

We investigate two routing problems that arise when order pickers traverse an aisle in
a warehouse. The routing problems can be viewed as Euclidean travelling salesman
problems with points on two parallel lines. We show that if the order picker traverses
only a section of the aisle and then returns, then an optimal solution can be found in
linear time, and if the order picker traverses the entire aisle, then an optimal solution
can be found in quadratic time. Moreover, we show how to approximate the routing
cost in linear time by computing a minimum spanning tree for the points on the parallel
lines.

2010 Mathematics subject classification: primary 90B06; secondary 11Y16.

Keywords and phrases: order batching, order picking, picker routing, travelling
salesman problem, minimum spanning tree problem.

1. Introduction

Studies have estimated that 20% of logistic costs are related to warehousing (see for
example [3]), and that up to 65% of total warehouse operating costs are because
of order picking, that is, the process of retrieving articles from a storage area in a
warehouse to satisfy customers’ demands [5, 11]. As a consequence, optimizing order
picking may significantly reduce warehousing and logistic costs.

A well-established technique for optimizing order picking is order batching [4],
that is, grouping orders and picking them in a group in a single picking tour. Thus, the
order batching problem (OBP) seeks to cluster orders into groups so as to minimize
the total order processing time, which includes travel time, search time, pick time and
setup time. Travel time refers to the time required for an order picker to travel between
locations in the order picking tour, search time refers to the time required to identify

1School of Mathematical and Physical Sciences, University of Newcastle, NSW 2308, Australia;
e-mail: Hadi.Charkhgard@uon.edu.au.
2H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA 30332-0205, USA; e-mail: Martin.Savelsbergh@isye.gatech.edu.
c© Australian Mathematical Society 2015, Serial-fee code 1446-1811/2015 $16.00

166

https://doi.org/10.1017/S1446181115000140 Published online by Cambridge University Press

http://orcid.org/0000-0001-5416-6960
mailto:Hadi.Charkhgard@uon.edu.au
mailto:Martin.Savelsbergh@isye.gatech.edu
https://doi.org/10.1017/S1446181115000140

[2] Efficient algorithms for TSPs arising in warehouse order picking 167

0

10

20

30

40

50

60

Travel Search Pick Setup Other

%
 o

f
or

de
r

pr
oc

es
si

ng
 ti

m
e

Activity

Figure 1. Typical distribution of order processing time [11].

the articles to be picked, pick time refers to the time required to transfer the required
number of articles from their storage locations to the cart or vehicle and setup time
refers to the time required for administrative and setup tasks at the beginning and the
end of each picking tour [2]. A typical distribution of order processing time can be
found in Figure 1. Because of the significance of travel time, the objective function in
the OBP is usually the minimization of the travel time (or distance) across all picking
tours.

The picker routing problem (PRP) seeks to minimize the distance travelled by a
(single) picker, given a set of pick locations that has to be visited. It is a special
case of the travelling salesman problem (TSP) due to the typical rectangular layout of
the storage area in a warehouse. Ratliff and Rosenthal [9] have shown that the PRP
can be solved in polynomial time. However, their algorithm is too time consuming
to be incorporated as a subroutine in the algorithms for the OBP. Furthermore, the
resulting order picking tours are not necessarily intuitive and may, therefore, increase
the number of picker errors. As a consequence, researchers have focused more on
restricted routing strategies, that is, routing strategies that produce pick tours with a
specific structure. Figure 2 displays the S-shape, the return, the largest gap and the
combined strategies [6, 8, 10].

In the S-shape routing strategy, an order picker enters an aisle and traverses the
aisle if there exists at least one article that has to be picked from that aisle, then goes
to the next aisle. The order picker returns to his starting point after traversing the last
aisle which has to be visited. In the return strategy, an order picker enters an aisle
and returns after visiting the most distant pick location. In the largest gap strategy,
an order picker traverses the first and last aisles from which articles have to be picked
entirely, whereas the other aisles are traversed partially, in and out, from both ends, in
such way that the distance that is not traversed is maximum. In the combined routing

https://doi.org/10.1017/S1446181115000140 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000140

168 H. Charkhgard and M. Savelsbergh [3]

DEPOT

S-shape

DEPOT

Return

DEPOT

Largest gap

DEPOT

Combined

(a)

(c)

(b)

(d)

Figure 2. Restricted routing strategies.

strategy, each aisle is either traversed entirely or entered and left from the same end
[7], which usually generates a near-optimal solution [1].

