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§ 1. Introduction.

The object of this note is to derive a form of Poisson's equation
from general relativistic mechanics, without assuming the field to be
either static or "weak." The problem is essentially a "local"
problem, all observations being made by one observer; this observer
determines the apparent gravitational field in his vicinity by observing
the motions of free (isolated) particles. Defining gravitational mass
by means of Poisson's equation, we find the relation between the
densities of gravitational and inertial mass relative to any observer.
We also find what may be called the non-rotating frame of reference
belonging to any observer.

§ 2. The frame of reference.

Consider an observer A whose world-line in space-time F4 is the
curve C. An event E in ^4's history corresponds to a point P of C,
and A's instantaneous space at this event is the region of any 3-space,
orthogonal to C at P, which is in the neighbourhood of P, distances
from P being such that their squares may be neglected. The observer
A can refer events occurring in his vicinity to a cartesian frame of
reference with himself at the origin. The axes are determined by a
triad of unit vectors ~h\, a- = 1, 2, 3, at each point of C, these vectors
being mutually orthogonal and orthogonal to C. If now P' is a point
near C, and if P is that point of C such that PP' is orthogonal to G
at P, the vector PP' can be written z" h^, where ~h\ are the vectors of
the triad at P. It follows from the general theory1 that z1, z2, z3 so
defined are the cartesian coordinates assigned to the event E' (P') by
A at the event E{P). Further, if s is the arcual distance of P
measured along C from some fixed point Po, and if A's proper time t

1 The line element of V4 has the significance that the element of distance in an
instantaneous space is the element of length measured by a rigid scale, and the element
of distance along a world-line is the element of proper-time multiplied by the velocity
of light.
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is measured from the event Eo (Po), the time of occurrence of the
event E' (P') according to A is s/c, where c is the velocity of light.

A curve C" near C can now be specified by the z's as functions of
s, the z's for a particular s being the coordinates of the point P' of C"
corresponding to the point P (s) of C. Hence, if C" is the world-line
of a particle, the motion of this particle as observed by A is given by
the equations

2*=2<r(s), S = Ct. (1)

For convenience, we shall consider the cartesian axes defined by
Fermi transport along C, this being the natural generalisation to any
curve of Levi-Civita parallel transport along a geodesic. Fermi
transport conserves the angle between any two vectors orthogonal to
C, and a vector initially orthogonal to C retains this property when
transported along the curve. It is in fact the most simple transport
possessing these properties1, and it is therefore not surprising that,
as we shall see later, the frame of reference so defined has particular
significance. The vectors hi are now solutions of the equations

^ + Wth* + gjtrfh*)\t = 0 (2)

where ¥ (s) is the unit vector tangent to C at P (s) and tf is the
curvature vector at P, i.e..

V = f i + r^^M, (3)

the components of the fundamental tensor g^ and the Christoffel
symbols Y\k being evaluated at P. The vectors h\ are completely
determined at points of C by these transport equations and by an
arbitrary triad (hi)0 at some point Po of C; it can easily be verified
that if the initial vectors satisfy the required conditions of orthogon-
ality, the vectors at each other point of G also satisfy these
conditions. Any other frame of reference could now be obtained by
rotating the axes defined above.

§3. The gravitational field.
The observer A can explore the gravitational field in his vicinity

at the event E (P (s)) by measuring the accelerations of free (isolated)
particles at time I = s/c. It has been deduced2 from the equations of

1 See A. G. Walker, "Relative Coordinates," Proc. Boy. Soc. Edinburgh, 52
(1932), 346.

2 Eddington, The Mathematical Theory of Relativity (1930), § 56.
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conservation Tl\j = 0 satisfied by the energy tensor that the world-
line of an isolated particle is a geodesic. We shall therefore consider
the geodesies, issuing from the point (z) relative to P (s), which are
such that dz/ds is small of the order z, these being the world-lines of
particles, near A at the event E (P), whose velocities relative to A
are small compared with the velocity of light.

