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GENERALIZED BLOB ALGEBRAS AND ALCOVE GEOMETRY
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Abstract

A sequence of finite-dimensional quotients of affine Hecke algebras
is studied. Each element of the sequence is constructed so as to have
a weight space labelling scheme for Specht/standard modules. As
in the weight space formalism of algebraic Lie theory, there is an
action of an affine reflection group on this weight space that fixes
the set of labelling weights. A linkage principle is proved in each
case. Further, it is shown that the simplest non-trivial example may
essentially be identified with the blob algebra (a physically moti-
vated quasihereditary algebra whose representation theory is very
well understood by Lie-theory-like methods). An extended role is
hence proposed for Soergel’s tilting algorithm, away from its alge-
braic Lie theory underpinning, in determining the simple content of
standard modules for these algebras. This role is explicitly verified
in the blob algebra case. A tensor space representation of the blob
algebra is constructed, as a candidate for a full tilting module (sub-
sequently proven to be so in a paper by Martin and Ryom-Hansen),
further evidencing the extended utility of Lie-theoretic methods.
Possible generalisations of this representation to other elements of
the sequence are discussed.

1. Introduction

Affine Hecke algebras are currently the subject of widespread interest in representation
theory [1, 31]. It is customary to study them through certain families of quotient algebras,
among which the usual choice is the cyclotomic Hecke algebras [2, 10]. These quotients,
though finite-dimensional, are still complicated, and complete knowledge of their represen-
tation theory remains a significant challenge. Following our consideration of the physical
context of affine Hecke algebras in the formalism of transfer matrix algebras in statistical
mechanics [58], we introduce another class of quotient algebras that are smaller and more
accessible. We show that a number of techniques and organisational schemes from alge-
braic Lie theory work in this context, such as weight spaces and linkage [36] (always) and
Soergel’s tilting module algorithm [64, 65] (in at least one highly non-trivial case), despite
the fact that these algebras lie outside the known regime of applicability of these methods
(that is, as underpinned by classical theory).

The blob algebra bn is a two-parameter generalisation of the Temperley–Lieb alge-
bra Tn(q) that may be defined in terms of a basis of decorated Temperley–Lieb diagrams
[55, 57] (hence its name). As with Tn(q), there is also a definition by the generators
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Generalized blob algebras and alcove geometry

{e−, U1, U2, . . . , Un−1} and relations e−e− = e−, UiUi = −(q + q−1)Ui ,

UiUi±1Ui = Ui, (1)

U1e−U1 = yeU1, (2)

and generators commuting otherwise, where q and ye are parameters. (Here, Tn(q) is the
subalgebra generated by the Uis.) The representation theory of this algebra is very well
understood [15], and it is known to have several beautiful properties evocative of algebraic
Lie theory. In this paper we consider bn as an affine Hecke quotient, and our sequence of
affine Hecke quotients is a sequence of generalisations of bn, chosen so as to be likely to
be amenable to the same high level of understanding. As indicated above, we show that this
choice succeeds in a number of key areas, culminating in a linkage principle [36]. We further
explore the blob algebra’s connection to Lie theory, describing in particular an action on a
suitable tensor space evocative of the tilting theory and Ringel duality of quantum groups
[61, 22, 56]. (Indeed, it has now been shown [53] that this action endows this tensor space
with the property of a full tilting module.)

1.1. Background/overview of the paper

Soergel has given a beautiful procedure [65, 64] for analysing tilting modules for quantum
groups at roots of unity through parabolic Kazhdan–Lusztig polynomials. The procedure
itself may be applied formally to an alcove geometry, without reference to representation
theory. Hence it may be applied, in principle, in cases that are beyond the scope of Soergel’s
proof of representation-theoretic interpretation. It is interesting, then, to try to find algebras
for which the resultant combinatorial data has a representation-theoretic interpretation, even
though Soergel’s proof is not applicable. The output of the usual procedure in type-A may
be mapped by Ringel duality [23] to the content of projective modules for certain quotients
of ordinary Hecke algebras. (There, it may be understood in terms of idempotent decompo-
sitions of 1; see [56].) This leads to a determination of decomposition numbers for standard
modules of the Hecke algebras themselves. Here we consider generalising the implemen-
tation of the procedure on this Ringel dual side. We do this by constructing generalized
Hecke algebra quotients that (mildly) generalize the usual role of alcove geometry.

One example where the formal procedure gives the correct decomposition numbers is
the blob algebra bn (a two-parameter affine Hecke algebra quotient); see [55, 57]. We
demonstrate the procedure for this example in Section 1.2 below. There is a set of key
properties of bn (see Section 4.2), which it has in common with the ordinary Hecke algebra
quotients (see Section 1.3), which may serve to explain the phenomenon. In this paper we
discuss generalisations of bn that also possess these properties.

To generalise bn suitably, we first place it in the context of affine/cyclotomic Hecke and
Ariki–Koike–Levy algebras [2, 10, 52] (although these are not themselves the generalisa-
tions that we require). The study of these algebras is interesting both abstractly and also
since they are useful in studying solutions to the reflection equation in integrable statistical
mechanics (see [52] for references). This parallels the role of ordinary Hecke algebras in
solving the Yang–Baxter equation. In both cases the ‘physical’ representation theory fo-
cuses attention on specific quotients, and implies that decomposition number data should
be organized in a certain specific way. In the ordinary Hecke case this is the ‘Soergel’ rather
than the ‘LLT’ way [43]. (As complete data sets these are equivalent, but computationally
they are not [56].) Thus, while the algebras that we shall construct have representation
theory that is accessible in principle by LLT methods [1], this does not remove the need for
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a generalized (dual) Soergel approach. In Section 1.3 we discuss quotients of affine Hecke
algebras generalizing bn which, like bn, realize certain key ingredients of this approach –
in particular, they possess a weight space.

In Section 3 we imbue this space with an affine reflection group action and an alcove
structure, and verify a linkage principle [36] for each such algebra. This states that, given
any two standard modules (�(µ) and �(ν), say), if there is a non-trivial homomorphism
between any subquotient of �(µ) and any subquotient of �(ν), then the weights µ and ν
lie in the same orbit of the appropriate affine reflection group.

Each generalized algebra is a quotient of a cyclotomic Hecke algebra by certain primitive
and central idempotents (independent of n). In Section 4 we show how the simplest non-
trivial such quotient may effectively be identified with the blob algebra. The rest of the paper
discusses outstanding technical issues in showing the validity of the generalized Soergel
procedure for the generalized algebras (the primitive and central idempotents of the relevant
cyclotomic Hecke algebras are computed in a convenient form in Section 5). Such issues
include:

• the absence of a diagram calculus (indeed, unlike in the blob case, we provide only a
conjecture for a basis for each generalisation – see Section 5.3),

• quasi-heredity (if the algebra is quasi-hereditary, for example, the linkage principle
implies that weights in different orbits of the appropriate affine reflection group are
in different blocks), and

• a global limit (recollement between different n values [12, 58]).

One property of the ordinary Hecke quotients not possessed by these generalisations is the
defining representation on ‘tensor space’, realizing Ringel duality [22] with a quantum group
quotient (compare [3, 20, 63]). Such a faithful tensor space representation is not manifestly
necessary for our purpose, but would be very useful in resolving the issues mentioned above.
In Section 6 we address this problem, culminating in the construction of some intriguing new
concrete representations of bn, which are candidates. (The serendipitous constructions of a
number of other interesting new representations of bn and its generalisations are outlined
in Sections 7 and 8.)

