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Abstract
Solving the Arithmetic Word Problems (AWPs) using AI techniques has attracted much attention in
recent years. We feel that the current AWP solvers are under-utilizing the relevant domain knowledge. We
present a knowledge- and learning-based system that effectively solves AWPs of a specific type—those that
involve transfer of objects from one agent to another (Transfer Cases (TC)). We represent the knowledge
relevant to these problems as TC Ontology. The sentences in TC-AWPs contain information of essentially
four types: before-transfer, transfer, after-transfer, and query. Our system (KLAUS-Tr) uses statistical clas-
sifier to recognize the types of sentences. The sentence types guide the information extraction process used
to identify the agents, quantities, units, types of objects, and the direction of transfer from the AWP text.
The extracted information is represented as an RDF graph that utilizes the TC Ontology terminology. To
solve the given AWP, we utilize semantic web rule language (SWRL) rules that capture the knowledge
about how object transfer affects the RDF graph of the AWP. Using the TC ontology, we also analyze if
the given problem is consistent or otherwise. The different ways in which TC-AWPs can be inconsistent
are encoded as SWRL rules. Thus, KLAUS-Tr can identify if the given AWP is invalid and accordingly
notify the user. Since the existing datasets do not have inconsistent AWPs, we create AWPs of this type
and augment the datasets. We have implemented KLAUS-Tr and tested it on TC-type AWPs drawn from
the All-Arith and other datasets. We find that TC-AWPs constitute about 40% of the AWPs in a typical
dataset like All-Arith. Our system achieves an impressive accuracy of 92%, thus improving the state-of-the-
art significantly. We plan to extend the system to handle AWPs that contain multiple transfers of objects
and also offer explanations of the solutions.
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1. Introduction
Arithmetic Word Problems (AWPs) are mathematical numerical problems expressed in natural
languages like English. Electronic versions of many articles like sports, science, finance, medicine
contain arithmetic situations that require a natural language understanding (NLU) of the text
and quantities involved. AWP domain provides a natural representation for such quantitative
reasoning situations. The success of AWP solvers primarily depends on the amount and accuracy
of information a system captures while processing the quantities and their respective units present
in the problem text. Intuitively, a focus on the quantity-unit associations and unit representation
might provide better ground for a generalized AWP solver. The AWP domain contains many
problems related to the transfer of objects between two persons (called Agents in the rest of the
paper), which we title as transfer case (TC) (Figure 1). We find that the TC-type AWPs constitute
about 40% of the AWPs in typical datasets, and hence, it is a substantial subset of the AWPs to
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Figure 1. Example transfer case (TC) AWPs.

attempt a new approach of solving. We observe that the knowledge present in TC-AWPs can
be intuitively and naturally represented as an ontology. Modeling of the TC-AWP sub-domain
using an ontology gives some insight into how we can address the modeling challenges present
in the other sub-domains, such as part-whole AWPs, age AWPs. Note that part-whole AWPs
are those word problems where two numbers present in the problem text quantify the parts of a
larger quantity, and they need to be added if the posed question asks about the larger quantity.
For example, apples and bananas belong to the Fruit class. To model these AWPs, the part-whole
knowledge needs to be represented as a separate ontology. Age AWPs are challenging to model as
they require time-specific domain knowledge to be represented.

Analyzing existingAWP solvers (for transfer cases):We analyze the existing AWP solvers for
the transfer cases. We mainly investigate Wolfram-Alpha,a Illinois-Math-Solverb (Roy and Roth
2017), Text2Math (Zou and Lu 2019), and ExpTree (Roy and Roth 2015) because we find explicit
presence of the transfer cases in the datasets they use. Since Wolfram-Alpha and Illinois-Math-
Solver provide a GUI interface to verify the solutions, we try solving some TC-AWPs using these
two systems. However, the research gaps mentioned in the following section are the outcomes of
the cumulative investigation of these four approaches (mentioned above). In the following, we
present four standard TC-AWPs along with the results generated by Wolfram-Alpha & Illinois-
Math-Solver (only for failed cases).

First, we present two example TC-AWPs that existing AWP solvers are able to solve, which
are as follows: Example-1: Stephen has 17 books. He gives 9 books to Daniel. How many books
does Stephen have now? and Example-2: Stephen has 17 books. Daniel has 6 books. Stephen gave
9 books to Daniel. How many books does Daniel have now?. These examples differ in whether
they ask about the post-transfer, final quantity of the giver (Example 1) versus the recipient
(Example 2).

Next, we present two example TC-AWPs that one or more existing AWP solvers (mentioned
above) are unable to solve, which are as follows: Example-3: Stephen has 17 books and 2 pens.
Daniel has 4 books and 8 pens. Stephen gives 9 books to Daniel. How many books does Daniel
have now? (see Figure 2a for output) and Example-4: Stephen has 17 masks. He gives 9 masks to
Daniel. How many masks does Stephen have now? (see Figure 2b for output).

1.1. Research gap
We analyzed the existing AWP solvers for the diverse transfer cases. In the investigation, we
observed variations in question templates, number of sentences, complexity of the sentences,
frequent-infrequent quantities, etc. In this section, we summarize the conclusions drawn from
this investigation.

(1) If more than one quantity types exist in AWP sentences, existing AWP solvers fail to
understand all the appropriate agent-quantity associations in some cases. Adding minute

ahttps://www.wolframalpha.com/examples/mathematics/elementary-math/mathematical-word-problems/
bhttps://cogcomp.seas.upenn.edu/page/demo_view/Math
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(a) Output generated for Example 3 (b) Output generated for Example 4

Figure 2. Existing systems (Wolfram-Alpha, Illinois Math Solver—access links at page-2 footnotes) couldn’t generate correct
answers as per the query, for Example-3 (shown in part a) and Example-4 (shown in part b). However, here, we only show
results of Wolfram-Alpha.

information to an existing word problemmay change its template (refers to number of sen-
tences, number of objects, etc). Existing AWP solvers do well if they have seen all template
variations and enough examples per template during the training phase.

(2) If test instances include an uncommon entity type (example: mask), that is, none of the
training instances include such entity type, the existing systems may misinterpret the
AWP.

(3) It’s challenging to capture all the agent-quantity associations from the compound sen-
tences. For example, Stephen has 12 books and 10 pens.

(4) Existing solvers use knowledge representation, but adopt an approach of combining
knowledge representation and its use in the solver. The knowledge captured in the model
is not available as a separate artifact, and hence, it is hard to identify a reason behind the
failure cases. There could be an issue with either knowledge representation or reasoning.
Language variations such as presence of rare words, lexical variations, unfamiliar transfer
verbs seem to have an effect on NLU part of these systems.

1.2. Essential discussion to formulate the research problem
We feel that it is essential to model the domain knowledge to develop a robust TC-AWP solver.
Note that, infusing the domain knowledge into the system is itself a challenging task because
domain knowledge needs to be represented formally beforehand. Knowledge Representation and
Reasoning (KR&R) is a sub-field of Artificial Intelligence (AI) that deals with logical formalization
of information and rational reasoning behavior modeling. In KR, Ontology is a formal knowledge
modeling framework where domain knowledge is represented in terms of an ontology expressed
in a Description Logic (DL) (Baader et al. 2010). The approach proposed in this paper leverages
ontological representations while solving TC-AWPs. There has been a recent resurgence in devel-
oping automatic AWP solvers as researchers seek to provide a robust system for text/document
processing domains with reasoning enabled. We identify the gaps in the current modeling of the
AWP domain and present a robust AWP solver that exploits the strengths of the machine learning
and knowledge representation fields.

The AWP domain’s challenging and popular datasets are MAWPS (Koncel-Kedziorski et al.
2016), AllArith (Roy and Roth 2017), MathDQN (Wang et al. 2018b), Math23K (Wang et al.
2018a), Dolphin1878 (or Dolphin-S) (Huang et al. 2016), etc. These datasets contain only consis-
tent word problems (i.e., consistent with the assumptions of the domain). AWPs mentioned in
the Figure 1 are of consistent type. In Figure 3, we present two inconsistent word problems from
the TC domain. Also, in real-life situations, the text/document domain may contain inconsistent
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Figure 3. Inconsistent word problems.

facts. For example, as shown in Problem 1 (Figure 3), if a person tries to transfer specific units of a
quantity and does not own that many units, then the transfer cannot occur. We call these kinds of
sentences as inconsistent facts as the information present in the sentences is not consistent with the
assumptions of the domain. Similarly, the question posed in Problem 2 cannot be answered as the
given AWP in under-represented. When a word problem is “inconsistent with the assumptions
for the problem” or “under-represented,” we call it an inconsistent AWP. We present a detailed
discussion on inconsistency handling and motivation for it in Section 6. Alternatively, we call
consistent and inconsistent AWPs as Good and Bad problems, respectively.

The current AWP datasets consist of only consistent word problems. Therefore, we have cre-
ated some inconsistent AWPs to assess the proposed system for consistency verification of word
problems.

The proposed system checks for inconsistencies in a word problem and categorizes it into Bad
category if found and in case of no inconsistency categorizes it as a Good problem and computes
the answer. It becomes natural and feasible to detect inconsistency in the proposed framework, as
relevant semantic information is represented while modeling the domain knowledge. By extend-
ing the system to check the validity of AWPs, we aim to build a robust system and also a system
whose failure to solve a problem can possibly be explained by it. Moreover, please note that we
provide separable knowledge, which can be further reused in other applications such as AWP
generation and AWP explainable system.

Structure of the transfer case AWPs:We briefly discuss two important aspects of the transfer
cases in the following: (a) states of a TC word problem and (b) characterization of various type
of sentences from TC domain. States: Each TC-AWP has two states before and after. Before state
consists of the value and type information for all the agents’ quantities before the object transfer,
whereas after state consists of the value and type information for all the agents’ quantities after
the object transfer. Note that we reach from before state to after state when object transfer hap-
pens and quantities gets updated. Characterization: A TC-AWP is a sequence of two or more
clauses/sentences where each clause/sentence has a specific purpose. Note that after sentence sim-
plification task (explained in Section 4.1), each clause is represented as a sentence. Based on the
domain analysis, we characterize the various sentences and identify four types of sentences in the
TC domain. We call a sentence BS type if it carries the agent-quantity association information
before the object transfer. If a sentence consists of the object transfer information, we define it as a
Transfer (TR) type sentence. AS type sentences are those sentences which carry the agent-quantity
association information after the object transfer. The sentence asking for specific information
either from before state or after state is of Question (QS) type. Intuitively, each sentence type is
identified based on the specific information they carry. A TC-AWP consists of a combination of
above-mentioned four types of sentences, where it necessarily includes a QS type sentence.

Consider the following example TC word problem of consistent type: Stephen has 5 books
(S1). Daniel has 10 books (S2). Daniel gave him 2 books (S3). How many books now Stephen has?
(S4). Here, sentences S1 and S2 are of BS type, S3 is of TR type, and S4 is of QS type. The given
AWP does not involve any AS type sentence. Therefore, based on the domain analysis, we model
four classes to deal with the above-mentioned four types of sentences. We call the four classes
mentioned above as information-carrying classes, as they carry vital information for TC word
problems.
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The main contribution of the paper is a novel approach to solve the transfer cases where we use
learning component to learn the type of each sentence and knowledge component to model the
TC domain’s knowledge. The proposed system shows a way to leverage domain knowledge while
solving transfer cases.