All strategies involve the solutions of two fundamental aisle routing problems (see
Figure 3):
• optimally pick all required items while traversing the entire aisle (referred to as

the passing strategy); and
• optimally pick all required items and return to the end of the aisle where entered

(referred to as the returning strategy).

https://doi.org/10.1017/S1446181115000140 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000140

[4] Efficient algorithms for TSPs arising in warehouse order picking 169

Passing strategyReturning startegy

Figure 3. Two aisle routing problems.

In most of the algorithms for the OBP, the travel time incurred while crossing from
one side of the aisle to the other side of the aisle is ignored for efficiency reasons. In
this paper, we show that these two aisle routing problems, which are special cases of
the TSP, can be solved efficiently: for the passing strategy in O(n2) time and for the
returning strategy in O(n) time, where n is the number of pick locations in an aisle.
Because O(n2) time may be computationally prohibitive when solving large instances
of the OBP, we show that an approximate cost for the passing strategy, derived from
the minimum spanning tree for the pick locations, can be computed in O(n) time. The
details are provided in the next section.

2. Efficient algorithms for aisle routing problems

We first introduce the concepts and notation that will facilitate the presentation and
discussion of the proposed algorithms. We denote the starting point for the order picker
with s and the end point for the order picker, in case of the passing strategy, with t. Let
nr and nl be the numbers of pick locations to be visited on the right- and the left-hand
sides of the aisle, respectively. Furthermore, let the ordered set of pick locations on
the right-hand side of the aisle be {r1, r2, . . . , rnr }, with r1 closest to s, and the ordered
set of pick locations on the left-hand side of the aisle be {l1, l2, . . . , lnl}, with l1 closest
to s. We denote the (Euclidean) distance between points i and j by d(i, j). Finally, we

https://doi.org/10.1017/S1446181115000140 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000140

170 H. Charkhgard and M. Savelsbergh [5]

assume that there exists at least one pick location on each side of the aisle (otherwise,
the aisle routing problems are trivial).

Before discussing the algorithms for solving the aisle routing problem, we introduce
a notion and an important property of optimal solutions.

Definition 2.1. A tour {1, . . . , n} is said to have the no-crossing property if, for every
pair of links {i, i + 1} and { j, j + 1} with j > i + 1, the intersection of the closed
segments (i, i + 1) and (j, j + 1) is empty.

Lemma 2.2. There exists an optimal tour that has the no-crossing property.

Proof. Suppose that no such optimal tour exists, and let k be the point in the
intersection of (i, i + 1) and (j, j + 1). Because of the triangle inequality, we have
d(i, j) ≤ d(i, k) + d(k, j) and d(i + 1, j + 1) ≤ d(i + 1, k) + d(k, j + 1). But that implies
that d(i, j) + d(i + 1, j + 1) ≤ d(i, k) + d(k, j) + d(i + 1, k) + d(k, j + 1) = d(i, i + 1) +

d(j, j + 1), which is a contradiction. �

We start our analysis by considering the returning strategy.

Lemma 2.3. An optimal tour for the returning strategy is to go to the first pick location
on the right-hand side of the aisle, visit all pick locations on the right-hand side of the
aisle, cross over to the most distant pick location on the left-hand side of the aisle, visit
all pick locations on the left-hand side of the aisle and return to the starting point.

Proof. Since it is the only tour with no-crossing property, it is an optimal tour. �

Corollary 2.4. An optimal solution for the returning strategy can be computed in
linear time.

Next, we consider the passing strategy. We start with the following observation.

Proposition 2.5. If 1 ≤ i < j ≤ nr, then the order picker must visit ri before r j in an
optimal tour. Similarly, if 1 ≤ i < j ≤ nl, then the order picker must visit li before l j in
an optimal tour.

Proof. Suppose that this is not true. Then there must exist at least two pick locations
on one side of aisle, that is, ri and r j or li and l j, which have not been visited in order.
But this implies that the tour does not satisfy the no-crossing property, which is a
contradiction. �

Proposition 2.5 allows us to develop an efficient dynamic programming algorithm
for finding a path from s to t with the minimum cost. Let fL(i, j) be the minimum
cost of visiting {l1, l2, . . . , li} and {r1, r2, . . . , r j} and ending on the left, that is, at
li, and fR(i, j) be the minimum cost of visiting {l1, l2, . . . , li} and {r1, r2, . . . , r j} and
ending on the right, that is, at r j. We have fL(0, 0) = 0, fR(0, 0) = 0, fL(1, 0) = d(s, l1)
and fR(0, 1) = d(s, r1). The values of the remaining costs can be calculated using the
following recursive equations:

fL(i, j) = min{ fL(i − 1, j) + d(li−1, li), fR(i − 1, j) + d(r j, li)}

https://doi.org/10.1017/S1446181115000140 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000140

[6] Efficient algorithms for TSPs arising in warehouse order picking 171

and
fR(i, j) = min{ fR(i, j − 1) + d(r j−1, r j), fL(i, j − 1) + d(li, r j)}.