We shall argue that the representation theory of these algebras, while containing that of
ordinary Lie-theoretic objects, is in a sense more simply described. Given that the repre-
sentation theory of bn is itself known for q a root of unity in arbitrary characteristic [15],
the possibility that open questions in ordinary Lie representation theory may be accessible
by this route makes these algebras particularly interesting objects for study.

1.2. Alcove geometry and decomposition numbers for bn

There is a ‘good’ parameterisation [57, Section 2] of the blob algebra bn by q and m,
where ye = −[m−1]/[m] (see also Section 4.2). The decomposition numbers in the ‘doubly
critical’ case (q a primitive lth root of 1; m an integer, |m| < l) in characteristic zero are
determined in [57, Section 9] by algebraic methods. A formal application of Soergel’s
procedure to this case works as follows.

First recall, quite generally, that a Euclidean space with reflection hyperplanes removed
has a set (A, say) of connected components, called alcoves; see [36, Chapter 6] and [9].
For s a reflection hyperplane and B an alcove, we denote by Bs the image of B in s. Each
nonempty intersection of the closure of an alcove with a hyperplane is called a wall of the
alcove (here we shall confuse each such wall with the hyperplane containing it). We make
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no assumption about the relation of hyperplanes to the origin 0, except that the origin lies
in the interior of an alcove called the fundamental alcove and denotedA0. Define |B| as the
number of hyperplanes between B and 0 (so |A0| = 0).

In algebraic Lie theory, one starts with a set of ordinary (non-affine) reflections generating
the ordinary Weyl group. The (q)-group weight space is the underlying Euclidean space
with its origin ρ-shifted [36]. In particular, even when an affine reflection is added, the origin
is at a fixed position at the base of the dominant region. In our case there is effectively no
ordinary Weyl group and no dominant region; that is to say, the placement of all hyperplanes
is controlled by parameters of the algebra. Thus the weight space for the blob algebra, just as
for sl2, is the Euclidean space associated to the A1 Coxeter system – that is, it is effectively
R (see [57, Section 6]). Now, however, (compare sl2) all integral weights are dominant;
that is to say, simple modules may be indexed by Z. (We shall explain this, in the context
of our generalised construction, shortly.) In the bn case, the reflection hyperplanes are just
points, and those generating the affine Weyl group lie at −m and l −m. (An alcove B ∈ A
is a connected component of R with the reflection points removed.) A reflection is ‘upward’
if |B| < |Bs| (compare the usual sl2 situation).

For each alcove A, one defines a map

nA : A → Z[v],
where v is a formal parameter, as follows. (For simplicity, we ignore features of Soergel’s
procedure that do not arise in our case.) Firstly, nA(A) = 1 and nA(B) �= 0 implies that
|B| � |A|. Note that nA0 is determined immediately by this, and proceed inductively on>.
For each alcove A, there will be a wall s of A such that |As| > |A|. Each alcove B has one
wall that is in the affine Weyl orbit of s, and we shall write B.s for the image of B in that
wall (thus As = A.s). Then, with nA known, we set

n′
As(B.s) =

{
nA(B)+ v−1nA(B.s), |B.s| > |B|,
v−1nA(B)+ nA(B.s), |B.s| < |B|,

and we define nAs by
nAs(C) = n′

As(C)−
∑

B : |B|<|As|
n′
As(B)|v=0 nB(C).

(That this procedure is well defined is not trivial [64].)
Evaluating nA(B)|v=1, this construction is (formally) computing the standard module

content of tilting modules in a Ringel dual algebra. (Any two weights that are in different
affine Weyl orbits [36] are in different blocks [7, Chapter 1]. Thus each block intersects
each alcove in at most one weight and, fixing a block, it is the modules with these weights
that nA(B)|v=1 describes.) The corresponding data for bn is, in effect, the standard module
content of projective modules. By reading by column instead of by row, as it were, we convert
this to the simple module content of standard modules [22]. (Truncation to a finite column
interval, such as that pictured in the example which follows, corresponds to localisation to
some finite n – see ingredient I2 below.)

As noted, this construct is entirely formal; however, the following proposition holds.

Proposition 1.1. For λ ∈ A and µ ∈ B, the bn standard composition multiplicity

[�(µ) : L(λ)] =
{
nA(B)|v=1, µ in the affine Weyl orbit of λ, |λ| � n,

0, otherwise.

Further, the power of the formal parameter v determines the Loewy layer.
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Figure 1: Computation of the polynomials nA(B).

Proof. The composition multiplicity data is determined in [57, Section 9]. The computation
of the polynomials nA(B) is illustrated in Figure 1. The row position in the table gives A,
and the column position B; and nA0(A0) is shaded. (The rows and columns, and hence
the alcoves, are labelled using Z. These labels should not be confused with points in the
underlying space Z (each alcove contains l − 1 such points), or with weights.) The table
is complete for the rows shown, except for the top and bottom rows. For the top row, the
arrows within the table illustrate the contributions to the n′

As from a particular nA(B) (the
shaded lines are the relevant walls for reflection in each case). The arrow outside the table
illustrates a required subtraction to obtain nA in the bottom row (which is complete except
for this subtraction). The pattern is clear, and one sees immediately that the formal procedure
reproduces the multiplicity and layer data.

The case bn(q,m = 1) contains the ordinary Ringel dual, EndUqsl2(V
⊗n
2 ), as a quotient.

Note that the ordinary Soergel procedure is embedded accordingly in this version (in the
‘dominant’ region of case m = 1).

The ‘idempotent splitting’analysis described in [56] applies in principle in this situation,
giving a heuristic explanation of why Soergel’s procedure is relevant here. Following this
paradigm, there is a set of natural generalisations for which an analogous method should
work.

The ingredients are (in precis; see also [56, 58]) as follows.
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I1 A tower of unital algebras An ⊂ An+1 over a ring R with indeterminates, and a
multiplicity-free [69] semisimple specialisation [13] (split, and we shall consider
only characteristic 0 here).

For a tower as in I1, let BA− denote the Bratteli diagram of the semisimple case. Regarded
as a set, BA− will here mean the vertex set of this graph. Now pass to the tower over a field
(a not necessarily semisimple specialisation).

I2 (i) A quasi-hereditary global limit via an idempotent e ∈ Am (for some m) and
isomorphisms [29]

eAn+me ∼= An (3)

(and hence a tower of recollement [12]).

(Preferably, R is a unique factorisation domain, e makes sense over the field of fractions,
and we simply exclude consideration of specialisations in which e is not well defined – see
later.)

(ii) A map PA from BA− to a global index set�, which localises at each n to an index
set�(n) for standard modules�(µ) of An (that is, such that�(n) ↪→ �(n+m)
via the full embedding of An-mod in An+m-mod consequent on equation (3),
while ∪̇n�(n) ∼= BA− ).

Note that here we mean standard in the quasi-hereditary sense, but we might also hope that
these modules would be ‘nice’ in some Kazhdan–Lusztig sense [25, 41]. Let Res(µ) ⊂ �

denote the set of weights of standard factors of the restriction ResAn+1
An

�(µ), and Ind(µ)
that of the corresponding induction.