1.3. Overview of the proposed system
Research Problem: Propose a system to solve TC-AWPs that can utilize domain knowledge and
requires no manual annotation of sentences. The system should detect if the given problem is
consistent and if so give a solution. It can be assumed that the given problem involves a single
transfer of a quantity.

In the proposed work, we present a knowledge- and learning-based robust AWP solver that
can “understand” the natural language text, restricted to the TC domain only. Since we develop
Knowledge and Learning-based, Unit focused, AWP Solver for the Transfer cases, we call the
proposed system KLAUS-Tr. We formally define the structure of the domain knowledge using
ontologies. The developed domain ontology helps understand the AWP text and detect incon-
sistent facts (data and problems). In the following, we compare the important aspects/features of
KLAUS-Tr against the existing approaches and discuss our work’s key contributions.

(a) KLAUS-Tr: How it differs from existing systems—To the best of our knowledge, in none
of the previous work researchers gave much attention to the following challenges: (1) automated
system to assess the validity of the problem before attempting to solve, (2) designing a dedicated
solution to a sub-domain of the word problem domain based on ontologies, (3) representing the
relationships present between (3a) the quantities and other entities, and (3b) quantities and the
units. However, Liang et al. (2018) present a meaning-based approach which focuses on the chal-
lenge mentioned in the point 3. We discuss the comparison with the meaning-based approach in
Section 2.2. In KLAUS-Tr, we focus only on TC-AWPs.

While processing and solving the test cases, the existing learning-based approaches (Hosseini
et al. 2014; Roy, Vieira, and Roth 2015; Sundaram and Khemani 2015; Mitra and Baral 2016; Liang
et al. 2016a,b) use annotated data (annotations: Quants, Equations, Alignments, etc.), whereas
KLAUS-Tr can solve the TC-AWPs without using these predefined annotations. We make use
of a light-weight machine learning classifier to produce the annotations (labels of the sentences).
Section 4 provides a detailed discussion. In Table 1, we compare KLAUS-Tr against the existing
AWP solvers w.r.t. four essential tasks such as Knowledge exploitation (K): whether the system
uses domain knowledge to solve word problems, Learning (L): whether the system learns impor-
tant information while solving AWPs, Reasoning (R): if the system can perform reasoning, and
Inferences (I): whether the system can infer essential facts. In this comparative study, we have
included only those systems that considered at least one of the datasets from AllArith (Roy and
Roth 2017), Dolphin-S (Huang et al. 2016),MathDQN (Wang et al. 2018b), andMAWPS (Koncel-
Kedziorski et al. 2016) for assessing the system and achieved state-of-the-art results. Other datasets
do not contain TC-AWPs. Since KLAUS-Tr focuses on TC-AWPs, in Arith-Tr, we gather all the
consistent TC word problems from the AWP datasets, and we add our own inconsistent word
problems to assess the proposed system. Our system outperforms state-of-the-art approaches
and achieves 92% accuracy while solving transfer cases (Section 7 provides more details). Note
that the datasets listed in Table 1 (other than Arith-Tr) also contain word problems other than
TC-AWPs.

(b) KLAUS-Tr: Summary & Key Contributions: Broadly, the proposed framework has two
components: learning component and knowledge component. Learning component is a classifier
that predicts the type of sentence. As previously mentioned, the TC domain consists of four types
of sentences; BS, AS, TR, and QS; they differ based on the type of information they contain.
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Table 1. Comparing KLAUS-Tr against other AWP solvers; K: knowledge, L: learning, R: reasoning, I: inferences

Model K L R I Dataset & Accuracy Annotations used

ALGES (Koncel-Kedziorski et al. 2015) AllArith; 60.4


ExpTree (Roy and Roth 2015) All-Arith; 79.4


UNITDEP (Roy and Roth 2017) All-Arith; 81.78


MathDQN (Wang et al. 2018) All-Arith; 72.68


Text2Math (Zou and Lu 2019) AI2+IL; 83.20


MDK (Roy and Roth 2018) AllArith; 77.86


T-RNN (Wang et al. 2019) MAWPS-S; 66.8

KLAUS-Tr Arith-Tr; 92 {we learn them}

The type-labeled sentences allow the system to extract appropriate knowledge while leveraging
knowledge component.

Knowledge component makes use of a domain ontology designed to represent the domain
knowledge formally. We extract vital information from the type-labeled sentences and map it to
the ontology structure. Finally, we make use of the consolidated knowledge to perform reasoning
and producing an outcome. We leverage knowledge axioms and Semantic Web Rule Language
(SWRL) rules to make inferences. Our system infers type of word problem, type of operator, etc.
The contributions of work are as follows:

• Ours is one of the first attempts to utilize domain knowledge and learning together to solve
word problems and to provide separate or independently represented domain knowledge.
The goal of learning component is to predict the type of a sentence since the system needs
to pass sentence-specific knowledge to the knowledge component. Intuitively, knowledge
component consolidates the domain knowledge (Ontology T-Box) and knowledge triples
(Ontology A-Box) extracted from the word problem text. The system makes use of the
consolidated knowledge to compute the answer.

• Instead of usingmanually given annotations, KLAUS-Trmakes use ofminimal self-learned
annotations. We do so by deploying a multi-class classifier.

• Since this work’s primary goal is to leverage domain knowledge, we propose a domain
ontology to formally represent concepts, relationships, and axioms for the TC domain.
We model domain knowledge using appropriate ontology axioms and SWRL rules. The
domain ontology can also be utilized in generating TC-AWPs, generating explanations,
etc.

• Ours is the first attempt to identify inconsistent word problems (we discuss the motivation
in Section 6.2). We do so by designing a set of knowledge axioms and SWRL rules. Since
the current AWP datasets do not contain inconsistent examples, we augment them.

The very next section discusses related work. In Section 3, we provide a short discussion of the
essential background details. In Section 4, we introduce the proposed system’s learning compo-
nent. Section 5 discusses the proposed TC ontology. Moving forward, we next explain the usage
of TC ontology and the complete working system in Section 6. In Section 7, we show an exper-
imental assessment of our system. Finally, in Section 8, we conclude and also discuss the future
directions of our research track.
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2. Related work
Our work is primarily focused on two research tracks: automatic AWP solvers and approaches
leveraging domain knowledge to solve AWPs. We refine the literature work based on the fol-
lowing keywords: verb categorization, word problem categorization, annotation minimization,
knowledgemodeling, etc. Also, we discuss the neural approaches which focus on the English AWP
datasets.We compare the proposed systemwith state-of-the-art AWP solvers that include transfer
cases.

2.1. Automatic AWP solvers:
Most prior work about solving AWPs adopt one of the following ideas: rule-based or statistic-
based or “tree-based.” Therefore, we discuss the existing systems by categorizing them into the
groups mentioned above. Mukherjee and Garain (2008) reviewed related approaches to the task
in literature. It also includes early Rule-driven systems that were developed to solve AWPs. The
stand-alone rule-based systems mostly rely on transforming the problem text into a set of prepo-
sitions and perform simple reasoning over these prepositions to compute the answer (Zhang et al.
2018). The stand-alone rule-based systems are outdated, as it is difficult to devise the rules for a
large set of problems.

Statistical approaches use machine learning models to identify the quantities, operators, and
other entities from the problem text and compute the answer with a simple logic inference pro-
cedure. ARIS (Hosseini et al. 2014) splits the problem text into fragments where each fragment
corresponds to a piece of specific information. It uses verb categorization to identify the various
fragments and thenmaps the information obtained from each fragment into an equation. The tag-
based statistical system (Liang et al. 2016b) analyzes the problem text and then uses a two-stage
approach to transform both body and question parts into their tag-based logic forms. The sys-
tem then performs inferences on the logic forms to compute the answer. Mitra and Baral (2016)
learns to use formulas to solve simple AWPs. It analyzes each sentence from the problem text
to identify the variables and their attributes and then automatically maps this information to a
higher-level representation. The system then uses the representation to recognize the presence of
the formula along with its associated variables. Both the approaches (Hosseini et al. 2014; Mitra
and Baral 2016) require manually given annotations for intermediate steps (in Mitra and Baral
2016, alignments of numbers to formulas, and in Hosseini et al. 2014, verb categorization). In
contrast, KLAUS-Tr can handle more diverse word problems, while it uses no externally given
annotations. Sundaram and Khemani (2015) follows an approach similar to Hosseini et al. (2014)
where it proposes a schema-based approach. Sundaram and Khemani (2015) examine the word
problem sentences sequentially and maps them to their schemas. Quantity update operations are
triggered based on these schemas. In general, the statistical approaches discussed above, focus
on devising logic templates (predefined—using annotations) and a set of mapping rules that maps
word problems to appropriate logic forms. Then they use an inference mechanism over these logic
forms to compute the answer. However, their idea of devising the logic forms and the way of using
the inference mechanism differs. The additional annotation overhead and the need of predefined
templates restricts the scope of statistical-based systems (Zhang et al. 2018).

Tree-based approaches are based on the idea of transforming an arithmetic expression to an
equivalent tree structure. Roy and Roth (2015) decompose the problem of mapping the text to
an arithmetic expression to a group of simple prediction problems. Each sub-problem determines
the operator between the pair of quantities in a bottom-up manner. Then, they compose the final
expression tree using a joint inferencemechanism.Wang et al. (2018a) discuss an important draw-
back of tree-based approaches; that is, there are one or more ways to express an arithmetic word
problem using math equations. They propose a method to normalize the duplicate equations and
reduces the template space. To summarize, the tree-based approaches build a local classifier to
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determine the likelihood of an operator being selected as the internal node of the tree structure and
then further use the local likelihood in the global scoring function to determine the likelihood of
the entire tree structure. Unlike tree-based approaches mentioned above, Text2Math (Zou and Lu
2019) aims at end-to-end structure prediction, that is predicting completemath expression at once
as a tree structure. Tree-based approaches do not need additional annotations such as equation
templates and logic forms. Limitation-wise, it is worth noting that most tree-based approaches
assume that the objective is to construct a single expression tree to maximize the scoring function.
Note that an objective to build multiple trees requires great efforts, as it has exponentially higher
search space.

Template-based approaches (Kushman et al. 2014; Hosseini et al., 2014; Zhou, Dai, and Chen
2015; Huang et al. 2017; Wang, Liu, and Shi 2017; Wang et al. 2018a, 2019) require predefining a
set of equation templates, where each template has a bunch of number slots and unknown slots.
The number slots are for the numbers extracted from the problem text, and the unknown slots are
aligned to the nouns. The approaches under this category implicitly assume that these templates
will reappear in the new examples, which is a major drawback of these approaches. Note that we
discussed template-based approaches in either statistical or tree-based categories. Similarl,y we
discuss deep learning-based approaches (Wang et al. 2017, 2019; Chiang and Chen 2019) and
reinforcement learning-based approaches (Huang et al. 2018; Wang et al. 2018b) in either of the
categories mentioned above.

2.2. Approaches leveraging domain knowledge to solve AWPs:
Roy and Roth (2015) develop a theory for expression trees to represent and evaluate the target
arithmetic expressions of AWPs, and they use it to decompose the target AWP into multiple clas-
sification problems uniquely. They then use the world knowledge through a constrained inference
framework to compose the expression tree. The work models domain knowledge constraints such
as Positive answer—if an AWP asks about an “amount,” the answer must be a positive quantity.
Therefore, while looking for the best scoring expression, it rejects the expressions generating a
negative answer. Integral answer—if a question sentence starts with the “howmany” keyword, the
answer will most likely be an integer. Therefore, the approach only considers an integral solution
as a legitimate answer for such AWP. The work shows the success of leveraging external knowl-
edge. However, authors introduce only two domain knowledge constraints, and they do not use
any standard knowledge modeling framework (such as ontologies).

