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Effective pharmaceutical treatments for age-related cognitive decline have proved elusive.
There is, however, compelling evidence that nutritional status and supplementation could
play crucial roles in modifying the expression of cognitive change through the lifespan.
Subjective memory impairment and mild cognitive impairment can be harbingers of demen-
tia but this is by no means inevitable. Neurocognitive change is influenced by a variety of
processes, many of which are involved in other aspects of systemic health, including cardio-
vascular function. Importantly, many of these processes are governed by mechanisms which
may be modified by specific classes of bioactive nutrients. There is increasing, converging
evidence from controlled trials that nutritional interventions can improve mood and cogni-
tive function in both clinical and healthy populations. Specific examples include selected
botanical extracts such as the flavonoids. Some nutritional supplements (e.g. broad-spectrum
micronutrient supplementation) appear to support improved cognitive function, possibly
through redressing insufficient nutrient status (i.e. suboptimal but above the threshold for
frank deficiency). Recent mechanistic research has unveiled physiologically plausible,
modifiable, cognition-relevant targets for nutrition and nutraceuticals. These include pro-
cesses involved in both systemic and central vascular function, inflammation, metabolism,
central activation, improved neural efficiency and angiogenesis. The advent and develop-
ment of human neuroimaging methodology have greatly aided our understanding of the
core central mechanisms of cognitive change. Different imaging modalities can provide
insights into modifiable central mechanisms which may be targeted by bioactive nutrients.
The latter may contribute to slowing age-related decline through supporting neurocognitive
scaffolding mechanisms.

Cognition: Cognitive enhancers: Dementia: Age-related cognitive decline: Neuroimaging

The dramatic increase in life expectancy during the twenti-
eth century surely ranks as one of the greatest achievements
of medical science. Most babies born in 1900 did not live

past the age of 50, today those born in Westernised coun-
tries can expect to live into their 70s and 80s and beyond(1),
a trend which is likely to continue at least for the next
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decade or so(2). Nevertheless, population-level, increased
longevity brings with it unexpected challenges in the
form of age-related diseases. As well as placing a heavy
economic burden on healthcare systems, these engender
serious human costs. Amongst such disorders, perhaps
the most pernicious is dementia which shares many
mechanisms with less severe conditions such as subjective
memory impairment (SMI; more recently termed subject-
ive cognitive decline), mild cognitive impairment (MCI)
and non-clinical age-related cognitive decline.

The World Health Organisation estimates that there is
a new case of dementia every 4 s(3), a figure which illus-
trates the urgency of the global health crisis associated
with cognitive decline. Such decline, however, is far
from inevitable. While there is a genetic influence in
dementia (a three-generation family history roughly dou-
bles the lifetime probability of a dementia diagnosis), it is
estimated that <2 % of Alzheimer’s disease (AD) cases
are due to single-gene mutations with approximately
13 % of cases having a clear autosomal-dominant pattern
of inheritance(4). Higher estimates of genetic influences
on non-pathological age-related cognitive decline suggest
that approximately 50 % of the variance may be
explained by genetic factors(5), with the remainder
assumed to be attributable to environmental and lifestyle
influences. This has driven the search for achievable ways
to modify the expression of age-related neurocognitive
decline and progression to AD. There is now increasing
evidence that candidate modifying factors include exer-
cise(2) and, importantly for this review, nutritional pro-
cesses. There is also growing evidence that many of
these modifiable influences on dementia risk also modify
non-clinical cognitive decline and may be set in motion
many years before the manifestation of impaired cogni-
tive function.

The most common form of dementia is AD, accounting
for some 60–80 % of dementia cases(6). Distinguishing
pathological from non-pathological cognitive ageing is
challenging, partly because many of the markers for AD
are also observed to some degree in normal ageing, as
well in other cognitive phenotypes, such as SMI and
MCI. Individuals with SMI perceive their memory to be
declining but perform as well as their peers on objective
cognitive tests. Nevertheless, they have reduced grey mat-
ter volume in the temporal lobe(7), which houses structures
important for memory processing, and increased levels of
brain activation during cognitive tasks(8). This suggests
that there may be central compensatory mechanisms dur-
ing early phases of cognitive decline, with greater activa-
tion required to maintain previous levels of cognitive
performance. Compared with SMI, MCI is more severe,
associated with significantly reduced cognitive functions
but, unlike AD, the ability to conduct activities of daily
living is spared. Both SMI and MCI are associated with
increased risk of future dementia(9) with 30–40 % of
those with MCI converting to AD over a given 5-year per-
iod(10). SMI also increases the risk of later dementia, espe-
cially in those who go on to be classified as having MCI(9),
leading to the suggestion of a three-stage model. This risk
is particularly high when SMI co-presents with worry(9),
raising the intriguing possibility of experiential concern