The optimal value for the passing strategy is

min{ fL(nl, nr) + d(nl, t), fR(nl, nr) + d(nr, t)}.

Finally, given that the number of pick locations is n, all values of fL(i, j) and fR(i, j)
can be computed in O(n2). Thus, we have the following observation.

Proposition 2.6. An optimal solution for the passing strategy can be computed in O(n2)
time.

Even though an optimal solution for the passing strategy can be found in O(n2)
time, this may be too expensive computationally as a subroutine in an algorithm for the
OBP. Consequently, we next consider computing an approximate cost for the passing
strategy.

Specifically, we propose to compute a minimum spanning tree (MST) on the pick
locations and then connect s and t to their closest pick locations. This not only provides
an approximate cost; it, in fact, provides a lower bound on the optimal value for the
passing strategy.

To describe the algorithm, we assume that the pick locations, or points, are given
by means of (x, y)-coordinates, labelled 1, . . . , n in nondecreasing order of the
y-coordinates, and in case of ties, the point closest to the previous point in the ordering
is given preference. If l1 and r1 have same y-coordinates, arbitrarily label one of
them as 1. A formal description of the algorithm for computing an MST is given
in Algorithm 1.

Observation 2.7. For each point, there are at most four candidate points to which it
can be connected by an edge in the spanning tree; see Figure 4.

Recall that for any cut δ(V) with V ⊆ {1, . . . , n}, a MST will contain at least one
of the minimum cost edges in the cut. In iteration i, the algorithm considers the cut
defined by the connected component containing point i and adds a minimum cost edge
in the cut to the partially constructed spanning tree. More specifically, in iteration i,
the algorithm examines edges (i, u(i)), where u(i) is the closest point up from i, and
(i, a(i)), where a(i) is the closest point across and up from i (i and a(i) may have the
same y-coordinate); see Figure 4.

The correctness of the algorithm follows from the following theorem.

Theorem 2.8. At the start of iteration i for i > 1, the edge e identified in iteration i − 1
represents the minimum cost edge with end points in {1, . . . , i} ∪ {a(i)}, other than edge
(i, a(i)), linking the two different connected components containing i and a(i).

Proof. It is easy to verify that this is true at the start of iteration 2. Next, assume that it
is true at the start of iteration i and examine the situation at the start of iteration i + 1.

The only edge with both end points in {1, . . . , i} ∪ {a(i)} that may provide a cheaper
alternative to edge e (as known at the start of iteration i) is (i, a(i)). Therefore,

https://doi.org/10.1017/S1446181115000140 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000140

172 H. Charkhgard and M. Savelsbergh [7]

Algorithm 1: Computing an MST when all the points are on two parallel lines
Input: Set of points {1, . . . , n}
Input: Distance function d(i, j) ∀i, j ∈ {1, . . . , n}
Step 1. Order points
Step 2. Process points
d =∞; e = undefined
for i = 1, . . . , n − 1 do

u(i) = up point
a(i) = across point
Update shortest connection between component with i and component with a(i)
if d(i, a(i)) < d then

d = d(i, a(i)); e = (i, a(i))

Select minimum cost edge in cut defined by the points in the component with i
if d(i, u(i)) ≤ d then

Make (i, u(i)) permanent

else
Make e permanent
d = d(i, u(i)); e = (i, u(i))

i

a(i)

u(i)

Figure 4. Four candidates for connecting to point i.

Algorithm 1 compares the cost of the two edges and performs an update of e, if
necessary, before selecting the minimum cost edge in the cut defined by the points
in the component containing i.

Now, we consider the following two cases.

Case 1: i + 1 = a(i). This implies that a(i + 1) = u(i). If we made (i, u(i)) permanent
in iteration i, then u(i) and i would now be part of the same component. Since e is

https://doi.org/10.1017/S1446181115000140 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000140

[8] Efficient algorithms for TSPs arising in warehouse order picking 173

the minimum cost edge with end points in {1, . . . , i} ∪ {a(i)} linking the component
containing i with the component containing a(i), it is now the minimum cost edge with
end points in {1, . . . , i, i + 1} ∪ {a(i)} linking the component containing a(i + 1) = u(i)
with a(i) = i + 1, with the possible exception of (i + 1, a(i + 1)).