Roy and Roth (2017) introduce the concept of Unit Dependency Graphs (UDGs) for AWPs,
to represent and capture the relationships among the units of different quantities and the posed
question. It is a tree-based approach. Note that the UDGs provide the compact representations
of various unit dependencies present in a given AWP. The work claims to leverage the domain
knowledge to check the unit compatibility for the AWP being solved. The authors do not pro-
vide much detail about how domain knowledge is used while checking the unit compatibility. Roy
and Roth (2018) present a framework to incorporate declarative knowledge into word problem
solving. They model domain knowledge as two-level knowledge hierarchy concepts and declar-
ative rules. They consider four math concepts that are common in the AWP domain and devise
declarative rules for each concept. The declarative rules are largely based on the verb annotations.
However, none of them (Roy and Roth 2015, 2017, 2018) model domain knowledge as ontologi-
cal knowledge. Note that ontological knowledge is easy-to-use and shareable. Zhang et al. (2018)
emphasize on exploring the merits of learning-based models, domain knowledge, and reasoning
capability to develop robust AWP solvers.

Liang et al. (2018) proposed a meaning-based statistical approach for solving English MWPs.
The approach first analyzes the word problem text to get a specific solution type which indicates
the math operation required to solve the problem at hand. Later, it transforms the MWP text into
a logic form and the final answer is computed by using inferences. In our approach, we represent
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and incorporate the domain knowledge required to solve TC-AWPs by developing a domain
ontology. The ontology editors (such as protege) have built-in support for reasoners which are
used to make inferences. Note that the knowledge used in the meaning-based approach and other
existing approaches is an integral part of the system, whereas our way of modeling the knowledge
provides a way to separate out this knowledge and it can be used in other applications such as
AWP generation, AWP explanation generation, etc. The existing modeling approaches leverage
syntactic and semantic information in a combined way, whereas the proposed system leverages
syntactic and semantic information at different stages of the system. For example, it uses syntactic
information from sentences to learn the sentence types, and semantic information helps modeling
the domain knowledge. Also, note that the domain knowledge modeled in our approach is avail-
able as a separate artifact. The representations used in the existing systems capture the important
information(required for solving AWPs) from AWP text, which is logically equivalent to the A-
Box of our domain ontology. Moreover, the current modeling has an encoded T-Box(in addition
to A-Box), which represents the generic domain knowledge captured in the form of axioms.

2.3. Limitations of neural-based AWP solver systems
This section discusses two recent articles which focus on the limitations of the neural-based AWP
solver systems. Patel, Bhattamishra, and Goyal (2021) present an in-depth analysis of the SOTA
neural-based systems for AWP solving and discuss their limitations. They test the SOTA systems
on BoW representations of word problems and problemAWPs fromwhich question sentences are
removed. Authors empirically show that, in both styles, the majority of word problems in AWP
datasets can be solved even though the important information is missing (such as word order
in BoW representation or question sentence). For robust evaluation of AWPs, authors create a
challenge dataset SVAMP by varying the question part, the structure of the sentences, etc. The
work shows that SOTA systems perform poorly on the SVAMP, and this points to the extent to
which these systems rely on simple heuristics in the training instances to make their predictions.
In summary, the work demonstrates that the existing systems’ capability to solve simple AWPs is
overestimated. Sundaram et al. (2022) analyze the existing AWP solver systems, detail their pros
and cons, and discuss the challenges and future directions in word problem solving. They focus
on finding out whether the existing systems learn the language or the underlying mathematical
structure. By analyzing the existing systems on AWPs with a small word change or minor change
in the mathematical structure, they claim that these systems do not adequately model both lan-
guage and math. The analysis shown in this work advocates the need for semantically rich models
and the incorporation of domain knowledge.

3. Background
Ontology is a formal knowledge modeling framework that explicitly describes classes (sometimes
called concepts) in a domain of discourse, designated properties (sometimes called roles/slots) of
each concept describing various features and attributes of the concept, and restrictions on roles.
Ontologies have a wide variety of applications in various domains, for example, semantic web,
multiple-choice question generation (Vinu and Puligundla 2015; Vinu and Kumar 2017), pro-
gram analysis (Pattipati, Nasre, and Puligundla 2020). Resource Description Framework Schema
(RDFS) (Brickley and Guha 2004) and Web Ontology Language (OWL) (Bechhofer et al. 2004)
are two widely used frameworks to set up ontologies. Intuitively, they differ based on the level of
expressiveness. RDF (Klyne and Carroll 2004) is a data modeling standard used to build RDFS and
OWL technologies, and it powers effective information exchange across the web. In the following,
we discuss some tools/technologies which we feel are necessary to explain the RDF representation
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of AWPs (refer to Figure 6) and to describe the components (e.g., ontology, SWRL, SPARQL) of
the proposed system.

3.1. RDF
The RDF (Klyne and Carroll 2004) is a framework that enables the encoding, reuse, and exchange
of structured metadata. RDF describes a domain’s resources by making statements about them.
The resources can be anything, like physical objects, documents, people, or abstract concepts.
An RDF statement describes a property and value of a resource. Note that an RDF state-
ment is a triplet of the form (subject-predicate-object), or (S P O), where predicate and object
are the property and value of the resource (which is the subject of the triplet), respectively.
We can intuitively think of a triple (x, P, y) as a logical formula P(x,y). The object (O) ele-
ment, that is., the property value, of an RDF statement can be another resource or a literal.
A literal is an ontology element that represents a datatype value. RDF uses Uniform Resource
Identifiers (URIs), a resource identifier, to identify all the triplet elements (i.e., S, P, and O)
uniquely. For example, we can represent the English sentence “Van Rossum is the creator of
Python programming language” by the triple (https://en.wikipedia.org/wiki/Guido_van_Rossum
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/elements11/creator/ https://
en.wikipedia.org/wiki/Python_(programming_language)), where S, P, and O elements are the
URI’s that identify the person “Van Rossum,” the property creator, and the object entity “Python,”
respectively.

A URI is a globally scoped character string that consists of two elements: namespace
and local name. The namespace represents the fixed prefix component of the URI, whereas
the local name represents varying suffix component. Note that namespace is unique for a
domain’s related URIs. For convenience, the framework allows defining an abbreviation for
each namespace. Concisely, we can represent an URI by using the syntax abbreviation:local
name. For example, by using the abbreviations wiki for https://en.wikipedia.org/wiki/ and
dublincore for https://www.dublincore.org/specifications/dublin-core/dcmi-terms/elements11/
we can succinctly write the above triple as (wiki:VanRossum dublincore:creator
wiki:Python_(programming_language)). W3C has defined some URIs for uniform usage
of the standard resources. These URIs belong to the namespace http://www.w3.org/1999/
02/22-rdf-syntax-ns# and abbreviated as rdf . However, one can identify the domain-specific
standards and model them with custom namespace and appropriate abbreviation. We discuss the
TC domain’s namespace in Section 5.1 by giving an example.

3.2. RDFS
RDFS (Brickley and Guha 2004) is a vocabulary description language that provides a way to struc-
ture RDF resources. Note that an RDF vocabulary is a set of classes with specific properties that
leverages the RDF data model to provide essential elements for the ontology descriptions. Every
domain needs a specific vocabulary to describe its resources. In other words, RDFS provides a way
to model domain-specific vocabulary representing the minimal ontology of the domain and can
be used to make domain statements.

We define a vocabulary for the proposed TC ontology and discuss it in Section 5, to model
the TC domain’s classes and properties. We use the classes to gather the resources from the TC
word problem’s texts, which are conceptually related. For example, class Agent captures all the
individuals that own some quantity. On the other hand, we use properties to capture the associ-
ations between various classes. For example, property instance hasQuant(Agent1, Q1) represents
an association between Agent1 (individual of class Agent) and Q1 (individual of class Quantity).
We obtain the individuals from the TC word problem’s text automatically.
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RDFS seems promising in describing domain vocabularies; however, it has some limitations
regarding the possibilities of formulating ontologies. For example, RDFS restricts modeling “com-
plement of a class,” cardinalities, etc. We need the feature of “complement of a class” to model
TC-AWPs, discussed later in the paper (See Table 2). The ontologies written in theWeb Ontology
Language (OWL), discussed next, are more expressive than RDFS ontologies.

3.3. Web Ontology Language
The Web Ontology Language (OWL) (Bechhofer et al. 2004) is a knowledge representation lan-
guage family for the Semantic Web and is used for authoring ontologies. The applications that
need to reason about the domain require formal knowledge about the domain’s vocabulary. OWL
allows us to model the domain’s knowledge formally. Intuitively, as compared to the RDFS, OWL
provides a better representation of the vocabulary terms and has more constructs for describ-
ing classes and properties, such as modeling disjoint classes, cardinality constraints. We leverage
OWL-DL, a W3C standard, in our modeling, as it provides maximum expressiveness and yet
retains computational completeness and decidability. The OWL-DL’s correspondence with DL
gives it its name. The Description Logics (DLs) (Baader et al. 2010) are decidable fragments of
first-order logic and form the underlying basis for the ontologies. Moreover, DLs provide a com-
pact syntax; therefore, we explain OWL features using DL notations (Baader et al. 2010). DL uses
class expressions (CEs), properties, individuals, and operators (�,≡) to construct the three com-
mon assertion types: class inclusion axioms, class equivalence axioms, and property inclusion
axioms. The class inclusion axioms define the classes’ subtype relationships, whereas the prop-
erty inclusion axioms define subtype relationships among the properties. The use of class-subclass
axioms and class definitions is essential to capture knowledge of TC-AWPs domain (See Table 2).

3.4. Semantic Web Rule Language (SWRL)
SWRL (Horrocks et al. 2005) is a rule language for the SW, based on the combination of
OWL-Lite/OWL-DL and Datalog RuleML (sub-language of Rule Markup Language[RuleML]).
Although the OWL has adequate expressive power, it has some limitations (Horrocks et al. 2005),
particularly regarding assertions using properties, which are of practical interest. SWRL, a Horn-
clause rules extension to the OWL, helps overcome many of these limitations. In the OWL-DL
setting, DL-safe SWRL rules (Motik et al. 2005) provide feasible reasoning. A DL-safe SWRL
rule is of the form a1 ∧ a2 ∧ . . . ∧ ak → ak+1 ∧ ak+2 ∧ . . . ∧ an, where each ai is an atomic unit.
Conceptually, each atom represents C(a) or P(b, c) where C is a class, P is a property, and a, b, and
c are either individuals or variables. For example, in TC domain, we can model an object transfer
using the following SWRL rule.
hasQuant(a1, q)∧ transfersTo(a1, a2)∧ hasLost(a1, q)∧ hasGained(a2, q)→ hasQuant(a2, q)
Here, in the antecedent, we check that if an agent a1 owns a quantity q and an object transfer
happens between agents a1 and a2, then we change the ownership of quantity q to agent a2 in the
consequent part. However, note that with the above example SWRL rule, we show the transfer
intuition only; the object transfers of practical scenarios consist of more details and complexity.
We present a detailed discussion in Section 6.