about declining memory being linked to a more severe
organic, prodromal state. Conversely, while both condi-
tions can be harbingers of dementia, some individuals sta-
bilise and do not progress to more severe stages. This
suggests that MCI and, especially, SMI may be viable tar-
gets for preventative interventions including from nutri-
tional interventions.

The first-line pharmacotherapy for AD is dominated by
the cholinesterase inhibitor (ChEI) family of drugs, intro-
duced in 1997.Twodecades later, there is a general consen-
sus that the ChEI have not realised their initial promise.
The drugs can treat the symptomatology of AD, but the
impact on the disease itself has been modest. As the
name suggests, their common mode of action is to inhibit
the enzyme cholinesterase, resulting in elevated levels of
the neurotransmitter acetylcholine, which is important
for memory and attentional functions and is depleted in
the AD brain. ChEI offer moderate respite at best and
are effective only at earlier stages of the disorder. They
have a relatively small therapeutic window due to low tol-
erance in many patients(11), with a 30 % drop out rate in
clinical trials. Interestingly there are certain herbs with
ChEI properties which appear to be better tolerated than
their pharmaceutical counterparts, including species of
Salvia (sage). Extracts ofSalviahave been shown to acutely
improvememory and attention in healthy young and older
populations(12–15), with two small trials in cognitively
impaired populations also showing promise(16).

The relative contribution of the ChEI properties of Salvia
to these effects is not known, as the herb affects many
cognition-relevant processes(16). Indeed, one reason for the
relative lack of success of pharmaceutical ChEI in the treat-
ment of AD is their restricted mode of action. Like other
degenerative diseases, AD can be considered to be product
of apathological cascade, in this case involvingprogressively
accelerating, reciprocal, neurotoxic interactionsbetweenoxi-
dative stress, inflammatory responses, compromised cerebral
metabolism, neurofibrillary tangle generation, β-amyloid
deposition, amongst other processes which include damage
to the cholinergic system(17). The relative contribution of
each of these is unknown and likely differs in idiosyncratic
ways from person to person. Given the multifaceted nature
of AD, unsurprisingly ‘magic bullet’ approaches to halting
cognitive decline have been relatively unsuccessful. In part
this is because theydonotmatchwellwithourpresent under-
standing of central nervous system function, where our
growth in knowledge is characterised by increased complex-
ity; it seemsunlikely that therewill bea ‘doublehelix’ofbrain
function. The lack of success of central nervous system
pharmaceutical pipelines in the development of treatments
for brain senescence has led to investigations into themodifi-
able processes which underlie neurocognitive decline. These
include (but are not restricted to) cognitive activity and edu-
cation, exercise and nutritional factors. Some examples of
the latter will be outlined in following sections.

Factors influencing age-related cognitive decline

There is increasing evidence thatmany of the risk factors for
cognitive decline may be detectable in mid-life, with several
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of these overlapping with those for CVD(18). Such processes
include poorer glycaemic control, compromised vascular
function, oxidative stress, inflammation, perturbations of
the hypothalamic–pituitary–adrenocortical axis and micro-
biotic dysbiosis (Fig. 1).

The interactions between these factors and cognitive
decline may be reciprocal or even reflect reverse causality.
Childhood cognitive ability is a strong predictor of both
age-related cognitive decline and many later life health
indices(9) suggesting that both may be manifestations of
some core mechanism(s). Irrespective of the underlying
influences, the cluster of processes depicted in Fig. 1 is
known to be modifiable by dietary interventions.
Indeed, it has been suggested that, despite a projected
3-fold increase in dementia prevalence by 2050, the age-
specific risk of dementia may be decreasing in some
Western countries due in part to ‘[rising] levels of educa-
tion and more widespread and successful treatment of key
cardiovascular risk factors’(19). Such treatment includes
better nutrition advice, again supporting the concept of
dietary interventions positively modifying the trajectory
of cognitive decline in senescence. The following sections
present a selective review of nutritional/dietary interven-
tions, which have potential to modify cognitive function.