I3 A space V (for definiteness, we shall assume that this is a real Euclidean space) and
a map � ↪→ V with the following properties. The convex hull of Res(µ) intersects
� in a subset of {µ} ∪ Ind(µ) ∪ Res(µ) (locality of induction and restriction); the
set ρµ of reflections in V that fix {µ} and Res(µ) fixes �; the group W generated by
∪µρµ is an affine Weyl group [34, Section 4.2]; and � is a subset of the set of point
facets in the alcove geometry induced by W on V .

I4 Control of bases for the algebras and standard modules – including the means in
principle to compute Gram matrices in the case of indeterminate parameters.

I5 Explicit forms for the simplest primitive idempotents (in particular any primitive and
central idempotents).

I6 A linkage principle (see [36]): �(µ) and �(ν) are in different blocks if there does
not exist any w ∈ Wl (where Wl is a suitably rescaled version of W , depending on
the specialisation) such that wµ = ν.

The idea is that the structure of An for small n would be determined by brute force, and
that of subsequent levels would be determined largely by embedding the category of left
modules An-mod in An+m-mod using equation (3) (see [12, 29]). The simple modules L of
An+m-mod such that eL = 0 are added by hand, and their morphisms are determined partly
by expedient use of I4 and I5, and then by using Frobenius reciprocity (with respect to the
tower of subalgebras) and I6 to provide an emulation of translation functors [15, 36]. The
process is best illustrated with reference to the examples of interest in this paper, to which
we now turn.
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1.3. Role and realization of ingredients 1, 2(ii) and 3

Recall (see [44]; compare [42]) the affine Hecke algebra H(n) defined by generators
{1, X, g1, . . . , gn−1} and relations

gigi±1gi = gi±1gigi±1, gigj = gjgi, i �= j ± 1, (4)

g1Xg1X = Xg1Xg1, gjX = Xgj , j > 1, (5)

(gi − q)(gi + q−1) = 0. (6)

The cyclotomic Hecke algebra [10] H = H(n, d) is the quotient �d of H(n) by

d∏
i=1

(X − λi) = 0. (7)

Here q, λ1, . . . , λd, . . . are parameters, which we may begin by regarding as indeterminates.
Write A for Z[q, q−1, λ1, . . . , λd ] and K for the quotient field. Write HA(n, d) for H(n, d)
over A. This is a free module over A (see [2] and Section 2 below). The case d = 2,
λ1 = −λ−1

2 , is essentially the B-type Hecke algebra (see [33, 49]). For any d ′ > d, let
�d : H(n, d ′) → H(n, d) also denote the quotient by equation (7). Denote by H(−, d) the
sequence of inclusions

H(n, d) ⊂ H(n+ 1, d). (8)

Usually, we shall fix an A-algebra k which is a field, and which as a field is C, and we
shall consider H(n, d) = HA(n, d)⊗A k. The semisimple generic structure of H(n, d) over
C is well known, through that of the specialisation to the group algebra of the group Zd 	Sn
(confer [13, 33, 35] as in [2]). We recall it briefly. An integer partition µ of degree n is a
list (µ1, µ2, . . . ) of non-negative integers such that µi � µi+1 and

∑
i µi = n. There is a

natural correspondence with Young diagrams of degree n. Denote by �n = �dn the set of
ordered lists of d integer partitions, of summed degree n (called d-partitions of degree n).
For example,

�2
2 = {((2), 0), ((12), 0), ((1), (1)), (0, (2)), (0, (12))}.

The conjugacy classes ofZd 	Sn are readily seen to be indexed by�dn [45, 58]; thus H(n, d)
has simple modules �µ indexed by µ ∈ �dn. Similarly, the Bratteli diagram B = BH(−,d)
of the natural tower of semisimple algebras H(−, d) is determined by

ResH(n+1,d)
H(n,d) �µ =

d⊕
i=1

⊕
j

�µ−eij , (9)

where the sum over j is over possible subtractions of one box from the ith Young diagram
of µ.

For each n > 1, there are 2d one-dimensional irreducible representations R±l (l =
1, 2, . . . , d) of H(n, d), given by R±l (X) = λl and R±l (gi) = ±q±1. The representation
Rl corresponds to the module�µ with multipartitionµ = (, , µl, , ), in which all component
integer partitions are empty except the lth partition, which is either (n) (for the case l > 0) or
(1n) (case l < 0). For eachnwe may associate a unique primitive (and central) idempotent to
each of these representations, in the algebra over generic k [32]. We write these idempotents
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as e±ln . For l ∈ {1, 2, . . . , d}, the element e±ln of H(n, d) uniquely obeys

(gi ∓ q±1)e±ln = 0, i = 1, 2, . . . , n− 1,

(X − λl)e
±l
n = 0, (10)

(e±ln )2 = e±ln .

The inclusion (8) allows us to regard e±ln as an idempotent in H(n + 1, d), albeit neither
primitive nor central in general. Indeed, the idempotent will be expressible as a sum of
primitive idempotents in reciprocity with the rule (9). (Let 1 = ∑

µ e
µ be the unique

decomposition of 1 into primitive central idempotents of H(n+1, d). Then e±ln = ∑
µ e

±l
n e

µ

is this decomposition; that is, it is also unique, even though the decomposition of 1 into
primitive idempotents is not.)

In Section 5 of this paper, we give explicit formulae for all e±ln for all d. For now, we
shall be concerned particularly with e±l := e±l2 . The reason for this is the desire for a
small but significant generalisation of the set of dominant weights and the weight spaces
underlying Soergel’s procedure for the case Am−1 (that is, Uqslm). Although the induction
and restriction rules are straightforward, and satisfy ingredient I1, the ‘weight space’ of
H(−, d) (in which the distance d(µ, λ) is the minimum number of steps on B from µ to λ)
is somewhat unmanageable geometrically; compare our desired ingredients 2 and 3.

What is wanted is something like an analogue for H(−, d) of the quotients

Hm
n

∼= EndUqslm(V
⊗n
m ) (11)

of the ordinary Hecke algebraHn. The Bratteli diagram BH− of the ordinary Hecke algebra
is theYoung ‘graph’, but via (11) the quotientsHm

n are the natural incarnations of the Ringel
duals of Am−1 quantum groups, and hence may be associated to the same weight spaces,
and satisfy ingredients 1–6. Let us briefly review this. Let e±m+1 denote the two primitive
and central idempotents of Hm+1 (for simplicity, assume for now that [m + 1]! �= 0). The
Hm
n are such that

0 −→ Hne
−
m+1Hn −→ Hn −→ Hm

n −→ 0 (12)

is exact. For [m]! �= 0 they are quasi-hereditary and satisfy ingredient 2: for example,
through

e−mHm
n+me−m ∼= Hm

n . (13)

Let �1,m denote the set of Young diagrams of less than m rows, regarded as a subset of
Z
m−1. Let v = (1, 1, . . . , 1) ∈ Z

m−1, and let Z
m−1/v denote the corresponding quotient

set. Note that the injective map from Z
m−2 into Z

m−1 given by (µ1, µ2, . . . , µm−2) �→
(µ1, µ2, . . . , µm−2, 0) has image a set of representative elements of Z

m−1 in Z
m−1/v.

Denote by Pm−1, the corresponding surjective map from Z
m−1 to Z

m−2 (and also its
restriction to �1,m, whose image is �1,m−1). Note that BHm− , the set of weights for Hm

n for

all n, is�1,m+1. In the sense of ingredient 2(ii), the set of isomorphisms (13) collapses BHm−
into�1,m, which is the set of dominant weights of slm, via Pm+1 [56]. That is, PHm = Pm,
and�1,m(n), the index set forHm

n , is the subset of�1,m of diagrams of degree less than or
equal to n and congruent to n modulo m.