3.5. SPARQL
W3C endorsed SPARQL (a query language) (Prud’hommeaux and Seaborne 2008) to query the
RDF graphs. One can use SPARQL to express queries across diverse data sources, whether the data
are available as a native RDF graph or viewed as RDF via middle-ware. SPARQL queries are of four
types: SELECT, CONSTRUCT, ASK, and DESCRIBE. In the TC domain, we need to retrieve the
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Table 2. Essential axioms of TC ontology

Classes/Properties involved Relevant axioms

Class expression axioms
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Agent, TC-Quantity A.01 : Agent� ¬ TC-Quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.02 : TC-Quantity� ¬ Agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TC-Quantity, First-Quantity, A.03 : First-Quantity� TC-Quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Second-Quantity, A.04 : Second-Quantity� TC-Quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Positive-Quantity, A.05 : First-Quantity≡ TC-Quantity �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Negative-Quantity ∃ isOwnedBy.Agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.06 : Second-Quantity≡ TC-Quantity �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∃ isGainedBy.Agent � ∃ isLostBy.Agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.07 : TC-Quantity� Positive-Quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.08 : Positive-Quantity� ¬ Negative-Quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Object property axioms
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hasGained A.09 : ∃ hasGained .
 � Agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.10 :
 � ∀ hasGained .TC-Quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.11 : hasGained≡ isGainedBy−
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hasLost A.12 : ∃ hasLost .
 � Agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.13 :
 � ∀ hasLost .TC-Quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.14 : hasLost≡ isLostBy−
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hasQuant A.15 : ∃ hasQuant .
 � Agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.16 :
 � ∀ hasQuant .TC-Quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.17 : hasQuant≡ isOwnedBy−
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

involvesAgent A.18 : ∃ involvesAgent .
 � BS � TR � AS � QS
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.19 :
 � ∀ involvesAgent.Agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

involvesSentence A.20 : ∃ involvesSentence .
 �Word-Problem
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.21 :
 � ∀ involvesSentence .{BS � TR � AS � QS}
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

transfersTo A.22 : ∃ transfersTo .
 � Agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.23 :
 � ∀ transfersTo .Agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

asksAbout A.24 : ∃ asksAbout .
 � QS
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.25 :
 � ∀ asksAbout .Agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hasQuestion A.26 : ∃ hasQuestion .
 �WP
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.27 :
 � ∀ hasQuestion .QS
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Classes/Properties involved Relevant axioms
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

inquiresState A.28 : ∃ inquiresState .
 � QS
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.29 :
 � ∀ inquiresState. {before}�{after}
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Table 2. Continued

Classes/Properties involved Relevant axioms

Data property axioms
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hasName A.30 : ∃ hasName .xsd:string� Agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.31 :
 � ∀ hasName .xsd:string
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

quantName A.32 : ∃ quantName .xsd:string� TC-Quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.33 :
 � ∀ quantName .xsd:string
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

quantType A.34 : ∃ quantType .xsd:string� TC-Quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.35 :
 � ∀ quantType .xsd:string
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

quantValue A.36: ∃ quantVal .xsd:decimal� TC-Quantity
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.37 :
 � ∀ quantVal .xsd:decimal
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

asksObjType A.38 : ∃ asksObjType .xsd:string� QS
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.39 :
 � ∀ asksObjType .xsd:string

Figure 4. SPARQL query searches for the creator of python programming language.

answer for the posed question by querying the RDF graph of a TC word problem; therefore, we
include the discussion of SELECT type SPARQL queries only. Note that, SELECT type queries are
used for information retrieval purpose, as illustrated in Figure 4.

A SELECT type query has two key components: a list of selected variables and a WHERE
clause that specifies the triple patterns to match. A variable’s syntax consists of a “?” followed by
the variable name, for example, ?x. The triple pattern is a structure of three placeholders where
each can be a variable or a keyword to be searched. For example, ?person dublincore:creator
wiki:Python_(programming_language) can be used to search an RDF graph to find out the creator
of programming language Python.

4. Learning component of The KLAUS-Tr system
System’s learning component is a sentence classification (SC) model where the types are assigned
to the sentences based on their content. This is essential to extract important information from the
sentences. Also, knowledge component processes the sentences based on their type. As discussed
in the introduction section, the TC domain has four types of sentences, namely BeforeState (BS),
Transfer (TR), AfterState (AS), and Question (QS). Broadly, each sentence’s textual content con-
sists of entities, the associations between various entities, and intentional units. Each sentence of a
word problem needs the system’s attention to solve the question correctly. Therefore, it is advan-
tageous to label each sentence to obtain a meaningful description of the word problem and extract
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Figure 5. A typical example of the TC word problem and categorical representation of the sentences.

significant knowledge, such as quantity type, direction of transfer. Note that we do not present a
newmethod for the sentence classification task in the proposed work. Instead, we show the impor-
tance of learning the sentence type while solving word problems. In Figure 5, we present a typical
example of the TC word problem and mention the appropriate class label of each sentence. The
discussed example motivates the need for the learning component.

In Figure 5, B1 (L1-layer) represents a TC word problem for which we seek an answer. The
given word problem consists of four sentences. The system leverages the learning component
to find out the type of each sentence. L2 layer shows the learning component’s output, that is,
word problem sentences after categorization. In L2 layer, O1 represents that S1 and S2 sentences
are of BS type, whereas O2 and O3 represent that S3 and S4 sentences are of TR and QS type,
respectively. In L3 layer, O4 shows the changes in quantities after the object transfer. Our system
retrieves answer based on the posed question [O3(L2)] by extracting information from O4(L3).
However, the learning process faces some challenges. In the following sections, we explain the
learning component by detailing the approaches we adopt to solve those challenges.

4.1. Sentence simplification
We observed that many word problems in the TC domain involve compound sentence (multi-
unit) structures; for example, sentences of compound form such as “Stephen has 5 books and
2 pencils.” Presence of compound sentences affects the system accuracy while solving AWPs.
Sentence simplification task produces simple sentences for each compound sentence. For exam-
ple, the above-mentioned sentence gets simplified as Stephen has 5 books. Stephen has 2 pencils.
Following the study of various TC examples, we only apply subject distribution (i.e., Stephen in
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the above example) in the sentence simplification task. Please note that we focus on TC-AWPs
that are present in the existing AWP datasets; therefore, we keep the simplification module sim-
ple. At present, we do not focus on modeling the domain knowledge relevant to the sentences,
such as “Stephen and Daniel together have 20 books.” The information about “how many books
each of them has?” may be present in the other AWP sentences. However, since the underlying
ontology is extensible, it can be achieved by modeling appropriate axioms.

4.2. Leveraging parts-of-speech tagging for sentence normalization
Normalization is a technique often used as part of data preparation to obtain a standard scale
among numeric features without losing any information. However, based on the domain selection
and model requirement, one can use custom normalization to achieve a specific goal. Since the
proposed work focuses on the text domain, we leverage text normalization in an attempt to reduce
the randomness of the natural language resource. One can apply the custom normalization steps
to the other datasets that have the same schema.

Long sentences in the training data help the model learn well by providing a genuine and bet-
ter ground for feature extraction, whereas the short sentence scenario hinders the learning. The
sentences of the TC domain are of short length, and differing agent names present in the various
AWP sentences even make the learning more challenging. Therefore, we use custom normaliza-
tion at two stages to improve model accuracy. (a) at data pre-processing level: custom normalizer
detects various agent names using parts-of-speech (POS) tagging and replaces them with ade-
quate standard epithets. For example, the approach normalizes “Stephen has 5 books” to “Agent1
has 5 books.” This way, we achieve higher sentence classification accuracy. Now, since the model
identifies a sentence type more accurately, and knowledge extraction is sentence type dependent,
system solves word problems more accurately. (b) at knowledge extraction level: correctly labeled
sentences appropriately tell the system what knowledge needs to be extracted. More precisely,
system applies POS tagging over a class-labeled sentence and identifies the relevant instances of
the modeled classes and relationships. NLTK (Loper and Bird 2002) python library enables us
to appropriately identify all the noun phrases (single word and multi-word) present in a prob-
lem text and identify various POS tags. We use the following tags: Noun Singular (NN), Noun
Plural, Proper Noun Singular, Proper Noun Plural (NNPS), Personal Pronoun (PRP), Possessive
Pronoun (PRP$), etc.

4.3. Feature engineering
Text feature engineering is a process to take out the list of useful words, appropriate n-grams as
features and transform them as a feature set, which is usable by a classifier to predict a sentence’s
type. Many conventional machine-learning classifiers become less effective, due to the skewed dis-
tribution, in precisely predicting the minority class examples. However, the dataset TC Sentences
(that is, sentences taken from Arith-Tr) is not highly skewed. We investigate predominant tech-
niques for extracting features from sentences and the pros and cons of them before looking at
feature selection. We extract a customized feature set using BoW and N-grams techniques. We
extract unigrams, bigrams and trigrams feature sets and append it to BoW feature set. In TC
domain, we find that Bag of N-grams are more informative than Bag of words because they can
capture more context around each word. The sentence classification accuracy shown in Table 4
supports this claim. For example, bigrams {“Agent1 has,” “has 5,” “5 books”} are more informa-
tive than unigrams {“Agent1,” “has,” “5,” “books”}. We use tokenization to prevent the loss of
the discriminative power and lemmatization to reduce the number of features. Additionally, we
consider the positions of the sentences in a word problem as a feature, and we name the feature
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as positional score. For example, BS type sentences usually appear at the beginning and QS type
sentences at the end, in a problem-text.

4.4. Model selection for sentence classification
The word embedding techniques (Google’s Word2Vec(W2V) (Goldberg and Levy 2014),
Stanford’s GloVe (Pennington, Socher, and Manning 2014), and Facebook’s FastText (Joulin
et al. 2016), etc) are data hungry as they need a vast corpus to learn the contexts. Since the TC
domain consists of a diversified vocabulary, the pre-trained word embedding models are not use-
ful for categorizing the domain sentences. The shallow TC domain makes it difficult to obtain
the custom-trained word embedding and, therefore, restricts its applicability to the proposed
framework. The feature extraction for shallow machine learning models is a manual process that
requires domain knowledge of the model’s input data. In the proposed work, identifying that
“n-grams features aremore informative than unigrams for transfer cases” is the onlymanual effort
we exercise. Since the TC domain is small, initially, we experiment with shallow-learned based
models for sentence classification. Later, we examine the boostingmodels. Shallow-learning-based
models focus on the prediction made by a single model, whereas boosting algorithms tend to
improve the prediction driven by training a sequence of the weak models, where each subsequent
model compensates its predecessors’ weaknesses. Note that boosting requires to specify a weak
model (e.g., regression, decision trees, random forest (RF), etc).

For SC task, we experimentally found that Naive Bayes (NB), Decision Tree (DT), and RF
achieve 65%, 80%, and 80% classification accuracy on test data, respectively. Later we employ the
Adaptive Boosting (AdaBoost) and eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin
2016) algorithms for the SC task, and we achieve 95% accuracy in both the cases. Chen and
Guestrin (2016) state that domain-dependent analysis and appropriate feature engineering, when
used with XGBoost, achieves promising results.