Various epidemiological studies have shown an associ-
ation between certain dietary (patterns and specific bio-
active nutrients) and protection against cognitive
decline. These include the Mediterranean dietary pat-
tern(20) and specific dietary components such as the flavo-
noids(21), a class of approximately 5000 compounds
believed to contribute to the health benefits of fruit and
vegetable intake. Several epidemiological studies have
identified an association between flavonoid intake and
better cognitive function(21–24). Although useful, such
studies may have missed ‘third-factor’ influences on
both cognition and diet which, sometimes by definition,
are presently unknown. These include genetic

polymorphisms and microbiome differences. In the latter
case, there is presently intense research focus on the
so-called gut–brain axis which has become something
of a new frontier for brain research in health and disease.
Increasing evidence points to bidirectional cross-
signalling between the gut microbiota and brain including
via microbiotic metabolites, the immune system and the
vagus nerve(25). The intestinal microbiome is a rich source
of signalling molecules and can be rapidly modified by
diet(26) raising the possibility of another nutritional target
which influences brain function (e.g. using pre- or probio-
tics). Despite huge potential and compelling evidence
from animal studies, results from early controlled human
trials have been mixed. It is unclear to what extent pro-
biotic supplementation achieves the primary goal of alter-
ing the microbiota composition(27). Interventions
specifically aimed at redressing microbiomic dysbiosis
enhanced cognition in a cohort with dementia(28), but did
not improve stress or cognitive function in healthy volun-
teers(29). A recent systematic review reported positive effects
on anxiety and depression in five out of ten included stud-
ies(30). Some of these mixed results may be due to methodo-
logical issues. Better understanding of optimal treatment
characteristics, including duration and type of intervention
will doubtless emerge in the coming years and may herald
an era of ‘psychobiotics’.

Trajectories of age-related cognitive change

Many of the same processes involved in cognitive path-
ology are integral mechanisms in non-clinical ageing and
clearly contribute to population level, age-associated cogni-
tive decline. There is however enormous variation in the
trajectory of cognitive decline both across individuals and
cognitive domains(31). Broadly, age-related decline is
observed in ‘fluid’ cognitive abilities including memory
(especially working memory), processing speed and execu-
tive functioning. Conversely, so-called ‘crystallised’ abil-
ities, e.g. general knowledge and some verbal skills,
remain relatively unscathed by the ageing process(10,32). It
should be noted that, even though domains such as work-
ing memory and processing speed decline with age, there is
large individual variability, with some people maintaining
high functioning well into old age(31). Again, while some of
this variance can be explained by genetic factors, there
remains a great deal which is influenced by environmental
and lifestyle processes including nutrition.

As with cognitive abilities, there are substantial indi-
vidual differences in age-related changes to the neural
substrates which underpin cognitive performance.
Longitudinal studies are rare but indicate an adult global
cerebral atrophy rate of approximately 0·8 % per year(33).
Nevertheless some structures such as the visual and
entorhinal cortices are relatively spared, while others
such as the cerebellum and hippocampus show a more
striking decline(34), again with marked variability across
individuals(35). The hippocampus is particularly import-
ant in the context of modifiable structure–function rela-
tionships. It is critically involved in binding together
disparate elements of experience (time, location,

Fig. 1. Influences on neurocognitive ageing including therapeutic
targets for delaying age-related neurocognitive decline.
Pharmaceutical approaches are largely restricted to effects on
neurotransmitter systems (grey panel). Processes within the
green-shaded area represent realistic nutritional targets. Age and
genetics (unshaded area) remain non-modifiable factors. HPA,
hypothalamic–pituitary–adrenal axis.
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environment, actions, specific stimuli, etc.) into specific
memories(36). Hippocampal size is reduced in a cluster
of diet-modifiable disorders, including diabetes, obesity
and hypertension(37). It is one of two mammalian brain
structures which have been identified as having the cap-
acity for adult neurogenesis (the birth of new neurons).
Crucially there is increasing evidence that lifestyle factors
such as exercise can increase human hippocampal vol-
ume(38). In animals, this increased volume is accompan-
ied by elevated rates of neurogenesis following
exercise(39) and by nutritional interventions such as
diets rich in flavanols(40) or n-3 fatty acids(41). This
again supports the notion that there are plastic neural
substrates of cognitive performance, which are viable tar-
gets for nutritional interventions in human subjects.