Delightfully, we find that only the n = 2 idempotents are needed for an analogue
of equation (12) for H(n, d) (see also [58]). Denote the sum of the ideals generated by
{e−l2 | all l} by

Dd = Dd(n) := +d
l=1He−l2 H.
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(We shall modify this definition very slightly later.) Define algebra HD = HD (n, d) by
HD (1, d) = H(1, d) and for n > 1 by exactness of the sequence

0 −→ Dd −→ H −→ HD −→ 0. (14)

The idea is to restrict consideration to the subset �D of H(−, d)-weights in which each
integer partition is the trivial partition of that degree. Such an H(−, d)-weight is charac-
terised by a sequence of d non-negative integers; that is, the degrees of the component
integer partitions (in this way, we have an action of Pd on�D ). This sequence need not be
ordered as an integer partition, and hence the set of such weights maps onto the set of all
weights of Ad−1 (that is, not just the usual dominant weights).

For example, withd = 3, the weight ((2), (4), (3))becomes (2, 4, 3), andP3((2, 4, 3)) =
(−1, 1), as shown below.

(
, ,

)
∈ �3

9
�→

�→ (−1, 1)

�→

∈ A2-weights

�→ −2ω1 + ω2 = (−2.(1, 0)+ 1.(1, 1))

(The final row just shows the same weight in terms of fundamental weights.) Meanwhile,
with d = 2,

(
,

) �→ �→ −2 ∈ Z.

(This last is the weight set used in Section 1.2.) Note also that �µ ∈ H-mod is also in
HD -mod if and only if µ ∈ �D (in which case, as anHD-module, we write it�(Pd(µ))).
To see this note, from (9), that the restriction of �µ to n = 2 contains a copy of one of the
excluded one-dimensional modules (not necessarily a direct summand in general) if and
only if µ contains at least one integer partition with a second part (that is, a Young diagram
with a second row).

By construction, then, the tower HD (−, d) has ingredients 1, 3 (restriction is local via
(9) and induction is via Frobenius reciprocity) and, at least formally, the final part of 2.
Of course, the construction is most interesting if it can be made to include non-semisimple
specialisations (or else the fundamental alcove of Section 1.2 is the whole weight space,
and the Soergel procedure is trivial). In the remainder of this paper we address ingredients
2, 4, 5 and 6 from this point of view. In particular, we identify the d = 2 case with the
blob algebra. This has useful implications for all d > 2. Note that, fixing k, there are
a number of distinct ways to impose a quotient relation of the form of �d on H(n, d ′),
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corresponding to the choice of factors to be removed in the strengthening of the relation (7).
For λ′ = (λ1, λ2, . . . , λd ′) and λ any subsequence of this of length d ′ −d, let�λd denote the

strengthening by omission of the factors (X−λi)with λi in λ. The quotient�(λi)d commutes
with the quotient to HD , so the following proposition holds.

Proposition 1.2. Fixing k, there are d + 1 ways (�(λi)d , i = 1, 2, . . . , d + 1) to quotient
in order to pass from HD (n, d + 1) to HD (n, d), where n > 0.

Returning to the example of d = 3, we see that as n varies, the image of�(λi)2 sweeps out
a 2π/3 radian arc of weight space, with the union of these arcs over i = 1, 2, 3 giving the
complete space (see Figure 4, illustrating this, in Section 5.2). If k gives a non-semisimple
specialisation, then – as we shall see – there is at least one i such that the corresponding
tower of blob algebras (that is, d = 2 algebras) is critical (in the sense of [55, 57], or Section
1.2); that is, it has one or more reflection points. As n varies, a given d = 2 reflection point
sweeps out a straight line in this arc in d = 3 weight space (see Section 5.2 for details).
This is then a reflection line of the d = 3 alcove geometry, to which the Soergel procedure
may be applied.

Our approach to ingredient 2 is through representation theory, and the last part of the
paper addresses this. It includes a ‘walk-though’ review of some earlier work in statistical
mechanics, which explains our approach to this problem, and concludes by defining certain
representations of bn (and HD (n, d)), which are candidates for ‘tensor space’ representa-
tions. (That is, they would establish ingredient 2 if faithful; see Section 6. The question of
faithfulness is not resolved here.)

2. Preliminaries

Let the involution t : Z[q, q−1] → Z[q, q−1] be given by t (q) = −q−1, and let s act
on Z[λ1, . . . , λd ] by permuting the indices on the {λi} cyclically. Let

[n] = qn−1 + qn−3 + · · · + q1−n.
For A an algebra, let Z(A) denote the centre of A; and for B ⊆ A, let ZB(A) denote the

centralizer of B in A (so that ZB(A) ⊇ Z(A) and ZA(A) = Z(A)).

For a = (a1, a2, . . . , an) an n-tuple of natural numbers, the Weyl orbit of a in N
n is the

orbit of the Sn action permuting indices. Let Y = (Y1, . . . , Yn) be an n-tuple of variables
in some commutative ring R. Define

Ya =
n∏
i=1

Y
ai
i

and the monomial symmetric polynomial (see, for example, [24])

(Y a)
 =
∑
a′
Ya

′
,

where the sum is over all the elements in the Weyl orbit of a.

Let R be a unique factorisation domain,A a free R-module with basis A, andK the field
of fractions of R. Consider any e ∈ A⊗R K , and let ae ∈ A be such that e = aee ∈ A ⊂
A⊗R K . If there exists an ae such that the coefficient of some a ∈ A in e is 1, then ae and
e are unique with this property, up to a unit. If A is an R-algebra, and e is idempotent, call
such an e a preidempotent, and ae the corresponding normalisation of e.
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Now letR as above be A, and considerA as a collection of C-algebras by specialisation.
We say that a property holds generically if it holds on a (Zariski) open subset of parameter
space, and that it holds usually if the condition for failure to hold may be expressed as a
single finite polynomial in a single variable. (For example, [2] is generically and usually
invertible; (q2λ1 − λ2) is generically but not usually invertible.)

Let e = e/a′
e be any explicit expression for an element in A over K as above. For any

point x in parameter space (that is, any k), there is an open region with x in its closure in
which the polynomial a′

e has no root, so e may be evaluated as a limit at k. This process
does not guarantee a unique finite limit. If e is a primitive and central idempotent, however,
then any two finite limits must be the same, since they will have the properties of a unique
primitive and central idempotent in A over k. (That is, they will induce the same simple
projective module, Ae ⊗ k.)

Let σi denote the elementary transposition σi = (i i + 1) ∈ Sn; so σi(i) = i + 1,
and so on [32]. Let Bn be a maximal set of inequivalent reduced words in the generators
{g1, . . . , gn−1} of Hn. For each w ∈ Bn, note that there is a natural (reduced expression
for an) element of Sn associated to it by substituting gi � σi .

Let

X1 := X and Xj := gj−1Xj−1gj−1. (15)

So in H(n),

[Xj ,Xk] = 0, (16)

[Xj , gk] = 0, j �= k, k + 1 (17)

gkXk+1 = Xkgk + (q − q−1)Xk+1,

gkXk = Xk+1gk − (q − q−1)Xk+1,
(18)

and so

[Xk +Xk+1, gk] = [XkXk+1, gk] = 0. (19)

Now

X
j
k +X

j
k+1 = (

X
j−1
k +X

j−1
k+1

)(
Xk +Xk+1

)− (
X
j−2
k +X

j−2
k+1

)
XkXk+1,

so [
gi, (X

a)

] = 0

for all i and any a.