Since existing AWP datasets contain a relatively small number of TC-AWPs and BERT-based
deep learning classifiers (current state-of-the-art) require more training data than statistical clas-
sifiers, such as, SVM, Random Forests, AdaBoost, XGBoost, we proceed with statistical classifiers.
Also, AdaBoost is designed with a particular loss function. On the other hand, Gradient Boosting
(XGBoost) is a generic algorithm that assists in searching the approximate solutions to the addi-
tive modeling problem. This makes Gradient Boosting more flexible than AdaBoost. Moreover,
XGBoost gives us the desired accuracy, and its ability to do parallel processing makes it compu-
tationally faster. Therefore, considering the factors, such as the less number of training instances,
computational considerations, experimental cycle times, we adopt XGBoost for learning sentence
types. Note that the classification module is one part of the solution, and we primarily focus on
showing the use of domain knowledge in solving the word problems. The results obtained by these
various classification models are later discussed in Section 7.

5. Transfer case(TC) ontology
Ontologies play an essential role in knowledge representation. We develop an ontology that
describes the TC domain’s concepts and relations. The proposed TC ontology presents the vocab-
ulary required to formally represent the semantic information and the TC domain’s intricate
knowledge structure. We model appropriate concepts and properties for the TC domain to cap-
ture and leverage semantic information to make the proposedmethodology robust. In KLAUS-Tr,
type of sentence, type of quantity, etc. is the useful semantic information to model.

We analyze various TC-AWPs to devise and evolve the domain terms and later use them while
constructing the ontology. The coverage and correctness of the proposed TC ontology is indirectly
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established by its successful application and use, as the proposed system achieves promising results
while solving TC-AWPs.

5.1. Vocabulary of the TC ontology
We write the TC ontology using formal vocabulary definitions to enable the sharing of informa-
tion and to achieve machine-understandable interpretations. In this section, we explain the TC
ontology’s vocabulary. Later in this section, we use the proposed vocabulary to represent word
problems as RDF graphs.

a. “Naming” Information: Here, the term “naming” represents the method of allocating
Uniform Resource Identifiers (URIs) to resources. For example, the namespace abbreviation ex
for http://www.example.org/ allows us to write URI string http://www.example.org/Agent1 as
ex:Agent1 where ex is the namespace and Agent1 is the local name. We use tc namespace for
the proposed vocabulary. The statement “Agent1 has 5 apples” from the TC domain is repre-
sented using the triples <tc:Agent1 tc:hasQuant tc:Q1>, <tc:Q1 tc:quantValue “5”>, and <tc:Q1
tc:quantType “apples”>.

b. Concept Information: The TC domain uses concepts Word-Problem, BS, AS, Transfer,
Question, Agent, TC-Quantity, First-Quantity, Second-Quantity, Negative-Quantity and Positive-
Quantity to represent all the important things in the domain. For example, to model that “a
quantity Qi mentioned in a TC word problem is a TC quantity,” one needs to assert that Qi is
an instance of the class TC-Quantity. Naturally, TC-Quantity is modeled as a subclass of the class
Positive-Quantity because no one can own/transfer an object quantified negatively. We define a
concept Negative-Quantity to deal with the inconsistencies caused by negative quantities.

c. Class Information of the sentences: We treat each sentence in the problem statement as an
object/individual that belongs to one of the four information-carrying classes.

d. Factual Information: The sentences in the problem text carry information about agents,
quantities, quantity types, and various associations. Each agent is associated to a quantity through
the predicate hasQuant. We define predicates quantValue, and quantType to represent factual
information about the quantities.

e. Modeling transfer type sentences: A TC word problem might involve one or more transfer
type sentences. Therefore, to represent the concrete information about the transfer case, we model
each transfer as an individual of the concept Transfer. We make use of the following predicates:
hasTR: with domain word problem and range Transfer, transfersTo: with domain and range Agent,
hasGained: with domain Agent and range TC-Quantity, hasLost: with domain Agent and range
TC-Quantity, to model a transfer. Recall that we made an assumption that the transfer problems
being studied in this paper involve exactly one transfer of a quantity.

f. Question Interpretation: We define predicates hasQuestion: with domain as Word-Problem
and rangeQuestion, asksAbout: with domainQuestion and rangeAgent, asksObjType: with domain
Question and range string, and askType: with domain Question and range {before, after} to
interpret the posed question.

We use the above vocabulary to create RDF statements about a word problem so that appro-
priate reasoning can be performed. Consider a TC domain’s word problem where problem-text
involves quantities. A quantity may be known or unknown based on the question set-up. Each
known quantity will have some value and type associated. To model the discussed scenario, we
have defined entities at different classification levels, such as for known quantity-unit information
(Q1: 10 books), one needs to assert that “Q1” is an instance of the class “TC-Quantity” and that the
pair (“Q1,” “10”) is an instance of the property “quant value,” (“Q1,” “books”) is an instance of the
property “quant type,” and (“Q1,” “known”) is an instance of the property “has type.” Similarly, to
model an unknown quantity (Q2: some books), we use assertions “Q2” is an instance of the class
“TC-Quantity” and that the pair (“Q2,”“unknown”) is an instance of the property “has type,” and
(“Q2,”“books”) is an instance of the property “quant type.”
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Figure 6. RDF representation of a good word problem using proposed vocabulary (highlighted boxes represent the inferred
information).

We explain the usage of TC vocabulary by showing the RDF statements about a word problem.
Knowledge component processes the class-labeled sentences and extracts a set of RDF triples. We
discuss the RDF graph (a directed graph) of the triple set in Figure 6. Recall that, in an RDF graph,
the subject and object parts of the triples form the graph nodes, whereas the predicate of each
triple forms the label for the directed edge connecting the subject and object nodes.

WP1-Example(A Good word problem): Stephen has 5 books(S1). Daniel has 10 books(S2).
Daniel gave him 2 books(S3). How many books now Stephen has?(S4).

(Pre-processed problem text: Agent1 has 5 books. Agent2 has 10 books. Agent2 gave Agent1 2
books. How many books now Agent1 has?. Here, WP1 and S1-to-S4 are symbolic notations for the
word problem and its sentences).

RDF Graph of WP1: Learning component learns a label for each sentence, and Knowledge
component extracts adequate knowledge (precisely RDF triples) from the class-labeled sentences.
In Figure 6, we present an RDF graph of the above given example AWP. The graphical represen-
tation, except triple (called Tc) <tc:WP1 tc:isA tc:Good-Problem> and three other inferred class
membership assertions (shownwith dotted line), carries exact semantic information asmentioned
in the problem text. Knowledge axioms infer Tc and class membership assertions (tc:Q1 and tc:Q2
to First-Quantity, and tc:Q3 to Second-Quantity) when proposed system processes the RDF graph
and finds the given AWP consistent, c in Tc stands for consistency. Note that we discuss only
essential triples of the RDF graph to make it understandable and intuitive.

The S3 sentence of WP1 is of transfer type. A transfer sentence consists of subtle information
such as direction of transfer, agents involved in the transfer. Therefore, the processing of a transfer
type sentence is challenging for a system. In KLAUS-Tr, we use RDF statements to capture all
the subtle information about a transfer type sentence. For example, the equivalent RDF triple
representation of S3(WP1) is <tc:Agent2 tc:transfersTo tc:Agent1; tc:Agent1 tc:hasGained tc:Q3;
tc:Agent2 tc:hasLost tc:Q3; tc:Q3 tc:quantValue “2”; tc:Q3 tc:quantType “books”>. Note that other
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object properties mentioned in Figure 6, such as tc:hasTR, tc:hasToAgent, and tc:hasFromAgent,
can be used while representing the TC word problems that have more than one TR type sentences.

WP2-Example(A Bad word problem): Stephen has 2 books(S1). Daniel has 4 books(S2).
Stephen gave him 5 books(S3). How many books now Stephen has?(S4). This problem is also rep-
resented in triples in a manner similar to the other problem and the ontology axioms and SWRL
rules, discussed in the next section, infer that this problem is inconsistent.

5.2. Axioms
Intuitively, the axiom component is responsible for setting up the overall theory described by an
ontology in its application domain.We present the DL axioms from TC ontology by category wise
as Class Expression Axioms (CEAs), Object Property Axioms (OPAs), and Data Property Axioms
(DPAs). Table 2 presents all the axioms.

CEAs are used to express features like class inclusion (Axioms: A.03, 04, 07, etc), class dis-
jointedness (Axioms: A.01, 02, 08, etc). For example, we use CEA A.07, that is TC-Quantity �
Positive-Quantity, to represent every TC quantity is a positive quantity(quantity 0 is handled under
this case). Since sentences such as “Stephen has 0 books” are rare in the existing AWP datasets,
we do not introduce a separate class to handle the quantities having 0 values. The disjoint-class
axiom A.01, that is Agent � ¬ TC-Quantity, to represent, no individual can be an instance of both
Agent and TC-Quantity classes

We also make use of CEAs to model inconsistency detection. In Section 6.2, we present a
detailed discussion.

OPAs are used to model and set-up the associations between object property expressions, for
example: DisjointObjectProperties (DOPs), InverseObjectProperties (IOPs), etc. Axioms: A.11,
14, 17, etc., are of IOP type. We use IOP axiom A.17, that is hasQuant ≡ isOwnedBy−, to state
that “someone owns a quantity” is the inverse of “quantity is owned by someone.” DOPs can be used
to model pairwise disjoint object property expressions—that is, they do not share connected indi-
viduals pairs. Domain and Range axioms can be used to restrict the individuals falling in the first
and second places of an object property, respectively. We make use of OPAs to model the infor-
mation related to Agent-Quantity, WP-Question, etc., associations. Additionally, we use OPAs to
capture subtle information of TR type sentences.

DPAs are used to characterize and set-up associations between data property expressions, for
example: FunctionalDataProperty (FDP) axioms, DisjointDataProperty axioms. FDP axiom states
that data property expression (DPE) is functional; that is, each individual x is connected to at most
one distinct literal y by DPE. For example, FunctionalDataProperty tc:quantValue represents that
each quantity can have at most one value.

In the proposed ontology, we develop appropriate CEAs, OPAs, and DPAs to model the TC-
AWP domain. We leverage the axiom set at various stages of the system, for example, automatic
mapping and classification of knowledge, to model domain knowledge required to solve AWPs,
and to identify inconsistent (or under-represented) TC-AWPs. Moreover, the encoded axioms
guide the reasoner to compute the correct answer for a TC-AWP.

Modeling axioms of the transfer cases & design choices: We studied the TC domain to find
out the domain knowledge required to solve TC word problems.

Modeling single TR type sentence: An object transfer invokes a subtraction operation even-
tually. We model the knowledge minuend quantity (or first quantity) has to be a positive quantity
and owned by someone using axiom A.05 and A.07, respectively. Similarly, subtrahend quantity
(or second quantity) involved in an object transfer has to be of the same type, and one person loses
the amount. In contrast, other person gains, we capture this knowledge by proposing axioms A.06
and A.07.Modeling multiple TR type sentences:We handle the first transfer of the sequence in
the same way we did for the single transfer; for the subsequent transfers, we use temporary place
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Figure 7. System diagram: highlighted components refer to our key contributions.

holders to store the intermediate results. Table 2 (axioms A.01-to-39) presents the domain knowl-
edge required to solve TC-AWPs and reflects the complete set of design choices as well. Note that
axioms mentioned in the Table 2 are used to deal with word problems involving single TR type
sentence. However, word problems involving multiple TR type sentences need additional axioms,
such as hasTR, hasFromAgent, hasToAgent. (we show the intended use in Figure 6). Since existing
datasets do not contain such transfer cases, we curate some example and try extending the current
modeling successfully. However, we plan to present the detailed discussion in the future extension
of this work.