Neuroimaging and nutritional interventions

Unlike pharmaceuticals, the effects of dietary interventions
can be subtle (although standardised extracts of the herbs
Ginseng and Bacopa improve cognitive performance
with effect sizes comparable with those of the US Food
and Drug Administration-approved, cognitive enhancer
du jour, Modafinil(42). The advent of computerised cogni-
tive tests has helped to advance the field. Compared with
paper-and-pencil psychometric assessment, these are cap-
able of exquisite sensitivity in detecting slight changes in
accuracy as well as resolving changes in response times at
the millisecond level. This is particularly important when
considering that speed of processing declines with ageing.

It is beyond the scope of the present paper to cover all
randomised controlled trials in this area; the following
sections, therefore, give a flavour of the results of such
studies, focusing on those which have included the appli-
cation of neuroimaging methodology.

Using neuroimaging to detect structural/functional
changes associated with dietary interventions can be
important for a number of reasons. If nothing else such
studies can confirm that the treatment is centrally active,
that is, that some component of the ingested substance is
bioavailable and, directly or indirectly, changes the pat-
tern of activation during cognitive processing.

Neuroimaging can also provide important insights into
the mechanism of action of nutritional interventions.
There are various neuroimaging modalities, each with its
own advantages and disadvantages. Structural imaging,
often performed using MRI can discern the size of neuro-
anatomical regions, or specifically grey matter (reflecting
most structures other than the myelin sheath). The method
is used to quantify changes in whole brain volume or
specific neuroanatomical loci such as the hippocampus
and its subfields. Other sophisticated measures have been
developed, such as diffusion tensor imaging which can
visualise white matter (essentially myelin), an important
constituent of the tracts which convey electrochemical
traffic between brain structures. Age-related declines in
white matter integrity have been shown to mediate percep-
tual slowing in ageing(43). White matter integrity is related
to vitamin D status(44) and can be improved by nutritional

change including n-3 fatty acid supplementation(45,46), sug-
gesting it may be a viable target for nutrient interventions.

As well as structural changes, neuroimaging can be
used to detect changes in functional activation using sev-
eral methods. Each has advantages and can be viewed in
terms of its spatial and temporal resolution, that is, how
well the method can measure where and when, respect-
ively, neural events occur.

Electroencephalography (EEG) was developed in the
first half of the twentieth century and successfully detects
changes in electrical activity associated with neuronal
firing. It has a temporal resolution at the millisecond
scale (reflecting the timescale of activity underpinning
actual cognitive events). It has, however, poor spatial
resolution since the signal is smeared by the skull.
Continuous EEG recordings are typically divided into
traditional frequency bands of δ (<4 Hz), θ (4–7 Hz), α
(8–15 Hz), β (15–30 Hz) and γ (30+ Hz) with lower fre-
quencies dominating during a relaxation, transitioning
to higher frequencies during cognitive processing.

Applying EEG methodology to nutrient interventions
have revealed effects of several nutritional interven-
tions(47). Acute administration of the green tea polyphe-
nol epigallocatechin gallate reduced subjective stress
and increased α, β and θ wave activity in healthy young
volunteers(48). There is evidence of relaxant properties
of other tea components from human EEG activity(49,50).
Two hundred milligrams of the green tea amino acid
L-theanine, but not 50 mg, led to increased α-wave activ-
ity in the occipital and parietal regions of the brain
within 40 min of ingestion when administered to resting
participants. A different study found evidence of a
decrease in α-wave activity following 250 mg L-theanine
when measured during performance of an attention
task(51). While these findings may appear to be contradic-
tory, it may also be indicative of differing EEG effects of
L-theanine when administered during attentional process-
ing (requiring focus) as opposed to at rest. In particular,
these data can be explained by the fact that, as well as the
classic relaxation-associated ‘tonic’ α, there is also a
phasic α wave. This is believed to be associated with
brain areas which are inhibited as, if they were active
they would render this type of processing less efficient;
a so-called distracter suppression mechanism. This inter-
pretation was confirmed in a follow-up study where thea-
nine again facilitated the EEG component of attentional
switching, this time when the cue signalled a stimulus to
the left or right visual field rather than between visual
and auditory modalities(52).

