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REFINEMENTS OF SOME BOUNDS IN INFORMATION THEORY
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(Received 14 October 1997)

Abstract

Recently Dragomir and Goh have produced some interesting new bounds relating to entropy
measures in information theory. We establish several refinements of their results.

1. Introduction

Entropy, conditional entropy and mutual information for discrete-valued random
variables play important roles in information theory (see, for example, Ash [1] and
McEliece [5]). A number of simple bounds have long been known for key quantities.

Suppose X is a discrete random variable assuming value x, with probability p, > 0
(1 < i < n). For b > 1, the i-entropy of X is denned by

\/Pi.

It is well-known (see Ash [1, Theorem 1.4.2]) that H(X) is maximized when all its
values occur with equal probability 1/n, in which case H(X) = logfc n.

Recently refinements have been provided for some of these results by Dragomir
and Goh [3]. Thus the above-mentioned result is sharpened by Theorem A below.

THEOREM A. / /

then

0<logbn-H(X)<e.
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For a pair of discrete random variables X and Y with finite ranges {*,}, [yj}, the
conditional t-entropy of X given Y is defined by

H(X | y) := £>, , ; log, 1/Pll/, (1.1)

where, as in the sequel, p y := P{X = *,, y = y;} and p/y := P{X = *,• | 7 = y,}
(see [5, p. 22]). The following result relating to conditional entropy in the context
of three discrete random variables X, Y, 2 was proved in [3]. As subsequently in
the paper we denote the range of Z by {zt} and the three marginal distributions by
(Pd, (tfy)> fa), respectively. Further we put p i J A := P(X = xt, Y = yhZ = zd,

:= P ( Z = zt | X = x,, Y = yj) and rl{i :=

THEOREM B. Let X, Y, Z be discrete random variables with finite ranges and let
e > 0 be given. If

(max^ \pi { i -pttlv\ < y/2eInb/K, (1.2)

then we have

0<H(Z) + EQogbA)-H(X\Y)<e, (1.3)

where H(Z) is the b-entropy ofZ and

The expectation in (1.3) is taken over the sample space ofZ.

The mutual information between two random variables X, Y is defined by

I(X; Y) := H(X) -H(X\Y) = £/>,,, log, ̂ - . (1.4)
Pa

If X, Y, Z are given random variables, then the mutual information l(X, Y;Z),
which may be interpreted as the amount of information X and Y provide about Z, is
defined by

I(X, Y; Z) := Tp,j,e log, ^ - (1.5)

(see [5, p. 26]). It is implicit that pij > 0 for all pairs (i,j).
In [3] the following result was given.
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THEOREM C. We have

0<I(X,Y;Z)-I(Y;Z)

inequalities become equalities if and only if r^j = rty for all (i, j , I) with
Pijx > 0.

In this paper we show how further improvements can be given for these results. In
Section 2 we give a rather more general form of Theorem A, in which logfr n — H (X) is
shown to be less than or equal to each of two bounds. One of these gives a refinement
of the bound given by Theorem A.

In Section 3 we give several bounds pertaining to conditional entropy, one of which
provides an improvement to Theorem B. Our arguments have the simple but apparently
novel feature of exploiting the fact that p,- > 0 and qj > 0 can coexist with ptj — 0.

Finally, in Section 4, we give some results relating to mutual information.

2. Bounds on the entropy of a random variable

We now proceed to a strengthened version of Theorem A. We shall need the
following result of Biernacki, Pidek and Ryll-Nardzewski [2].

THEOREM D. Let (a,-) and (£>,) be n-tuples such that Ci < a, < c^anddx < bt < d2

for 1 < i < n. Then

Here, as in the following theorem, [x] denotes the largest integer less than or equal
to*.

THEOREM 2.1. Suppose the random variable X admits values x, with respective
probabilities p{ > 0 (i = 1, . . . , n) and let M = max, p, and m = min, p,. Then
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then

0<logbn-H(X)<e.

PROOF. From [3, Theorem 4.3] we have

i r - i
0<logbn-H(X) <-— B ; p? - l . (2.2). m H tr J

Putting a, = bt = p, in Theorem D provides

or

71

1=1

Combining (2.2) and (2.3) yields

0 < log, n - H(X) < - i - [^1 (n - [-]) (M - m)2. (2.4)

In [4, Theorem 2.1] we showed that if p := Taax.itkpi/pk, then

Here p = M/m, so

~ * ~ 4\nb Mm

Combining (2.4) and (2.5) gives the first part of the enunciation.
Since

max \pt — pj\ = M — m,

the second part follows at once from (2.1) and (2.4).

Since 2 [ |] (n — [§]) < n(n — 1) for n > 2, the second part of the theorem is
clearly stronger than Theorem A.
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3. Bounds on conditional entropy

We shall need the following preliminary result established in [3].