6. KLAUS-Tr: The complete system discussion
Earlier, we discussed the learning and ontological part of the proposed framework along with
discussing the motivation for these two components. We achieve promising results in the SC
and knowledge-engineering tasks, and we discuss the individual assessment of these two sub-
modules in Section 7. In this section, we explain the full working of the proposed system and
discuss how these two diverse components interact in a meaningful way to solve the TC-AWPs.
Figure 7 presents complete system diagram.

The class-labeled sentences of a TC word problem consist of the categorical information about
that word problem; note that we call this information knowledge when appropriately placed in
a structured form. We model the structure of the TC domain’s knowledge in the knowledge
component. Therefore, in this section, we define interactions between knowledge and learning
components as a first step to build the complete framework. To be precise, we build a Pop-
Onto() module (populate the ontology) for the TC domain that extracts structured knowledge
from the class-labeled sentences and populates it to the ontology structure; later, the system uses
the ontological knowledge to compute the answer for word problem.
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Figure 8. Conceptual illustration of an example TC word problem using current modeling.

6.1. Populate the ontology: Pop-Onto()
Pop-Onto() extracts values (i.e., knowledge triples) from word problem sentences in terms of the
TCOntology (discussed in Section 5). The fundamental idea behind Pop-Onto() is to process each
class-labeled sentence of TC word problem and look for class specific information. For example,
BS and AS type sentences consist of information about the Agents and the quantities they involve.
Figure 8 provides clear insight to the conceptual illustration of the interactions between knowl-
edge and learning components by discussing an example. The knowledge component (Figure 8)
extracts the intricate knowledge from the problem text in the form of triples; in that case, the
system is ready to utilize the reasoning facilities. Finally, to answer the question mentioned in
the problem text system needs after state facts (the information about agent-quantity associations
after the transfer is made), generated with SWRL rules and the reasoner.

We explain the pseudo-code of Pop-Onto() in the Algorithm 1 and describe the working of the
knowledge extraction process. In Algorithm 1, mapping refers to the appropriate assignment of
class (type) to an ontology individual. In contrast, binding refers to associating “two ontology
individuals by an object property” or “an ontology individual and data-value by a data prop-
erty.” Pop-Onto() function takes as input the class-labeled sentences of a word problem (WPi)
and domain ontology O. Step 2 applies tokenization and converts each class-labeled sentence into
tokens (linguistic units) to prevent the loss of discriminative power while processing these sen-
tences. Since the system deals with the natural language sentences, parts-of-speech (POS) tagger
(Step 3) helps in the knowledge extraction process by appropriately identifying the noun, verb,
quantity, etc., entities in the text. POS-tagged sentences help the system extract class instances
and entity associations; on the other hand, they are also helpful in dealing with the detailed infor-
mation like types and units of the quantities. Step 5 checks the label of each sentence. Pop-Onto()
leverages the POS tag information of each sentence and identifies the appropriate object property
and data property assertions. For example, Stephennoun hasverb 5number booksnoun is a BS type sen-
tence and the mapping function maps Stephen to the class Agent, Qk to the class TC-Quantity and
assigns a value 5 and type book using has-value and has-type properties, respectively, and identifies
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Algorithm 1. Pop-Onto()

has-quant property between Stephen and Qk, using appropriate POS tags. Note that k is a variable
that we use to model the various quantities from the class-labeled sentences ofWPi. If objects dif-
fer by some property value, we consider those objects as different individuals. For example, red
marbles and yellow marbles are two different quantity types, therefore considered as two different
objects. The proposed system identifies the quantity-type information using POS tags.

Since the system applies subject distribution (discussed in Section 4.1) to simplify the sentences,
the BS and AS type sentences involve exactly one agent. Absence of a quantity in BS and AS type
sentences imply the need for a variable whose value is “unknown” at this point of time. In the
proposed work, modeling the process of transfer as a concept enables the system to handle the
multiple TR type sentences. Therefore, our system is extendable to the case of multiple transfers.
A TR type sentence consists of two agents involved in an object transfer. The crucial thing about
the transfer case is identifying the direction of the transfer. We leverage the NLP tools to identify
the direction of the object transfer, which can be either forward or backward. In the following, we
discuss both the cases: (a) Forward transfer: To better explain the case, we refer to the S1 sentence
from Figure 9. All the TC word problems, where, in the TR type sentences, the agent appearing
sooner in the sentence loses the quantity and the later one gains, are denoted as forward TC and
(b) backward transfer: To better explain the case, we refer to the S2 sentence from Figure 9. All
the TC word problems, where, in the TR type sentences, agent appearing sooner in the sentence
gains the quantity and the later one loses, are denoted as backward-TC.

We maintain case-wise lists that consist of forward case and backward case verbs, which we
have refined by leveraging WordNet (A lexical database for the English language) (Fellbaum
1998). First, we manually compile a set of verbs from TC-AWPs and later retrieve the all pos-
sible synonyms using wordnet.synsets python library. For example, while checking synonyms of
the “receive” verb, we get “pick,” “get,” etc. We set a root verb for each case to perform a synonym
check, which guides the direction prediction for transfer cases. Step 11 (Algorithm 1) performs
direction detection by using forward and backward case synonym lists to deal with the TR type
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Figure 9. Examples showing direction cases for transfer case word problems.

sentences expressed with forward transfer intuition or backward transfer intuition. The mapping
of associations (Step 15 & 16) differs based on the direction of the object transfer. Note that we
observed only active-voice sentences in the TC-AWPs in the datasets we considered. If a word
problem is formulated using passive voice sentences, the current modeling will require an appro-
priate modification. Also, we note that the verbs present in beforetransfer and after transfer type
sentences do not affect the intuition of a transfer. Therefore, we only focus on modeling the verbs
present in transfer type sentences to effectively model the direction of a transfer.

In the current modeling, we adopt a deterministic rule-based approach to extract the values
(A-Box) that populate the knowledge graph. However, a language model can automate the A-Box
extraction. Such a languagemodel will also be generalizable to other types of word problems. Fine-
tuned BERT language models are successful for downstream tasks such as language inferencing,
question answering, named entity recognition, etc. In our work, we believe a fine-tuned BERT
model could be useful in automating the ontology A-Box extraction. However, this will require
the labeled data (essentially labeling the sentence parts with class names from the TC Ontology).
Since creating labeled data manually is a time taking process and also it’s part of our future work,
we skip the detailed discussion on using the BERT-based language model in this work.

Representing and incorporating domain knowledge for different types of AWPs will be differ-
ent as can be expected. Also, note that annotations used in the proposed approach are entirely
different from those used in the existing systems. They use annotations to explicitly mention the
equations, variables, information related to mapping variables to the quantities, etc. However, the
proposed approach directly processes the raw problem text without any annotations. However,
our system learns sentence types through an automated process. It leverages just the sentence
type information while extracting the values (that populate into TC Ontology) and solving the
word problem.

6.2. Dealing with bad TC word problems
As stated in the introduction section, bad word problems are those arithmetic problems that lack
consistency among its sentences. Incorporating inconsistency detection in the solution of AWPs
makes the solution a robust one and also demonstrates an additional capability of the knowledge-
based approach for solving AWPs. Also, note that detecting the specific type of inconsistency in
the given AWP enables the system to possibly explain why it is unable to give a solution (We plan
to investigate this aspect in more detail in our future work). With this motivation, we investigate
the different types of inconsistencies that may occur in transfer type AWPs and show how we can
detect them using the proposed ontology and SWRL rules. Since the TC domain might contain
bad problems, we have designed our system to perform consistency checks over the TC word
problems. If the system finds a word problem inconsistent, it classifies the word problem into bad
category. In the following, we discuss the various possible types of inconsistencies present in the
TC domain and the inconsistency detection process.

6.2.1. Types of inconsistencies
We devise four categories after analyzing various bad problems.
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Inconsistent-Math Operation(I1): A math operation might cause an inconsistency when a
real-world situation expects a constrained outcome. In the TC domain, there are two types of
problems that become bad due to I1 inconsistency: (a) Since a person cannot transfer specific units
of a quantity if he does not own that many units, it may cause an invalid subtraction operation.
The situation expects a positive outcome from the subtraction operation. For example, the word
problem Stephen has 5 apples. He gave 10 apples to Daniel. How many apples does Stephen have
now? is inconsistent because the transfer of apples cannot happen, and an invalid subtraction
math operation may exist if the system considers the transfer. (b) An addition operation over type
miss-matched quantities also makes a problem bad. For example, we cannot add 5 books and 2
pencils.

Inconsistent-Question Asked(I2): Sometimes, it is appropriate to say that the question is
unanswerable instead of giving a close answer. For example, Stephen has 5 notebooks and 2 pens.
How many pencils he has?. Learning-based models may answer 2, because of the unit closeness
with the quantity in the correct answer.

Inconsistent-Missing Information(I3): We refer to the cases where adequate information is
not present or AWPs are under-represented. For example, the following AWP is bad due to the
missing information: Stephen has 10 books. Daniel has 5 books. Stephen gave him some books. How
many books now Daniel has?. This is because the exact amount of quantity involved in the transfer
is unknown. Since the posed question is not answerable with the available information, the system
should appropriately identify the missing information situation. Note that as of now, identifying
suchmissing information situations is not attempted by learning-based approaches. The following
section provides a detailed discussion about the process to identify such situations.

Inconsistent-Negative Quantity(I4): Intuitively, “the types of quantities appropriate for the
domain” and “the types of quantities present in the problem text” should be consistent. For
example, based on the TC domain’s requirement, we model a constraint that “the transfer type
AWPs should involve positive quantities only.” Therefore, the quantities present in the sentences
such as “Stephen has 5 books” and “Stephen gave –5 apples to Daniel” are not consistent with the
assumptions for the domain.

Identifying inconsistent word problems is a significant challenge in the TC-AWP domain,
requiring an appropriate interpretation of each term present in the problem-text and develop-
ing appropriate axioms. We have formalized the inconsistency detection methodology through
ontology axioms and SWRL rules. The proposed approach can appropriately identify good and
bad problems through an automated process. However, note that it is a deterministic process with
the logic encoded in SWRL rules and depends mainly on the accuracy of the knowledge extraction
process. The following section discusses the process of inconsistency detection.

6.2.2. Inconsistency detection
We use ontology axioms in conjunction with SWRL rules to automatically detect the above dis-
cussed four types of inconsistencies. In the following, we present the category wise inconsistency
detection process.

Detection of I1-type: Axioms A.05 and A.06 (Table 2) automatically infer First (or minu-
end) and Second (or subtrahend) quantities, respectively. Based on the domain requirement,
the first quantity must be greater than the second quantity to invoke a valid subtraction opera-
tion. Therefore, axioms A.05 and A.06 in conjunction with the predicate swrlb:greaterThan(?a,?b)
detect all I1 type of inconsistencies caused by an invalid subtraction operation. The proposed
approach uses swrlb:notEqual(?a,?b) predicate to detect all type-mismatch inconsistencies of I1
type. We develop the R1i Rule (Figure 10) to detect all I1 type of inconsistencies caused by an
invalid subtraction operation. Subscript i in R1i stands for inconsistency.

Detection of I2-type: Section 6.1 discussed a method Pop-Onto() to extract the values (knowl-
edge triples) automatically from the class-labeled sentences and populate it into the ontology
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Figure 10. The R1i rule (above) and its explanation (below).