Let X
 denote the algebra of symmetric polynomials in the Xis. Evidently, X
 ⊆
Z(H(n)), and in fact Bernstein has noted that this is an equality (see Appendix A).

It follows from equations (16)–(18) that any product of generators of H(n, d) can be
expressed as a Z[q, q−1, λ1, . . . , λd ]-linear combination of words from the set

Cdn = {Xaw | a ∈ {0, 1, . . . , d − 1}n, w ∈ Bn}.
The dimension of this spanning set is clearly dnn!, which is also the dimension of H(n, d);
thus the following proposition holds.
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Proposition 2.1 (see [2]). The set Cdn is a basis for H(n, d).

We linearly extend s and t to act on H(n, d), fixing Cdn pointwise.

Proposition 2.2 (see [58]). Let B be a basis for H(n− 1, d), letD be a basis for 〈X〉, and
let G = g1g2 . . . gn−1. Then

{aGb, g1aGb, g2g1aGb, . . . , gn−1 . . . g2g1aGb | a ∈ D, b ∈ B}
is a basis for H(n, d).

Fix d and set pln = ∏
i �=l (q2n−2λl − λi). Note that

zln =
n∏
k=1

(∏
i �=l
(Xk − λi)

)

lies in Z(H(n)) and obeys �d((X − λl)z
1
n) = 0. Comparing this with (10), we thus have

e±ln = zln∏n
k=1 p

l
k

e±n .

It follows that e±l
n = (

∏n
k=1([k]plk))e±ln is a preidempotent for e±ln (compare with the basis

Cdn). Now we define

Dd = Dd(n) := +d
l=1He−l

2 H

(a modification of the definition in Section 1.3) andHD accordingly. We shall give another
expression for e±ln shortly.

3. Standard modules and linkage

The generators and relations in equations (4) (and their inverses) define the ordinary braid
group, An-braid. Denote by Bn-braid the extension by g0 = X (and its inverse) obeying
equations (5) (confer [33], [50] and the references therein). Thus H(n) is a quotient of
CBn-braid by the quadratic relation in equation (6).

One realization of Bn-braid is as the group of braids on the cylinder, with g0 becoming
the pure braid in which the first string passes over all the other strings and then around the
cylinder. There is a natural ‘Young’ embedding

Bn-braid × Bm-braid ↪→ Bn+m-braid.

One places the second cylinder concentrically inside the first, and one then allows the two
cylinders to converge in such a way that the nodes of Bn-braid and Bm-braid respectively
remain consecutive on the edges of the cylinder (while of course preserving over/under
information). There is a corresponding embedding H(n) × H(m) ↪→ H(n + m). The
construction of ‘standard’ modules (in the sense of [11, 62]) follows from this. The quotient
�d complicates this, in that the spectrum of Xn+1 (the image of (1, X1)) is not that of X1
(the image of (X1, 1)).

Definition 3.1. Let 〈Xi〉 denote the commutative subalgebra 〈Xi | i = 1, . . . , n〉 ⊆
H(n, d).

Generically, as we shall see, we may determine a unique basis of primitive (and of course
central) idempotents εx of 〈Xi〉 with

∑
x εx = 1. There will be certain specialisations where
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this basis will not make sense (certain idempotents will have preidempotents with vanishing
normalisation). In any case, any primitive idempotent decomposition of 1 in H(n, d) will
be different, but the unique primitive central idempotent decomposition of 1 in H(n, d)
will be expressible as a crudification of the above (albeit depending on k). The generic case
will be the least crude (one idempotent per block/isomorphism class of simples), and it will
be necessary, formally, to combine certain of these generic idempotents (into non-simple
blocks) to make idempotents that make sense over k in non-semisimple cases. Each εx must
obey Xiεx = xiεx with xi some scalar. (Thus each induces a left H-module 
x := Hεx .
Since theHn subalgebra ofH(n)maps isomorphically to its image in the quotient, we have
Hεx = Hnεx , of rank n!.)

Evidently, x1 ∈ {λi}, and withπj := ∏
i �=j (X−λi)we haveXπj = λjπj andπjεx ∝ εx .

For each such πj there exists a minimal polynomial πj,−(X2) = ∏
k(X2 − λj,k) such that

πjπj,− = 0. Set πj,k = ∏
l �=k(X2 −λj,l) and ε.(j,k) = πjπj,k . ThenX2ε

.
(j,k) = λj,kε

.
(j,k).

For each ε.(j,k) there exists a polynomial πj,k,−(X3) such that πjπj,kπj,k,− = 0, and so on.
That is, the roots of such a polynomial are certain of the eigenvalues of the Xis.

We can work out these eigenvalues of theXis by looking at the properties of generically
irreducible representations as given in Section 1.3. Let µ ∈ �dn. A ‘standard’ insertion of
n = {1, 2, . . . , n} into the boxes of µ is one such that deletion of the boxes containing
{l, . . . , n} produces a legitimate d-partition for every l. Let Tµ denote the set of all such
standard insertions. For i ∈ n andw ∈ Tµ there is a k ∈ {1, 2, . . . , d} such that i appears in
a box in the kth partition in w. Define w(i) = k. It will be evident from the restriction rule
(9) that Tµ may be used as a basis for�µ, once it has been equipped with a suitable action.

Proposition 3.2. The action of the Xis on this basis may be taken to be lower triangular,
with diagonal elements of Xi on w ∈ Tµ given by λw(i)q2wi , where wi is the distance of i
off the main diagonal in the w(i)th partition in µ (with distances below the diagonal being
negative).

Proof. In the case where n = 1 the claim holds, since Ri(X) = λi . Suppose that the
claim is true at level n− 1. Then the eigenvalues for X1, . . . , Xn−1 at level n are given by
restriction, using the rule (9). The eigenvalues for Xn may be determined using equation
(10) (in the one-dimensional cases), and then the centrality of

∑
i Xi , and so on, together

with Schur’s lemma.

Let vi denote the ith elementary vector in Z
d . Describe a walk on Z

d (or Z
d/(1, 1, . . . , 1))

by a wordw = w1w2 . . . in d such that the vector between the ith and (i+ 1)th site visited
is vwi . For a given word w, define

#l (i) = #wl (i) =
l∑

j=1

δwj ,i .

A reflection hyperplane (i, j ; x) is characterised by a pair vi, vj (i �= j ∈ d) not parallel to
it, and the signed distance x in the direction of vi of this hyperplane from 0 (that is, the x
such that 0 + xvi lies on it). A walk touches this hyperplane at l if

#l (i)− #l (j) = x. (20)

Let w be a walk that touches hyperplane (i, j ; x) at l. The walk w′ obtained from w by
applying permutation (ij) to everywt , t > l, is called the (affine) reflection ofw in (i, j ; x)
at l. (Note that the touching point l is not in general uniquely defined by w and (i, j ; x)
or, indeed, existent.) Every point of the reflection after l is the reflection of this point in
(i, j ; x) in the usual alcove geometry sense (see [50, Chapter 7]).
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Figure 2: Eight walks in a walk orbit for d = 3 (origin in the bottom left-hand corner,
endpoints circled).