If we made e permanent in iteration i, then i and a(i) would now be part of the same
component. Because of the ordering of the points (and the fact that we have Euclidean
distances), the minimum cost edge linking the component containing u(i) = a(i + 1)
with the component containing a(i) = i + 1 is either (u(i), i) = e or (i + 1, a(i + 1)).

Case 2: i + 1 = u(i). This implies that a(i + 1) = a(i). The remainder of the argument
is analogous to Case 1.

This completes the proof. �

Theorem 2.8 implies that at the start of iteration i, there do not exist paths from
i to u(i) and from i to a(i) in the partially constructed spanning tree. Therefore,
adding an edge that connects the component containing i with either u(i) or with the
component containing a(i) does not create a cycle. Thus, in each iteration, Algorithm 1
selects a minimum cost edge in a cut, that is, the cut determined by the points in the
component containing i, and never creates a cycle. Therefore, because Algorithm 1
selects n − 1 edges, upon completion it has constructed a minimum cost spanning tree.
Since Algorithm 1 has n − 1 iterations and the work in each iteration takes constant
time, it has time complexity O(n).

3. Conclusion

We have investigated two routing problems arising in the context of warehouse
order picking. They can be viewed as a Euclidean TSP with points on two parallel
lines. We have developed a dynamic programming algorithm for its solution that runs
in quadratic time. Furthermore, we have considered the MST problem with points on
two parallel lines, and shown that it can be solved in linear time. The algorithms are
intended to be used as core components in algorithms for the OBP.

References

[1] J. Bartholdi and S. T. Hackman, Warehouse & distribution science (2011);
http://www.warehouse-science.com.

[2] E. P. Chew and L. C. Tang, “Travel time analysis for general item location assignment in a
rectangular warehouse”, European J. Oper. Res. 112 (1999) 582–597;
doi:10.1016/S0377-2217(97)00416-5.

[3] R. de Koster, T. Le-Duc and K. J. Roodbergen, “Design and control of warehouse order picking:
a literature review”, European J. Oper. Res. 182 (2007) 481–501; doi:10.1016/j.ejor.2006.07.009.

[4] R. de Koster, K. Roodbergen and R. van Voorden, “Reduction of walking time in the distribution
center of De Bijenkorf”, in: New trends in distribution logistics, Volume 480 of Lect. Notes
Econom. Math. Syst. (eds M. G. Speranza and P. Stähly), (Springer, Berlin, 1999) 215–234.

[5] E. Frazelle, World-class warehousing and material handling (McGraw-Hill, New York, 2002).
[6] R. W. Hall, “Distance approximations for routing manual pickers in a warehouse”, IIE Trans. 25

(1993) 76–87; doi:10.1080/07408179308964306.

https://doi.org/10.1017/S1446181115000140 Published online by Cambridge University Press

http://www.warehouse-science.com
http://dx.doi.org/10.1016/S0377-2217(97)00416-5
http://dx.doi.org/10.1016/j.ejor.2006.07.009
http://dx.doi.org/10.1080/07408179308964306
https://doi.org/10.1017/S1446181115000140

174 H. Charkhgard and M. Savelsbergh [9]

[7] S. Henn, “Algorithms for on-line order batching in an order picking warehouse”, Comput. Oper.
Res. 39 (2012) 2549–2563; doi:10.1016/j.cor.2011.12.019.

[8] C. G. Petersen II, “An evaluation of order picking routing policies”, Int. J. Oper. Prod. Manage.
17 (1997) 1098–1111; doi:10.1108/01443579710177860.

[9] H. D. Ratliff and A. S. Rosenthal, “Order-picking in a rectangular warehouse: a solvable case of
the traveling salesman problem”, Oper. Res. 31 (1983) 507–521; doi:10.1287/opre.31.3.507.

[10] K. J. Roodbergen, Layout and routing methods for warehouses (RSM Erasmus University,
The Netherlands, 2001) hdl.handle.net/1765/861.

[11] J. A. Tompkins, J. A. White, Y. A. Bozer and J. M. A. Tanchoco, Facilities planning (John Wiley,
Hoboken, NJ, 2003).

https://doi.org/10.1017/S1446181115000140 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.cor.2011.12.019
http://dx.doi.org/10.1108/01443579710177860
http://dx.doi.org/10.1287/opre.31.3.507
http://hdl.handle.net/1765/861
https://doi.org/10.1017/S1446181115000140

	Introduction
	Efficient algorithms for aisle routing problems
	Conclusion
	References