It has been shown1 that in the system of coordinates defined
above, the equations of geodesies can be written

l ± = - r < w » ' + flr,, (« r= l , 2, 3) (4)

where
(5)

(6)
The expressions on the right in (5) and (6) are evaluated at P (s), so
that F^, gv are defined at points of C. In deriving equations (4), it
is assumed that z and dz/ds are small. It can be shown however
that the components ga and hence d2 z"jds2 are not necessarily small
for equations (4) to be valid at the point of the geodesic under
consideration, i.e. it is not necessary to assume that the geodesic
remains near C. Since ds = cdt, the components of acceleration
derived by A are c2d2z"/ds2. Hence at the event E (P), the com-
ponents of the apparent field of force are

W= -c2V^z" + c2ga. (7)

We observe that the expressions for the F's do not involve the
velocities dzjdt, whence, according to any observer, the axes defined by
Fermi transport along his world-line do not rotate relative to the matter
in his neighbourhood. This property justifies the use of the particular
frame of reference defined above.

The components of force at the origin are c2ga, found by putting
z = 0 in (7). The space-time vector giving the space-vector c2ga is

3

c2 S gah
l
a, and from (6) since gyWrf = 0 and e (h^) = — 1, this vector

<r = l

is — c2tf. Hence, the apparent force at an event E (P) in the history of
an observer is given by the vector — c2yf, where -if is the curvature vector
of the observer's world-line at P. This result appears to be well
known.2

1 Walker, loc. cit. p. 351. The right-hand side of (4.3) should read — vr instead of vr ;
we are now writing go- for «„. I t must be remembered that in the Vi we are considering,
the indicators are e (h) = gij hi hi =+ 1, e (ha ) = g%j h^h^i = — 1.

2 Of. E. T. Whittaker, Proe. Boy. Soc., 149 A (1935), 385.
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§ 4. Poisson's equation and gravitational mass.

Since Tav = TV<T, we see at once from (7) that F = — grad V, where

V = \^Tavz"zv -&gaz°. (8)

Hence the apparent field of force in the neighbourhood of the
observer at the event E (P) can be derived from the potential F
given by (8), the quantities Tuv, ga being evaluated at P.

From (8) we find

Now the vectors U, h\ form an orthogonal quadruple, whence

S h\hl
v= hkhl - gu.

<r = l

Substituting in (5) and (9), we find

V 2 F = - c2R{j¥hi (10)
where B{j is the Bicci tensor gklBkiji. Neglecting the cosmical
constant, the field-equations expressing B^ in terms of the energy
tensor Tti can be written

By = - /c (T{j - \Tgii), T = flf« Ta, (11)

where K = 8ny/c2. Hence (10) becomes

hihf-T). (12)

It is of interest to note that a form of this expression arose in recent
work on Gauss' Theorem.1

The energy tensor can be defined2 as Tli = Sp'oA'̂ A'̂ , where p'o is
the proper density of all particles whose world-lines are in the
direction A'* at the point under consideration, and S denotes summa-
tion over all time-like directions A'*. It follows at once that

T = Po, T^hfM^p, (13)

where p0 is the proper density at the event E (P) and p is the relative
density measured by the observer at this event. Thus finally we
have

p - P o ) . (14)

1 E. T. Whittaker, loc. cit. ; and H. S. Ruse, page 151 (5.7) of the present volume
of Proc. Edin. Math. Soc.

2 Eddington, op. cit., §53.
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Comparing (14) with Poisson's equation, we see that the relative
density of gravitational mass defined by Poisson's equation is

P« = 2P-PO, (15)

where p0 and p are the proper and relative densities of inertial mass.
It must be remembered that equation (14) applies only to events at
the observer and not to all events in his instantaneous space. It is
assumed that the observer measures distances directly and conse-
quently the field of observation is so limited that V2 V can be
evaluated only at the observer himself. Thus pg is the density of
gravitational mass at the observer.

The relation (15) can be written otherwise, using the known
relations between proper and relative inertial density and pressure.
If v is the mean velocity of matter relative to the observer A at the
event E (P),

2\ 3

P

where pm is the mean relative pressure, i.e. pm = \ (pxx + pyy + pzz).
HenceHence

Also, if the system is isotropic, the proper hydrostatic pressure being
p, we have

_ 1 3j> 1 + P2/3C2

9 ~ Pol-v2/c2 c2 1 - v2/c2 '
Hence,

1 + v2/c2 , 3p
Pg~ Po ^ 57V H n

1 — i;2/c2 cl

The relation (1*7) shows that the density of gravitational mass
varies for different observers at the same event. It is generally
assumed that the pressure can be neglected in comparison with the
density. In this case, we see that the gravitational density is equal to
the inertial density when and only when the observer is at rest relative to
the matter in his neighbourhood.
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