Ifw′ meets another (not necessarily distinct) hyperplane (k,m; y) at l′ > l, then of course
w meets the image of (k,m; y) in (i, j ; x) at the same moment. Ifw′′ is the reflection ofw′
in (k,m; y) at l′, then we say that w, w′ and w′′ are in the same walk orbit of the reflection
group generated by these hyperplanes (the ith points of these walks are in the same orbit in
the usual sense, for each i). We may think of folding up the space along the set of hyperplanes
in the group – the walk orbits are the sets of walks that are mapped into each other by this
folding. For G a reflection group generated by hyperplanes, we write w ∼G w′ if walks
w and w′ are in the same walk orbit of G. Each hyperplane partitions space into two parts
(not counting the hyperplane itself). The ‘outside’ of the hyperplane (i, j ; x), x �= 0, is the
part not containing 0.

We shall restrict our attention to hyperplanes not touching 0. Note that for each walk w
from 0 that finishes at a point µ outside some hyperplane, there is not in general a unique
walk in its orbit that finishes at the image point of µ, inside it. The orbit structure of walks
is more complicated than that of points. For example, the endpoints of elements of the same
walk orbit are necessarily in the same point orbit; but the converse does not follow. Further,
a walk that stays in the interior of the fundamental alcove is in a singleton orbit; more
generally, a walk that touches hyperplanes a total of t times has 2t elements in its orbit (see
Figures 2 and 3).

For G a reflection group generated by a set of reflection hyperplanes S, let S̄ ⊂ G

denote the set of simple reflections. It will be convenient to confuse these reflections with
the corresponding hyperplanes, noting that S̄ ⊃ S in general. In particular, we may now
compose hyperplanes by conjugation inG; that is, (i, j ; x)◦(j, k; y) = (i, k; x+y), and so
on. Let A′ ⊂ A consist of those elements of the form (λi − q−2xλj ), for all i, j, x. Define
the factor set ofG, F (G) ⊂ A′ such that (i, j ; x) ∈ S̄ if and only if (λi−q−2xλj ) ∈ F (G).
The elements of F (G) are called factors. Note that there is an equality of ideals∑

(i,j ;x)∈S
A(λi − q−2xλj ) =

∑
(i,j ;x)∈S̄

A(λi − q−2xλj ) (21)

since the composition of hyperplanes above corresponds to the addition (up to a unit) of
factors.
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Figure 3: A walk, starting at 0 (circled), in the fundamental alcove (shaded) of a certain
d = 3 affine reflection group; and all walks in its walk orbit. Note that each of the two
endpoints closest to 0 is reached by two different walks.

For a walk w of length n, let µ(w) = (#n(1), #n(2), . . . ), an ordered partition of n. To
each walk w of length n, associate an element λw ∈ An as follows:

(λw)i = λwi q
2(#i (wi)−1).

For example, λ3331312 = (λ3, λ3q
2, λ3q

4, λ1, λ3q
6, λ1q

2, λ2).
Note that this λ− gives an injective map from

⋃
µ∈�D (n) Tµ into An.

Proposition 3.3. (i) Let w′ be the reflection of w in (i, j ; x) at l; then every non-zero
element of λw − λw

′
is of the form ±q2α(λi − q−2xλj ), for some α ∈ Z. (Note that there

is no mention of l in the implication.)

(ii) Letw andw′ be two walks. If every element of λw−λw′
is divisible by (λi −q−2xλj ),

then w and w′ are related by one (or more) reflections in (i, j ; x) for some l (respectively,
l < l′ < l′′ < . . . ).

(iii) Let G be the group generated by a set of simple reflections {(i, j ; x), (k, l; y), . . . }.
Walks w and w′ are in the same walk orbit of G (that is, they are related by a sequence of
reflections in hyperplanes in G) if and only if each non-zero (λw − λw

′
)i is divisible by an

element of F (G).
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Proof. (i) Consider the first point at which w and w′ differ, which we may take to be
w′
l+1 = (ij)wl+1 = j .
We have

(λw − λw
′
)l+1 = λiq

2(#wl+1(i)−1) − λjq
2(#w

′
l+1(j)−1).

Now #wl+1(i) = #wl (i)+ 1 and #w
′

l+1(j) = #w
′

l (j)+ 1, so (see equation (20)) the exponents
differ by 2x, as required. Since subsequent points k with wk �= w′

k are all those at which
{wk,w′

k} ∩ {i, j} �= ∅, the difference in exponents is preserved.

(ii) This is a special case of (iii).

(iii) ‘Only if’ part: Note that, by construction, (λw − λw
′
)i is, up to a unit, an element of

A′. Each pair w ∼G w′ may be related by a series of simple reflections:

w ∼G w′′ ∼G · · · ∼G w′,

and each intermediate (λw
i − λw

i+1
)i is of the required form, by part (i). Evidently,

(λw − λw
′
)i = ∑

i (λ
wi − λw

i+1
)i . Now confer equation (21).

‘If’ part: Let w|m denote the first m steps in walk w. Fix w, and consider w′ such that
w �∼G w′. Suppose that point m is the first at which w|m �∼G w′|m. Let w̃|m−1 = w′|m−1
and let w̃m be such that w|m ∼G w̃|m. Thus w̃|m is a reflection of w′|m in some hyperplane
h at m − 1, with h �∈ G. Thus λw

′ − λw̃ = (0, 0, . . . , 0, (q2α(λi − q−2xλj ))) for some
α, i, j, x, where i �= j , sincew′ and w̃ agree atm− 1. The non-zero factor is not a factor of
F (G), since h �∈ G. Now consider λw − λw′ = (λw − λw̃)+ (λw̃ − λw′

). Themth element
of the first summand on the right is divisible by some f ∈ F (G), by the only if part, while
that of the second summand is not, by the above argument. Thus the left-hand side is also
not divisible.

For example, consider the sequences 333, 331 and 321 with λ333 = (λ3, q
2λ3, q

4λ3),
λ331 = (λ3, q

2λ3, λ1) and λ321 = (λ3, λ2, λ1). We have

(3, 1; 2)333 = 331;
(3, 2; 1)331 = 321;
λ333 − λ321 = (0, q2(λ3 − q−2λ2), q

4(λ3 − q−4λ1)).

Proposition 3.4. For eachw ∈ ⋃µ∈�D (n) Tµ there is an element ε.w of 〈Xi〉 as described
above, obeying the requirement that

Xiε
.
w = (λw)iε

.
w.

Proof. For a d-partition µ of form ((µ1), (µ2), . . . ) (that is, µ ∈ �D ) and w ∈ Tµ
identified with the corresponding word w, we have wi = w(i) and #i (wi) = wi . Now see
Proposition 3.2.

Let Rx denote the representation of 〈Xi〉 corresponding to any ε.x as above. It follows
that the 〈Xi〉-simple character of ResH〈Xi 〉(�ν) is[

ResH〈Xi 〉(�ν) : Rw
] = δµ(w),ν . (22)

Note that this is not a unique characterisation unless the following corollary holds.

Corollary 3.5. If k is generic (that is, λ− remains injective on passing from An to
(A ⊗ k)n), then Rw ∼= Rw′ implies that w = w′, and 〈Xi〉D ⊂ HD has enough simples to
be semisimple.
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Definition 3.6. We define G(k), the reflection group induced by k, as follows. For each
triple (i, j ; x) such that (λi−q2xλj )⊗k = 0, include the hyperplane (i, j ; x) as a generator.