Figure 11. The R2i rule (left) and its explanation (right).

structure. Since Pop-Onto() accurately populates all quantities and their types from the prob-
lem text into the ontology structure, the I2 type of inconsistencies can be detected by using
swrlb:notEqual(?a,?b) predicate while posing the question. We develop the R2i Rule (Figure 11) to
detect all I2 type of inconsistencies.

Detection of I3-type: Among all the categories, the I3 type of inconsistencies is most intricate
to detect. The process requires very subtle information from the problem text and the solution
intuition as well. However, modeling the essential domain knowledge and using it with the system
is one potential solution. Note that such type of domain modeling requires domain expertise.
Therefore, we have analyzed the domain to identify such subtle information, andwemodel it using
various customized predicates. For example, the word problem mentioned in Figure 12 has I3
type of inconsistency, and we perform the following predicate checks to detect the inconsistency:
hasType(?q, “unknown”) predicate to check that the quantity present in the TR type sentence is of
unknown type and inquiresState(question, after) predicate to check that the question inquires after
state. Detailed working of the rule R3i is available in Figure 12.

Detection of I4-type:We use axiom A.07 (Table 2) to impose a constraint that every TC quan-
tity must be a positive quantity, whereas, as discussed in the I4 category, sentences might consist
of negative quantities. Therefore, using the disjointedness property, the system detects a badness
caused by the I4 type of inconsistencies.

Note the validity checker (inconsistency detection) and solver are two different components of
the system. AWPs are sent for solving, only if they pass the validity testing. In other words, if the
computed answer is incorrect, our system does not say that the AWP at hand is inconsistent.
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Figure 12. The R3i rule (above: left), an example to analyze the rule (above: right), and its explanation (below).

6.3. KLAUS-Tr: System description
We explain the KLAUS-Tr’s working in terms of the interactions between learning component
and knowledge component. We describe the step-by-step procedure in Algorithm 2. The algo-
rithm takes as input the unlabeled ith word problem and the domain ontology O. Note that we
explained the proposed domain ontology in Section 5. As stated earlier, the knowledge component
formulation is to unify the knowledge modeling and knowledge infusion process. In Algorithm 2,
the Step 2 initializes two empty sets Si and Ci to hold the unlabeled sentences (output of Step 3)
and labeled sentences (output of Step 5), respectively. In Step 3, the task of Sentence-Splitter()
is to break the word problem text into individual sentences. We do so to leverage the classifier
(Step 5). Note that the set Si contains simple sentences as we apply subject distribution at the data
pre-processing level. The Step 7makes use of Pop-Onto() to populate the TC ontology with appro-
priate knowledge extracted from class-labeled sentences. We discussed working of Pop-Onto() in
the Algorithm 1. As shown in Step 7 (Algorithm 2), Õi contains consolidated knowledge, that is,
the semantic triples of the TC ontology and the knowledge triples of the ith word problem. Note
that the SWRL rules are an integral part of the ontology instances (i.e., Õi). Precisely, we model
these rules for the transfer cases and enable them in SWRL-tool (part of Protégé (protege 2012)).
In Step 8 (Algorithm 2), the reasoner performs the reasoning tasks and does the following: (1) if
it determines the word problem at hand has some type of inconsistency, it assign a label bad and
terminates; and (2) if it identifies the problem at hand is consistent, it assigns a label good and
generates the after state facts. Note that in case of the presence of inconsistent facts the reasoner
simply tags the problem as bad problem and do not generate any after state facts. As stated earlier,
after state facts represents the information about a TC-AWP before/after the object transfer, an
example TC-AWP is: Daniel initially had 5 books. Stephen gave 4 books to Daniel. Now Stephen
has 2 books. How many books Stephen had initially?. Note that in this example after state facts
are actually the information before the transfer is made. Recall that TC-AWPs are formulated in
both ways, that is, a question can seek the information before the object transfer or after the object
transfer.
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Algorithm 2. TC-AWP Solver

6.4. Transfer-Maker: Leveraging SWRL to set-up transfer rules
Many of the shortcomings of OWL (Horrocks et al. 2005) come from the fact that, while these
languages include a relatively rich set of class constructors, the constructs meant for properties are
weaker. The situation can be better addressed by using SWRL; moreover, SWRL rules are easier to
design/understand. Therefore, we develop Transfer-Maker (i.e., a set of SWRL rules) using class
constructors, properties, and SWRL built-ins to perform a rigorous check about what needs to
be done while considering the effects of the object transfer. We make use of Transfer-Maker to
modify the quantities present in a word problem, as after state requires it. To be precise, these
modifications reflect the effect of the transfer. Transfer-Maker takes as input the consolidated
knowledge of ontology instance (Õi) and makes the necessary changes like assigning a value or
type to an unknown quantity, performing addition/subtraction operations over the quantities,
etc. We divide the transfer cases into three categories to better explain the role of Transfer-Maker.
The categories are as follows:

(a) No transfer cases: The TC domain involves several word problems which include only
quantities, and there are no statements that ask to modify these quantities. Therefore, no rule
needs to be developed for the first group of TC-AWPs. The question asked in these types of word
problems is directly answerable from the captured ontological knowledge. We use the first group
of transfer cases to assess howwell our system has extracted the knowledge from the word problem
text.

(b) Simple transfer cases: The group involves TC-type AWPs which ask for straightforward
modification over the before transfer quantities. We develop the R1c rule (Figure 13) for simple
transfer cases. In R1c, we mention only crucial predicates which are responsible for the answer
generation. In addition to what is shown, we perform predicate checks for very fundamental
tasks, like class membership, unit compatibility, relation existence. An example simple transfer
case problem is: Stephen has 5 books. Stephen gave 2 books to Daniel. How many books now
Stephen has?. Note that, In R1c, we do not mention some basic predicates. For example, Word-
Problem (WPi) and Agent(?a) in antecedent part, Good-Problem(WPi) in consequent part, etc.

(c) Uncommon transfer cases: The group involves TC-type AWPs which ask for modification
over the after transfer quantities. We develop the R2c rule (Figure 14) for uncommon transfer
cases. We follow the same setting for R2c rule that we have defined for R1c. An example TC prob-
lem is: Stephen had some books. He gave 5 books to Daniel. Now Stephen has 10 Books. How
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Figure 13. The R1c rule (left) and its explanation (right).

Figure 14. The R2c rule (above) and its explanation (below).

many books Stephen had initially?. Note that, In R2c, we do not mention some basic predicates.
For example, GoodProblem(WPi) in the consequent part of the rule, etc.

In SWRL rules, predicate swrlb:subtract(x,y,z) represents x= y− z; whereas predicate
swrlb:add(x,y,z) represents x= y+ z.
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Figure 15. SPARQL query to retrieve the answer of the posed question (WP1).

6.5. Answer Maker: A parameterized SPARQL string
System transforms the question asked into a “parameterized SPARQL string” to retrieve the result.
A Parameterized SPARQL String is a SPARQL query into which on-the-fly values are injected to
formulate an on-demand query. The system uses the query string to query the RDF graph of the
word problem being solved. The intended usage of parameterized SPARQL query is where initial
binding is either inappropriate or not possible (apachejena 2021).

For example, refer to the TC word problem WP1 and its RDF graph discussed in the Section
5.1, the SPARQL query given in Figure 15 is used to retrieve the answer of the posed question.
Note that g in the SPARQL query is the RDF graph of WP1. Since the posed question asks about
Agent1 and the object-type it involves is “books,” the placeholders question-agent and questions-
object-type are used to inject :Agent1 and “books,” respectively.

7. Experiments and system analysis
We carry out the experiments on a system having a configuration of 32GB RAM, Intel Core-
i7 processor, and Ubuntu 18.04 operating system. We use python programming language, and
appropriate libraries are discussed component-wise in the following sections. We analyze the sys-
tem for two individual tasks (sentence classifications, and knowledge extraction) and at the whole
framework level.

7.1. Sentence classification
For sentence classification, we use the standard train-test split for the evaluation. An open-source
python scikit-learn library was deployed for the classification task. As stated earlier, the domain
of our investigation is AWP sentences expressed in natural language. Therefore, we use sentence
splitter over 200 TC word problems and get 664 sentences of various types. We label the sentences
manually and name the dataset TC Sentences. Recall that in Section 4, we discussed the prevalent
classification algorithms, and the model selection. Here, we discuss the experimental analysis for
the sentence classification task. The results highlight the superiority of boosting machines, the
efficacy of feature selection and sentence normalization, and the detrimental effect of standard
pre-processing techniques (such as stop-word removal, quantity removal, etc.) for the TC domain.

Our experiments include three fundamental classification models (NB, DT, and RF) and two
boosting models (AdasBoost and XGBoost). We make use of a stratified 5-fold cross-validation
procedure, where the class-labeled sentences are randomly allocated to the training and testing
data splits. A standardmeasure for the classification performance is classification accuracy, and for
the TC domain, correctly predicting a sentence type is highly desirable. Therefore, accuracymetric
can be relied upon for assessing the sentence classification task. The class distribution for the
sentence classification task is as follows: BS - 38.95%, TR - 23.22%, AS - 14.60%, and QS - 23.22%.
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Table 3. Sentence classification results on test data

Model Accuracy Precision Recall F1-score

Gaussian Naive Bayes 0.60 0.44 0.50 0.47
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Decision Tree 0.86 0.68 0.71 0.68
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Random Forest 0.86 0.68 0.71 0.68
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AdaBoost 0.95 0.72 0.75 0.73
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XGBoost 0.95 0.72 0.75 0.73

Table 4. Effect of feature engineering (refer to Section 4.3 for “Custom-Features (BoW+
N-grams+ positional scores of sentences)”)

Representation Measure RF AdaBoost XGBoost

Basic-BoW Accuracy 0.55 0.74 0.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BoW+ N-grams Accuracy 0.67 0.86 0.86
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Custom-Features Accuracy 0.86 0.95 0.95

Since the classes are not highly skewed, we skip the analysis of averaging the F1 measure. During
the feature selection task, one needs to be more careful when the domain has small classes, as the
cue words are infrequent. We also observe that boosting models are most consistent across the
predictions of different classes. We experimented with various representation techniques, and the
best one turned out was the custom one that uses tokenization, lemmatization, N-gram features,
and positional scores. We show the effect of feature engineering in Table 4. We find that the
similar wordings of TC sentences inhibits the feature space minimization. For example, feature
space minimization (lemmatization, etc.) reduces the numbers of features from 1200 to 1000.
In other domains, a similar approach might result in a significant reduction in the number of
features. Moreover, since word problems are curated with attention and in general do not contain
vagueness, we do not find many irrelevant and noisy features.

SC model predicts TR and QS type sentences with 100% accuracy, as they consist of some
unique words. However, BS and AS type sentences sometimes confuse the model. For example,
consider the sentences—Stephen has 5 books, Stephen now has 5 books. The first sentence is
of BS type, and the second sentence is of AS type, while they differ in only one word. We also
observe a drop in the accuracy when we convert compound sentences to simple sentences; how-
ever, positional weights of the sentences help the model in achieving the quoted accuracy (Tables 3
and 4).

In the TC domain’s context, the effect of stop word removal can be observed by analyzing
the question class predictions. For example, wh words and the ? symbol appear in the QS type
sentences only. If stop-word removal is used, the absence of wh words and the ? symbol affects
the predictions of QS type sentences. The predictions of QS type sentences improved from 45%
(without stop-words) to 100% (with stop-words) with XGBoost as a classifier.