LEMMA 3.1. Let & € (0, oo) and sk > 0 (1 < k < n) with £ t= i 5 * = 1 and
suppose b > 1. Then

( n . \ n 1 I" " C " ~\

i=l / t=l \_j=l W i=l J

We shall need also the following discrete version of the Griiss inequality (see [6,
Chapter 10]).

LEMMA3.2. Supposesk >0withu < ak < Uandv < bk < V(1 < k < n). Then

1 / " V

We now proceed to provide an upper bound on the conditional entropy of a pair
of discrete-valued random variables. We shall take advantage of the fact that in the
definition (1.1) of conditional entropy, the summation is only over those pairs (1,7)
for which ptJ > 0.

THEOREM 3.3. Suppose X, Y are random variables each with a finite range. Define

Vj := [i: PiJ > 0], put U := {(i,j) : i e Vj) and let

Further define M = max.(ij)eUpi\j andm = nan^j)eUpnj. Then

[Mm

2 ,
m a x - \ P i \ j - P«ivl < - V e l n f c , (3.2)

d,j ).(«,»)€£/ r1

then
0<logbr'-H(X\Y)<e. (3.3)

https://doi.org/10.1017/S1446181100012013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012013


392 M. Matid, C. E. M. Pearce and J. Pe&irtf [61

PROOF. We may label pairs (i, j) e U as k = 1 , . . . , n , say, and then apply
Lemma 3.1 with sk = pij and §t = 1/pm = ^ /p,,7. This gives

0 < l o g 6

1

1

E '•>£ >J " P

* i I

E
(iJ)eU

I
I

(3.4)

The last inequality follows from Lemma 3.2 with st = 3, and ak = bk •=• plL, in (3.1).
Now

sofrom (3.4) we get

0<logbr'-H(X\Y)<

In [4, Theorem 3.1] we proved that

- mfr'r'2 (3.5)

where p := maX(ij),(U,V)euPiy /pu\v = Mfm. So we have

Mm
(3.6)

The first part of the enunciation follows from (3.5) and (3.6).
For the second we need only note that if (3.2) holds, then (3.3) follows from (3.5).

Our next theorem gives an improvement of Theorem B.

THEOREM 3.4. Let X,Y be a pair of random variables as in Theorem 3.3 and let
Z be a discrete-valued random variable assuming values zk (1 < k < t) each with
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positive probability rk (1 < k < t). We define an associated random variable A which
assumes the value

Pij,k/Ptu
(•J)6l/

with probability rt (1 < k < t). We define also

* - : = > -
where atJ,k :=Pij,k/Pnjfor(i,j) € U. Finally we put

M = max pi\j, m = min

Then we have

0 < H(Z) + E(log> A) - # ( X | K) <

Ife>Ois given and

is:, -±- J .

.. . , „ l

0 < H(Z) + fdogj A) - ff (X I y) < e.

(3.7)

(3.8)

PROOF. By Lemma 3.2 with ak = bk = ptij and *t = a,-j,/ (it = (i,j) € f/), we
have for fixed I that

E^p^E^-^

_L
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By Lemma 3.1 with sk = Pij,i/rt and£* = l/pt\j (k = (i,j) € U) we have

0 < logfr

1

~ InT

V""» PiJ.l 1 _ V ^ PlJ,l < _J_

_(ij)eu Tt P'\i J (ij)*u rt P'V

V*- ^mm^0 W0
M y % •_• «_ I

Multiplication by rt and summation over I = 1 , . . . , t yields

0 < # (Z) + £(logj A) - H(X | Y)

^ (3.9)
^ 41n6

We deduce that (3.8) follows if (3.7) holds.
In [4, Theorem 3.2] we proved that

0 < H(Z) + £(logft A) - H(X | Y) < ̂  L/p - -j^\ ,

where p := maxOJUu,v)€Upnj/puiv. Here p = M/m so

o < H(z) + £Gogfc A) - ff(x i y) < * , ( M . T m ) •

4hife Mm

Combining this with (3.9) gives the main part of the theorem.
The factor 2 in (3.7) replaces the -Jl of (1.2), so the second part of Theorem 3.4

represents a strengthening of Theorem B.
We can use Theorem 3.4 to improve [3, Corollary 5.4].

COROLLARY 3.5. Suppose X, Y have the same range. Define

Z f° i
I1 '

ifX = Y,
ifX £ Y.

Further, define

7; :=|(i:ij4j,

0 otherwise.
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Let Pt := P{X ^Y) = P{Z = 1} and lets > Obe given. If

then

0 < H(Pe) + PelogbA(l) + (1 - Pe)log6A(0) - H(X | 7) < e,

where A(0) = £,. qjRj, A(l) = £ \ 4 2}

PROOF. We may take yj = Xj for all j , since X and Y have the same range. The
random variable A assumes the values

y ie Vj

and

We derive
A2(0) A2(l) A2(0)Pt + A2(l)(l - P.)