Note that this is sensible inasmuch as (i, j ; x)◦(j, k; y) = (i, k; x+y), while λi−q2xλj
= 0 and λj − q2yλk = 0 imply that λi − q2(x+y)λk = 0. If d ′ of the parameters {λi} are
related in this way, then the group generated is Sd ′ , unless q is a root of unity – in which
case, it is the affine extension. We shall usually refer to the group as the affine Weyl group
regardless, to emphasize the fact that even in the finite case, the hyperplanes do not pass
through 0. That is, we exclude from consideration any k in which λi = λj does not imply
that i = j .

Proposition 3.7. Over k, Rw ∼= Rw′ if and only if w and w′ are in the same walk orbit of
the affine Weyl group induced by k (that is, they are related by some series of reflections).

Proof. There is an isomorphism if and only if λw − λw
′

vanishes over k. Every term is of
the form qα(λi − q2xλj ). Now apply Proposition 3.3.

Proposition 3.8 (linkage). If there exists a nontrivial homomorphism�µ → �ν over k,
then µ and ν lie in the same orbit of the affine Weyl group induced by k.

Proof. Consider the following diagram.

�µ

⇓Res
��

�� �ν

Res
��∑

w∈Tµ Rw ��
∑
w∈Tν Rw

Now apply Proposition 3.7.

Note that this strengthens immediately to exclude interorbit maps from any submodule
of�µ to any quotient of�ν ; that is,µ �∼G(k) ν implies that�µ and�ν have no composition
factors in common. Thus, under the assumption that, as for a quasi-hereditary algebra, every
simple occurs in {Head(�µ) | µ ∈ �D }, we have linkage in the form of I6.

Proposition 3.9. Let w,w′ ∈ ⋃
µ∈�D (n) Tµ be reflections of each other in (i, j ; x) at

any l. Then over any k in which (λi − q2xλj ) vanishes, we have an isomorphism of left
H-modules

Hεw ∼= Hεw′ .

Proof. By Proposition 3.7, ε.w and ε.w′ induce isomorphic 〈Xi〉-modules.

Given the injectivity of λ−, it will be convenient to be able to refer to a walk w either
directly or via its image λw. This unifies the labelling schemes for εw following Definition
3.1 and in Proposition 3.4.

Note that Rx(πj ) = 0 for all Rx except those with x1 = λj . Let Sj be the set of
possible values of Rx(X2) when x1 = λj (that is, Sj = {λk �= λj , q

2λj , q
−2λj }). Then

R(λj ,x2,... )(
∏
s∈Sj (X2 − s)) = 0 for any such x, and πj

∏
s∈Sj (X2 − s) lies in the radical

of 〈Xi〉, and hence some power of it vanishes. This tells us, up to multiplicity, the roots of
πj,−, and hence of the preidempotent πjπj,k (obtained by omitting a factor (X2 − λj,k),
λj,k ∈ Sj , from πjπj,−). If λ− is injective, then the radical is {0} and all the roots can be
distinguished. Iterating this argument, we have the following proposition.
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Proposition 3.10. For w a walk,

ε.w =
|w|∏
i=1

∏
x ∈ ∪ν,|ν|=iTν

such that
x|i−1 = w|i−1,

xi �= wi

(Xi − Rx(Xi))

where the union is over all multipartitions satisfying the constraints.

For example, ε.111 = ε.11(X3 − q−2λ1)
∏d
i=2(X3 − λi), and

ε.11122 = ε.111

(
(X4 − q−2λ1)(X4 − q6λ1)

∏
2<i�d

(X4 − λi)

)

·
(
(X5 − q−2λ1)(X5 − q6λ1)(X5 − q−2λ2)

∏
2<i�d

(X5 − λi)

)
.

Note that unless the omitted factor in πj or πj,k coincides (underX1 ↔ X2) with a factor
in the other, then the product πjπj,k is automatically in Z(H(2, d)). (Simply multiply in all
the factors apparently required for symmetry, and then replace these with scalars using the
eigenvector property – the excluded cases are those where one or more such scalars vanish.)

For example, in the case n = 2, d = 2, we see that 〈Xi〉 has rank 6. We have

(X − λ2)(X2 − q−2λ1)(X2 − q2λ1)(X2 − λ2) = 0;
so, for example,

ε.11 = ε.λ1,q2λ1
= (X − λ2)(X2 − q−2λ1)(X2 − λ2)

is a preidempotent with X2ε
.
λ1,q2λ1

= q2λ1ε
.
λ1,q2λ1

, while

ε.λ1λ2 = (X − λ2)(X2 − q−2λ1)(X2 − q2λ1)

is a preidempotent with Xiε.λ1λ2 = λiε
.
λ1λ2 . The preidempotent ελ1,q2λ1

lies in Z(H)
(provided that q2 �= 1), since it can be symmetrized:

(X1 − q−2λ1)ε
.
λ1,q2λ1

= (λ1 − q−2λ1)ε
.
λ1,q2λ1

.

On the other hand, ε.λ1λ2 cannot be rescaled to its symmetrized form because the sym-
metrizing factor X2 − λ2 kills it.

For H(2, d) we have∏
j �=1

(X − λj )(X2 − q2λ1)(X2 − q−2λ1)
∏
j �=1

(X2 − λj ) = 0,

so similar considerations apply. Indeed, they do for all n. In particular, ε.11...1 ∈ Z(H)
unless q2 = 1. More generally, we may proceed as follows.

For µ an ordered partition of n, let Hµ denote the corresponding Young subalgebra of
Hn ⊂ H(n, d). For w a walk, let ew ∈ Hn denote the q-Young symmetrizer (see [14] and
[26, Section 9.3]) associated to Hµ(w). A walk w is said to be sorted if it takes the form
111 . . . 22 . . . (more precisely, if wi � wi+1 for all consecutive pairs of steps in w). There
is a unique sorted walk in each Tµ, denoted w(µ). A walk w is said to be direct if all the
steps in a given direction are taken consecutively (thus a sorted walk is direct).
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Proposition 3.11. For w sorted, and (1 + q2) and each λi invertible, ε.w commutes with
Hµ(w).

Proof. Let µt denote the t th interval of {1, 2, . . . , n} in the ordered partition µ(w); that
is, the t th set of integers fixed under the action of the Young subgroup Sµ(w) of Sn on
{1, 2, . . . , n}. We require to show, for each t , that the factors in ε.w involving Xµt := {Xi |
i ∈ µt } constitute a symmetric polynomial in these variables, and hence commute with the
t th factor algebra in Hµ(w). (The remaining factor algebras commute with these variables
by equation (17).) Our walk is of the form w = 111 . . . 22 . . . t t . . . , and the factors in
question are (by Proposition 3.10) those written out explicitly in:

ε.w = ε.111...22...

d∏
i=t+1

(Xa − λi)

(
t−1∏
i=1

(Xa − q−2λi)(Xa − q2µi(w)λi)

)

∏
b∈µt\{a}

(
(Xb − q−2λt )

d∏
i=t+1

(Xb − λi)

(
t−1∏
i=1

(Xb − q−2λi)(Xb − q2µi(w)λi)

))
. . .

(where Xa is the first Xi in Xµt ). It will be apparent that this is rendered symmetric by
multiplying by (Xa − q−2λt ), but (Xa − q−2λt )ε

.
w = (λt − q−2λt )ε

.
w so it is already

symmetric, provided that (1 − q−2)λt is invertible.

A similar property holds for direct walks.