More recently, neuroimaging using magnetoencepha-
lography (MEG) has been developed. Rather than
changes in electrical activity, MEG detects fluctuations
in the magnetic field of neuronal populations. As the sig-
nal is relatively unchanged by bone, compared with EEG
the spatial resolution from MEG is also very high. The
brain’s magnetic field is approximately 50 femtotesla
(i.e. 10−9 that of the earth’s magnetic field) making
MEG methodologically challenging. The technique
requires shielded housing and arrays of recording magne-
tometors (superconducting quantum interference
devices) which are bathed in liquid helium.
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Pharmaco-MEG is a developing discipline and MEG
studies into central effects of nutritional interventions
are lacking. One exception is an application of MEG
to the study of the acute anti-stress effects of a drink con-
taining 200 mg L-theanine(53). Compared with a placebo,
multitasking-evoked workload stress was reduced in the
theanine condition 1 h post-drink only, with cortisol fol-
lowing a different pattern, being reduced at 3 h only.
Additionally, MEG revealed that resting state α oscilla-
tory activity was significantly greater in posterior sensors
after active treatment 2 h post-dose. This effect was only
apparent for those higher in trait anxiety, emphasising
the need for control and/or measurement of initial situ-
ational and dispositional factors in this type of study.
The change in resting state α oscillatory activity was
not correlated with the change in subjective anxiety,
stress or cortisol response, suggesting further research is
required to assess the functional relevance of these
treatment-related changes in resting α activity(53).

Many neuroimaging studies utilise functional MRI
(fMRI) which reflects neuronal activation by measuring
theamountandratiobetweenoxygenatedanddeoxygenated
haemoglobin (the blood oxygen level dependent or BOLD
signal) in target regions of interest. fMRI was developed
over 25 years ago(54) and has undergone significant advances
in the past decades. While the spatial resolution of fMRI is
relatively good, to the level of a cubicmillimetre or so (repre-
senting perhaps tens of thousands of neurons), the method
has poor temporal resolution compared with EEG and
MEG. Activation is typically measured over a second or
two and averaged over many trials. Many cognitive tasks
involve perceptual and motor responses (e.g. attending to
stimuli and pressing a button) which themselves produce
region-specific central activation. Therefore, fMRI method-
ologies attempt to isolate the signal associatedwith cognitive
processing only by subtracting the activation associatedwith
a control task, which includes similar perceptual and motor
elements but not the cognitive process (see Fig. 2).

Fig. 2. Rapid visual information processing (RVIP) as example functional MRI task used to capture
effects of nutritional intervention studies. Panel A shows the active task requiring the subject to
respond to three consecutive odd or three consecutive even digits when single digits are presented
every 600 ms. In the control task (B), matched for perceptual and motor activity, subjects see a
similar stimulus stream but respond to the presentation of the ‘0’ digit only (i.e. there is minimal
cognitive load). When activation measured during B is subtracted from that during A, there is
consistent activation in a well-characterised working memory circuit consisting of more anterior
(ant.) frontal and supplementary motor areas and more posterior (post.) parietal and cerebellar
regions linked with attention and working memory. C and D illustrate this pattern of activation from
(77,90) with warmer colours depicting greater activation. Increased activation within this circuit has
been found following multivitamin mineral supplementation(77), see Fig. 3.
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The methodology is developing increasing sophistica-
tion and there are several well-controlled fMRI studies
that have shown changes in neural activity associated
with nutritional interventions. These include multivita-
mins, caffeine, n-3 fatty acids glucose and flavanols
(including from tea and cocoa). Each is dealt with in
detail in(49) and covered in the following sections.

Cocoa flavanols (CF) have a number of potential health
benefits including in the neurocognitive domain(55), where
the most effective dose appears to be approximately
400–500 mg CF. Acute administration enhances mental
function, particularly during mentally effortful process-
ing(56,57). The differential effects according to mental effort
suggest that increased cognitive load is itself associated
with greater central activation, in the form of recruitment
of more neural tissue. Neurovascular coupling dictates
that this will signal greater localised blood flow and oxy-
gen utilisation as reflected by a higher BOLD signal.