What XGBoost misses? : Since TR type and QS type sentences consist of distinct keywords
and structures, XGBoost predicts these two types of sentences correctly. It wrongly predicts the
AS type and BS type sentences for the 0.05% of the times because of the close resemblance of
some examples from these two classes. Moreover, since stop words carry crucial information
about the structure of the sentences, and these sentence structures are essential to the knowl-
edge component, we keep them as it is. For the TC domain, we do not observe any detrimental
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effects of lemmatization; however, it is worth noting that lemmatization can harm the classifica-
tion if certain classes rely on the raw form of certain words. In conclusion, the sentences involving
small textual units valuable cues are often lost when techniques such as stop-word removal and
lemmatization are employed. On the other hand, the lemmatization indeed reduces the classifier’s
computational load by reducing the number of features. Thus appropriate feature engineering is
desirable for reducing the computational load and improving the predictions.

7.2. Knowledge extraction
The process of knowledge extraction depends on the type of a sentence. For 0.05% of cases, AS
and BS type sentences are mislabeled, yet the knowledge extracted is consistent with information
available in the word problem text, as the knowledge present in the BS and AS type sentences is
of similar type, and Pop-Onto() treats them equally. Note that, for the 0.05% of cases mentioned
above, either AS type sentences are labeled as BS or viva versa. However, their role in computing
the answer differs. Note that TR and QS type sentences are labeled with 100% accuracy; therefore,
knowledge extracted from these two categories of sentences is consistent. We manually verify the
consistency of the extracted knowledge by randomly selecting 100 word problems. Pop-Onto()
correctly extracts the knowledge for all the TC word problems.

7.3. Experimental analysis of KLAUS-Tr
In this section, we present the experimental assessment of our approach. In the introduction sec-
tion, we briefly discussed the relevant datasets. In the following section, we present a detailed
description of the datasets used for our experimental analysis. Our system is focused on a subset
dataset (TC-AWPs); therefore, the comparison shown in Table 6 is a bit off-target, but it gives an
idea of what one would get from the other approaches in their current state for this problem area.

7.3.1. Dataset
There exists a number of datasets for the AWPs, manually curated or collected from the
online websites. The popular AWP datasets are AI2 (Kushman et al. 2014), IL (Roy and Roth
2015), CC (Roy and Roth 2015), SingleEQ (Koncel-Kedziorski et al. 2015), MAWPS (Koncel-
Kedziorskibreak et al. 2016), AllArith (Roy and Roth 2017), Dolphin-S (subset of Dolphin18K
Huang et al. 2016), and Math23K (Wang et al. 2018a). We primarily focus on AI2, IL, AllArith,
andMAWPS to gather TCword problems, as they contain transfer cases.We use a keyword-based
program script to gather TC-AWPs from various AWP datasets. The gathered TC-AWPs are later
analyzed manually for verification and removing other types of AWPs. Since existing datasets do
not contain inconsistent word problems, we create themmanually. We name the dataset Arith-Tr,
as it consists of the transfer cases. Note that Arith-Tr consists of consistent as well as inconsistent
transfer cases. Arith-Tr consists of 694 TC word problems of consistent type and 100 TC word
problems of inconsistent type. In Arith-Tr, 100 TC word problems do not involve any transfer
type sentence.

The Dolphin-S dataset includes far more diverse word problems than the other benchmark
AWP datasets (Zhang et al. 2018). Since Huang et al. (2016) focus on constructing diverse AWPs
and as existing approaches fail to solve most of the cases (Zhang et al. 2018; Wang et al. 2018b),
we assess our approach on Dolphin-S(Tr) separately (Here, Tr represents the transfer cases from
Dolphin-S dataset). Dolphin-S(Tr) consists of 146 TC word problems. Our system regards the
predicted answer as the correct one if it is numerically equal to the gold answer or the system
identifies a bad problem correctly. Since we are working on the AWP datasets and need to identify
the various types of word problems present in these datasets, we consider the AWPs of the most
common types, which are as follows: Transfer, Part-Whole Relation, Dimensional Analysis, and
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Table 5. Percentage of transfer cases in AWP datasets

Dataset # AWPs #Single-Op # Types of AWPs % TR cases

AllArith (Roy and Roth 2017) 831 634 4 38.14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MAWPS (Koncel-Kedziorski et al. 2016) 2373 1311 4 27.60
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AI2 (Hosseini et al. 2014)+IL ( Roy and Roth 2015 ) 957 889 4 42.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dolphin-S (Huang et al. 2016) 1878 115 > 50 ≈ 8

Table 6. Experimental analysis of KLAUS-Tr on various datasets. All the results are on % scale

System Dataset % of TR cases Accuracy % reduction

ALGES (Koncel-Kedziorski et al. 2015) All-Arith DS 38.14 ≈ 8 60.4 - -


ExpTree (Roy and Roth 2015) All-Arith DS 38.14 ≈ 8 79.4 26.11 67.11


UNITDEP (Roy and Roth 2017) All-Arith DS 38.14 ≈ 8 81.7 28.78 52.92
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MathDQN (Wang et al. 2018) All-Arith DS 38.14 ≈ 8 72.68 30.06 58.64
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Text2Math (Wang et al. 2018) AI2+IL DS 42.80 ≈ 8 83.2 - -


MDK (Roy and Roth 2018) All-Arith DS 38.14 ≈ 8 73.32 - -


T-RNN (Wang et al. 2019) MAWPS DS 27.60 ≈ 8 66.8 39.1 41.46

KLAUS-Tr Arith-Tr DS-Tr 100 100 92 65 29.34

• #AWPs in the datasets- All-Arith: 831, Arith-Tr: 794, AI2+IL: 957, MAWPS: 2373,
Dolphin-S(or DS): 1878, Dolphin-S(Tr) or DS-Tr: 146

Explicit Math (Roy and Roth 2018). We show the details of AWP datasets in Table 5. Note that the
original versions of the datasets (Koncel-Kedziorski et al. 2016; Huang et al. 2016; Roy and Roth
2017) consist of more examples but Zhang et al. (2018) pre-processed these datasets and removed
the near-duplicate word problems.

7.3.2. Empirical results
Interpretation of results from Table 6: Row 1 presents ALGES (Koncel-Kedziorski et al. 2015)
system. The percentage transfer cases in All-Arith (Roy and Roth 2017) and Dolphin-S (Huang
et al. 2016) datasets are 38.14 and ≈ 8, respectively. ALGES achieved 60.4% accuracy on All-Arith
and assessment results on Dolphin-S are not available.

We compare our system with the state-of-the-art AWP solvers and present the analysis
in Table 6. Given the aforementioned AWP datasets, we incorporate the experimental results
reported in previous works and results obtained from our experimental analysis. Since other
existing approaches mentioned in Table 6 do not have knowledge extraction component and
inconsistency detection module, we do not analyze their behavior on these two tasks. KLAUS-
Tr’s 100% accuracy during knowledge extraction entails that the knowledge extraction process
based on the class-labeled sentences works really well. Results indicated in the columns “Accuracy”
show the efficacy of the proposed system over state-of-the-art approaches. Our system achieves an
impressive accuracy of 92% on Arith-Tr. Transfer cases present in Dolphin-S are of diverse nature
and number of problems per template is also very less as compared to other datasets, justifies the

https://doi.org/10.1017/S1351324922000511 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324922000511


128 S. Kumar and P. Sreenivasa Kumar

low accuracy achieved by existing state-of-the-art approaches. Therefore, we evaluate KLAUS-Tr
on Dolphin-S(Tr) to analyze the robustness of the proposed system and mention the results in
a separate column. Our system achieves highest accuracy (65%) while solving the diverse trans-
fer cases from Dolphin-S. When we compute drop of accuracy that is, (accuracy on other AWP
datasets − accuracy on Dolphin-S dataset), our proposed system shows the least % of reduction
in accuracy (29.34) compared to other approaches. The mathematical situations in TC-AWPs pri-
marily involve addition and subtraction operators, which can be efficiently handled in the current
modeling. The lexical variations present in the AWP text are handled at sentence simplification
level.

7.3.3. Error analysis
Finally, we discuss the failure cases of KLAUS-Tr when assessed over TC-AWP datasets (i.e.,
Arith-Tr and Dolphin-S(Tr)). We find two major reasons that affect the system performance:
(1) NLU part—diversity of the natural language makes difficult to capture the appropriate infor-
mation. It is possible that sometimes parser may fail to identify important quantities, for example,
system fails to extract “2 books” from “two-books” due to parsing limitations. The other factors
that affected the model understanding are: errors in co-reference resolution, lacked the world
knowledge required to understand unit types, etc. (2) limitation of the sentence classifier. As dis-
cussed in Section 4, wrongly predicated class labels for the AS type and BS type sentences due to
their close resemblance in some word problems. We analyzed the failure cases of Arith-Tr and
found that our system was not able to solve 6.8% examples due to the diversity of the natural lan-
guage and 1.2% cases due to the sentence miss-classification. In contrast, after analyzing the failed
cases fromDolphin-S(Tr), we found that our system could not solve majority of these cases due to
the diversity of the natural language. For example, our system was not able to solve the following
example from Dolphin-S(Tr): “If John and Bob have 21 dollars together and John has twice as
many dollars as John. How many does John have?”

8. Conclusions and future scope
This paper presents KLAUS-Tr, a novel system that leverages the potential of machine-learning
and knowledge representation technologies to solve the TC-AWPs. In brief, given a TC-AWP, our
system first identifies the type of each sentence using a statistical classifier and then populates the
knowledge extracted from these class-labeled sentences into the ontology structure. Further, we
leverage the SWRL rules which are designed to identify the inconsistent TC-AWPs and also solve
the consistent TC-AWPs. As per our understanding of the current literature, our approach is the
first to check the validity or otherwise of a given problem text before proceeding to solve it. Indeed,
this was possible as our approach is based on the proposed ontology of the TC-AWPs.

Our approach of using a formal DL to model the domain knowledge and designing a system to
utilize the required domain knowledge turned out to be effective and has given 92% accuracy. We
see this as a significant advancement of the state-of-the-art as TC-type AWPs constitute about 40%
of the AWPs in the current datasets. The adoption of ontology-based modeling and the SWRL
rules to effect an object transfer provides an opportunity to extend the current ontology to the
scenario of multiple transfers (that is, AWPs having more than one transfer type sentences). The
current AWP datasets do not contain problems involving multiple transfers as tackling single
transfer itself is quite a challenging task for the current solvers. It is not difficult to extend our
system to solve multiple transfer scenarios, and we see that as an interesting piece of future work.
Moreover, a similar approach can be followed to develop a solver for part-whole & age AWPs;
however, the domain ontology needs to be developed appropriately. We analyze the other types of
AWPs, and as compared to the TC domain, we feel that the part-whole domain may be simple to
model, whereas the age domain may be complex, as it requires temporal reasoning.
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We envision a future scenario where many such solvers are combined and used to solve generic
AWPs along with a problem classifier that determines as to which solver needs to be used on a
specific problem text. Since ontology-based modeling of AWPs makes use of description logics
and reasoning, automatically generating explanations is an interesting possibility and we plan to
focus on this work also in the future. Explaining (automatically generating a textual description)
of a solution and similarly explaining why a certain problem was found as inconsistent are two
possible things to explore. Our research group is currently working on these future directions,
and we hope to flesh out more about these possible research directions in our future work.
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