1 P

As in the proof of Theorem 3.4 we have

(Af - m)2K
41nfc '

(3.11)

0 < H(Pe) + PelogbA(l) + (1 - P,)log,A(0) - i/(X | Y) <

Under (3.10), the result follows from (3.11).

REMARK 3.6. We have 0 < A(0) < 1 and 0 < A(l) < r - 1. Hence

PeA
2(0) + (1 - P,)A2(l) < Pt + (1 - Pe)(r - I)2 = 1 + (1 - Pe)(r

2 - If)

and our condition (3.10) is better than the corresponding condition

M — m <
+ (1 - Pe)(r

2 - 2r)

in [3].

REMARK 3.7. It can happen that pjj = 0 for all j . In this case Rj = 0 for all j and
soA(0)=0,andalsoP{X = Y} = 0 and hence Pe = 1. Then(l-P<,)log6A(0) = 0,
since OlogO := 0. Also A(0) + A(l) = r' < r.
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4. Bounds on mutual information

HO]

As with Theorem 3.3, our analysis in the following result hangs on the fact that in
the definition of mutual information (1.4), the summation is over those pairs (i, j) for
which pij > 0.

THEOREM4.1. Let V := 'J'j) :Pu >0}and
,2

max
Pij Pu,v

< —y/s]nb, (4.1)

then

PROOF. Takes* asp;,, and£k aspiqj/pu, for (i,j) € V,inLemma3.1. This gives

\ 0J )6V

_(ij)ev

(ij)eV

(«,v)6V
W~ \

( ]
ili \Pu J (

I max — - — min
Pij

iuiivPi9j Pij J

Plv

smce

max
Pilj = M — m,
Pij Pu.v

where M = msx^ij^vPiqj/Pij and m = min{l,y)€vP^i?; /'pu• The third inequality in
the proof follows from Lemma 3.2 with ak = bk = Piqj/pij and sk = p^j/ptqj for

REMARK 4.2. We have 0 < S < 1 and it can happen that S < 1. For example, if X
and Y both have range {0,1} and

Po.o —Pi.i = 0. Pi.o = Po.i = 1/2,

then we have S = 1/2. Of course S = 1 if p,,y > 0 for all pairs (i,j).

https://doi.org/10.1017/S1446181100012013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012013


[11] Bounds in information theory 397

REMARK 4.3. In [3] the same conclusion is given but without the improvement
provided by the term log6 S and under the condition M — m < (l/KW2e]nb. Our
condition (4.1) is weaker. Also, in [4] it was shown that I(X; Y) < (1/4 In fc)(v7> —
l/^/p)2, where p = M/m. The improvement provided by the term logft 5 was missed
but follows at once from the argument, so that in fact we have

Combining this with the proof above we get

0 < lo&5 + I(X; Y) < W-ff \K\ - U .
41n£ [ Mm]

Finally we address strengthening Theorem C. Definition 1.5 requires that ptj > 0
hold for all pairs (i, j ) . The summations need only be over the set of triples

Let

OJ.t)eW

Then 0 < T,< 1 and it can happen that T < 1. For example, if X, Y, Z have the
range {0,1} and

P i,o,o = Po.i,o = P 1,1,0 = Po,o,i = 1/4

with piji = 0 for other all triples, then T = 3/4. As with our discussion in Remark
4.3, the proof of Theorem C actually provides the improvement that the middle
quantity in (1.6) be replaced by log^ T + I(X, Y; Z) - I(Y; Z). We can make a
further improvement.

THEOREM 4.4. Suppose the conditions of Theorem C are satisfied and

w rt\i,j . rt\ij
M := max — - , m := mm ——.

Then

0 < logfc T + I(X, Y;Z) - I(Y;Z) < ( M ~ ̂  min ( 7 * . - j - 1 . (4.2)
41n£> I Mm)

PROOF. Relation (1.6) can be rewritten in the form

(X, Y;Z)-I(Y;Z)

1 f V̂
(u.v,w)eW
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Now we can apply Lemma 3.2 with sk = p^ty and ak = bk = r^j/r^, for
(i, j , £) € W, to obtain

0 < log4 T + I(X, Y; Z) - I(Y; Z)

1

In [3, Theorem 4.2] it was proved that

I{X, Y;Z) - I(Y; Z) < (1/4Inb)(Jp- 1/VP)2

and again we may insert the term logft T on the left. Since p = M/m, we have

0 < log, T + I(X, Y; Z) - I(Y; Z) < ' ( t f " W ) 2 , (4.4)
4\nb Mm

Combining (4.3) and (4.4) provides the desired result.
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