In addition to localising patterns of activation asso-
ciated with specific cognitive tasks, MRI can be used to
measure other aspects of brain function. Arterial spin
labelling allows quantification of cerebral blood flow or
perfusion. Two studies have reported increased cerebral
blood flow 2 h following CF administration; the first
examining whole brain cerebral blood flow(58), with a
more recent study resolving specific regions with greater
perfusion(59). The latter reported increased activation in
areas including the anterior cingulate cortex and left par-
ietal lobe. The former is associated with numerous cogni-
tive processes including goal-directed behaviour and
attentional processes, while the latter is activated during
working memory tasks.

CF consistently improve aspects of vascular function-
ing including those which are directly related to
cognition-relevant neural processes. The dentate gyrus
subfield of the hippocampus differentially atrophies dur-
ing ageing. It is particularly important for specific aspects
of memory including pattern separation, which reflects
the ability to correctly discriminate similar overlapping
sets of stimuli as specific memories. Twelve-week CF
supplementation resulted in increased dentate gyrus cere-
bral blood volume which correlated with scores on a pat-
tern recognition test(60). The dentate gyrus is one of the
few areas of the adult brain capable of neurogenesis
(the birth of new neurons) and in rodents cerebral
blood volume is a marker of neurogenesis(39). This
finding could have significant implications, if CF (or
other flavonoid) supplementation can promote neurogen-
esis, there are obvious applications in delaying cognitive
decline. Conversely, it should also be noted that this was
a small trial (n 37, parallel groups), half the cohort
underwent an exercise regimen and there was a relatively
high dropout rate. A more recent trial has confirmed that
both 520 and 993 mg CF can improve cognitive func-
tions, including working memory in older individuals
as well as some of the processes depicted in Fig. 1,
including indices of glucose utilisation(61).

As well as detecting regional activation during task per-
formance, fMRI can be used to examine structural and
functional connections between brain regions (the latter
is the focus of the human connectome project). The

human brain is disproportionately metabolically active,
typically contributing to 2 % of body weight but requiring
some 20 % of metabolic resources in the form of oxygen
and glucose. Unlike other tissue, the brain stores negligible
amounts of glucose. It follows that neurocognitive func-
tion is exquisitely sensitive to fluctuations in glucose avail-
ability, with poor glucose control observed in ageing and
dementia (to the extent that AD has been termed type 3
diabetes(62)). Cognitive function can be reliably improved
by simply administering a glucose drink. Clearly there
are health issues associated with the administration of
sugar; nevertheless thismanipulation has provided auseful
prototype for examining acute cognitive enhance-
ment(63–65). In the context of nutritional interventions dur-
ing an emotional episodic memory task, glucose improved
both task performance and increased fMRI signal inten-
sity in structures known to encode episodic memories(66).
Additionally, increased connectivity was observed
between the same brain regions that showed enhanced acti-
vation during task performance.

Magnetic resonance can also be used to measure the
global cerebral rate of oxygen consumption. This has
not yet been applied to dietary interventions, save for a
single publication reporting reduced cerebral rate of oxy-
gen consumption following glucose loading(67). The sen-
sitivity to glucose suggests that the method may have
applications in nutrition intervention studies.

More recently, magnetic resonance spectroscopy (MRS)
has been successfully applied to the detection and quantifi-
cation of various brain molecules. Proton MRS is the most
commonly used methodology in human subjects (although
other methods, including 31P, 13C and 19F MRS, have also
been used). Proton MRS uses the signals emitted from
hydrogen protons to measure central metabolite concentra-
tions(68). Many central molecules are invisible to MRS,
with the most readily detectable resonance peaks being
from N-acetyl aspartate, choline, creatine (Cr), gluta-
mate/glutamine, and myo-inositol(69). N-acetyl aspartate
is a putative marker of neuronal density or viability and
may index neurogenesis. Choline is enriched in membranes
and is a marker of membrane turnover. Cr plays a key role
in energy metabolism, while glutamate/glutamine repre-
sents the major excitatory neurotransmitter family and
also correlates with metabolic activity. Myo-inositol is a
second messenger involved in cell signalling and is also a
marker of glial density. A small number of studies have
examined age-related changes in these molecules with
somewhat inconsistent findings(70,71). Generally, levels of
N-acetyl aspartate and glutamate/glutamine decline (pos-
sibly reflecting reduced neuronal number), while Cr and
choline increase with age(70,72). Two small studies have
used MRS to examine nutritional interventions. Six
weeks Cr supplementation improved cognitive perform-
ance and increased central Cr levels(73). Central glucose
can be measured using MRS, and one study(74) reported
that oral glucose ingestion results in a measurable increase
in the glucose MRS peak in eight AD patients compared
with fourteen healthy young and fourteen age-matched
controls. This reinforces the notion that the ability to
effectively utilise central glucose contributes to the path-
ology of AD.
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Several studies have examined the effects of vitamin
and mineral supplementation on brain structure and func-
tion. These have focused on either single vitamins or
broad-spectrum multivitamin mineral (MVM) prepara-
tions. Changes in patterns of activation were associated
with MVM supplementation both acutely(75,76) and fol-
lowing 4 weeks supplementation(77). One three-arm
study compared placebo with MVM both with and with-
out added guaraná. Focusing here on the MVM only
arm, pilot fMRI data (n 6 in a three-arm crossover
trial) indicated increased activation in a neural circuit
associated with executive attentional functioning in
healthy young adults in the hour following a single dose
of an MVM(75). In the same study, a specialised EEG
methodology, steady-state visually evoked potential, was
applied to a larger cohort (n 20) and found increased exci-
tation in frontal regions coupled with inhibition in poster-
ior regions during an attentional task(76); see Fig. 3.

Acute neurocognitive effects of MVM administration,
while not frequently reported, are not without precedence
and, in this context, the absence of evidence should not be
taken as evidence of absence. For example, acute mood
and cognitive effects have been reported in children(78) and
older adults(79). While in healthy young adults, MVM
administrationwas associatedwith acute increases in central
blood flow, energy expenditure and fat oxidation(80). Clearly

further work is needed to better characterise acute effects of
MVM and the underlying mechanism of action.

The fact that these effects were evident in healthy
young adults raises the question of what role initial nutri-
ent status may play in the observed effects. In the case of
the 4-week MVM trial, the neurocognitive benefits were
accompanied by positive shifts in mood and also blood
B vitamin levels(81). This suggests that it is possible to
optimise nutrient status and improve function in indivi-
duals who have sub-optimal levels or ‘insufficiency’
rather than frank nutrient deficiency (see Fig. 4).
Clearly this challenges the dogma that benefits of
MVM supplementation will only be observed in indivi-
duals with a clinical nutrient deficiency. Indeed, a recent
report from >10 000 adults in the US National Health
and Nutrition Examination Surveys study reveals that
any MVM supplementation lowers the odds ratio of
deficiency of four out of five nutrients with recognised
markers of deficiency, and reduces insufficiency of
fifteen/seventeen nutrients examined(82).

Indeed, there is growing evidence for neurocognitive ben-
efits ofMVM supplementation in non-clinical populations.
For example, in a 16-week trial of aMVMsupplementation
in healthy young adults, improved attentional performance
inmales was significantly correlated with increased levels of
vitamin B6

( 83). This strongly suggests a functional role for

Fig. 3. Increased activation of a working memory network following administration of a broad-spectrum B vitamin and mineral (MVM)
preparation compared with placebo (MVM> placebo), using two neuroimaging modalities (with warmer colour indicate greater
difference over placebo). A and B show increased activation measured using functional MRI (fMRI) during the Rapid visual
information processing task (as depicted in Fig. 2). Significantly increased activation is shown 30 min (A) and 28 d (B) following
supplementation. Specifically A depicts activation of cerebellar regions shown in posterior (i), lateral (ii) and superior (iii) view, while B
depicts clusters of increased activation following 28 d MVM supplementation, including parietal structures (precuneus and superior
and inferior parietal lobes) and frontal regions (supplementary motor area). Graphs present levels of activation at baseline (BL) and
following 28 d for MVM and placebo. C shows a similar network of activation to B during a spatial working memory task as
measured using an electrophysiological measure Steady-state visual evoked potential (SSVEP). Effects follow the same 28-d
intervention, and illustrate the more diffuse visualisation using this technique. Data are adapted from(75,77).
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changes in B6, despite the fact that the group was not
deficient in B6 (see(84) for an overview of the role of B
vitamins in this context). This begs the question as to
what proportion of the population have suboptimal levels
of nutrients which may have functional behavioural conse-
quences(85). While frank clinical deficiencies may be found
in up to 10–20 %of the population inWesternised countries
(depending on the nutrient in question). The figure is much
higher for those with marginal deficiencies, with estimates
for vitamin B12 insufficiency as high as 40–50 % or more
of the US and UK adult populations(86,87).

More recently, B vitamin supplementation has been
applied to clinical cognitive decline in the individuals
with MCI(88). In the VITACOG trial, 156 over 70-year
olds with MCI underwent structural MRI at baseline
and at 24 months following either placebo or a B vitamin
preparation. Those in the vitamin group showed reduced
grey matter atrophy (0·5 % v. 3·7 % in the placebo
group); this effect was more marked in those with higher
baseline homocysteine (0·6 % v. 5·2 %). It should be
noted that high and low homocysteine groups were
derived by median splits and no participant met the cri-
terion for clinically elevated homocysteine (150 pmol/l).
Again this supports the potential for improved neurocog-
nitive outcomes following supplementation in non-
deficient, with the effects being more pronounced in
those with suboptimal nutrient status (Fig. 4).

Nutrition and neurocognitive scaffolding

What can these methodologies tell us about the mechan-
isms which might underlie cognitive enhancement from
nutritional interventions? One clue might come from the
Scaffolding theory of aging and cognition (STAC). In its
original form, the STAC model proposed that ageing is
characterised by a balance between negative and positive

neural plasticity(34), and that cognitive decline represents
a preponderance of the former over the latter. Negative
plasticity includes neural challenges and functional deteri-
oration. Neural challenges include the previously
described structural corrosion of grey and white matter
which occurs with ageing. Functional deterioration
describes dysregulation of neural activity, including
reduced task-related recruitment of hippocampal and
related structures during memory encoding, and maladap-
tive patterns in the default mode network. The STAC
model argues that, at the same time, positive plasticity in
the form of compensatory scaffolding occurs which acts
to counter these negative structural and functional
changes. In brain imaging studies, this compensatory scaf-
folding manifests itself as greater activation (i.e. more
recruitment) of frontal and parietal regions and increased
bilateral recruitment in tasks which may be lateralised in
younger individuals. It is notable that the neuroimaging
examples described earlier include the possibility of frontal
recruitment being increased by multivitamin/nutrient sup-
plementation and neurogenesis being facilitated by flava-
nols and n-3 supplementation. Later revisions of the
model speculate that neurogenesis may also be part of scaf-
folding mechanisms(89). Importantly, the STACmodel sug-
gests that it is possible to promote neural scaffolding,
including via ‘various lifestyle activities including exercise,
intellectual engagement and new learning, as well as more
formal cognitive training interventions’(89). The select neu-
roimaging examples described earlier suggest that nutri-
tional interventions may also be added to this list.

In conclusion, converging evidence from epidemiology,
mechanistic studies and clinical trials strongly suggest
that nutritional interventions may offer a realistic option
for offsetting neurocognitive decline. Such interventions
include whole dietary change, select food components,
well-characterised botanical extracts and nutrient supple-
mentation. Since cognitive processes are influenced by
multiple biological systems, positive effects of nutrition
are likely to be pleiotropic. Recent studies employing a
range of biomarkers and neuroimaging methodologies
have shed light on which changes in neural substrates,
including neurocognitive scaffolding, underlie benefits of
nutrient interventions. In turn, such studies are helping
to identify biologically plausible targets for nutrients.
Thus, there is presently a realistic opportunity for a ‘virtu-
ous cycle’, where evidence-led interventions and mechanis-
tic studies reciprocally inform each other to further develop
nutritional interventions for neurocognition. It should be
noted that for many potentially beneficial, centrally active
nutrients, there is a history of safe consumption. Compared
with traditional pharmaceutical drug development pipe-
lines, where many candidate treatments fail at early stages,
this may allow more rapid translation of research findings
into benefits for neurocognitive health.
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