Proposition 3.12. If w takes the form 111 . . . 22 . . . , then εwew = ewεw (and similarly
for the preidempotent forms ε. and e). The modules�µ(w) = Hewε.w are the left standard
modules of H with these weights.

Proof. Note that ew ∈ Hµ(w), and apply Proposition 3.11.

Writeµ � ν if every change of direction inw(µ) occurs at the same step as one inw(ν).
(Note that w(ν) may have changes at other points as well.) Note also that µ � ν implies
that ew(µ)ew(ν) = ew(µ), and hence ew(µ)ew(ν) = κνew(µ) for some κν ∈ A.

Proposition 3.13. Suppose that w(µ) ∼G(k) w(ν), and µ � ν, and κν ⊗ k �= 0. Then
�µ ↪→ �ν .

Proof.

�µ = Hew(µ)ε.w(µ) = Hew(µ)ew(ν)ε.w(µ) ↪→ Hew(ν)ε.w(µ) ∼= Hew(ν)ε.w(ν) = �ν.

4. The case d = 2 and the blob algebra

4.1. Idempotents in H(n, 2)

The primitive and central idempotents e±ln corresponding to the four one-dimensional
representations of H(n, 2) over K may be constructed as follows.

Fixing d = 2, define

Pn = P+2
n = qn−1[n](q2n−2λ2 − λ1

);
also, P−2

n = tPn, P+1
n = sPn and P−1

n = stPn.
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Proposition 4.1. Set

αj = −λ1

Pj
, βj = qPj−1

Pj
and γj = q2j−2

Pj
. (23)

Then e+2
0 = 1 and

e+2
j+1 = e+2

j

(
αj+1 + βj+1gj + γj+1Xj+1

)
e+2
j . (24)

Also, e−2
j = te+2

j , e+1
j = se+2

j , and e−1
j = tse+2

j .

Proof. See Section 5.1 (or simply consider gj−1e
+2
j ).

Examples.

e−2
1 = e+2

1 = X1 − λ1

λ2 − λ1
;

e−2
2 =

(
X − λ1

λ2 − λ1

) −λ1 + q−2g1Xg1 − q−1(λ2 − λ1)g1

(1 + q−2)(q−2λ2 − λ1)

(
X − λ1

λ2 − λ1

)
. (25)

Define


 = (X1 +X2 − (λ1 + λ2)) and 
 = (X1X2 − λ1λ2).

Note that D2
2 = {1, 
,
,
g1,
g1} is a basis of Z(H(2, 2)) (see Appendix A, equation

(56)).
In terms of C2

2 and D2
2, we have

e−2
2

= λ2
1 − λ1(X +X2)+XX2 + q−1λ1(X +X2 − (λ1 + λ2))g1 − q−1(XX2 − λ1λ2)g1

(λ1 − λ2)(1 + q−2)(q−2λ2 − λ1)

= (−λ1
 +
)(1 − q−1g1)

(λ2 − λ1)(q−2λ2 − λ1)(1 + q−2)
, (26)

which form manifests the centrality of this idempotent. Note that the preidempotent

e−2
2 = (−λ1
 +
)(1 − q−1g1)

coincides with its s-image (up to a unit in A) if and only if λ1 = λ2 in k. However,

e−2
2 + e−1

2 = q−2
 + (1 + q−2)


(q−2λ2 − λ1)(q−2λ1 − λ2)

(q − g1)

[2] .

A remark is in order on denominators and idempotent decompositions of 1. The idem-
potent decomposition of 1 = e+2

1 + e+1
1 ∈ H(1, 2) is not defined in the case where λ1 = λ2

over k, and the radical rad(H(1, 2)) = ke+1
1 . Obviously, R±1 = R±2 for any n in this case.

The decomposition of

1 = (e+2
1 + e+1

1 )+ e((1),(1)) + (e−2
1 + e−1

1 ) ∈ H(2, 2)

thus has the same limitation: the bracketed sums do not split. Similarly, when q = −q−1,
we have R+i = R−i (for any n). More interesting is the case where λ2 = q2λ1. Here, both
e−2

2 and e+1
2 are undefined. Clearly, R+1 �= R−2 (unless q2 = −1, λi = 0), so e−2

2 + e+1
2

is also undefined, but e+2
2 and e−1

2 are well defined, so

e−2
2 + e+1

2 + e((1),(1))
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does not split and R+1 and R−2 (that is, �((2),) and �(,(12))) must both be composition
factors of �((1),(1)). Note that at first sight this seems problematic for our proposed HD

weight space; however, over this k we may identify R−2 with the simple head of �((1),(1))
and label it accordingly (rather than by its H(n, d) label, which is (, (12))). This is a good
paradigm for the subtleties with labels in realising ingredient I2(ii) (confer [59]). In terms
of the A1 integral weight set Z ⊂ R (recall that P2((, (2))) = −2, P2(((1), (1))) = 0 and
P2(((2), )) = 2), we depict the standard modules and morphism in the following manner.

-2 0 2

It will be convenient to note the equality

(X − λ2)(−λ1
 +
) = 0 (27)

and its s image; and hence that

(−λ1
 +
)e−2
2 = (−λ1
 +
)

g1 − q

−q−1 − q
(28)

and its s image.

Now consider the algebras HD (n, 2) obtained by quotienting by e−1
2 = 0 and e−2

2 = 0.
First consider n = 2. A basis of the ideal D2(2) is simply {e−1

2 , e−2
2 }, for λ1 �= λ2. The

basis C2
2 of H(2, 2) is

{1, X1, X2, X1X2, g1, X1g1, X2g1, X1X2g1}.
We can think of using the relation e−2

2 = 0 to eliminate X1X2g1, and then using its s-
partner to eliminate g1, to obtain a basis for HD (2, 2) (see also Section 5.3). Specifically,
it is convenient to represent the quotient relations as

(X1 +X2 − (λ1 + λ2))(g1 − q) = 0;
(X1X2 − λ1λ2)(g1 − q) = 0.

(29)

Note that these two relations generate the same ideal.
Alternatively, rewriting gi −q =: ui (so u2

i = −(q+q−1)ui) andX−λ1 =: v, we have
vu1vu1 = (λ1q

−1 − λ2q)vu1 and u1vu1v = (λ1q
−1 − λ2q)u1v, (30)

and similarly for the image under s. Combining (or by applying (g1 −q) to the first equation
in (29) from the left), we obtain

u1vu1 = (λ1q
−1 − λ2q)u1 (31)

(and its s image).

4.2. HD (n, 2) and the blob algebra

The blob algebrabn [55] may be defined as in Section 1. (That the presentation in Section 1
is equivalent to the usual definition in terms of a basis of decorated Temperley–Lieb diagrams
may be verified by a straightforward (if tedious) generalisation of the corresponding exercise
for the ordinary Temperley–Lieb algebra as in [50].) The properties I1–I6 are established
for the blob algebra in [57].
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In the parametrisation of bn by q and m, where ye = −[m− 1]/[m], it is convenient to
replace e− by the rescaled generator U0 = −[m]e−, or rather to replace e− with U0, with
relations U2

0 = −[m]U0 and

U1U0U1 = [m− 1]U1. (32)

The variant with these relations is isomorphic to the original, except (obviously) when
[m] = 0.

Proposition 4.2. Let m, q, λ1 and λ2 be such that

[m− 1](λ1 − λ2) = (λ1q
−1 − λ2q)[m].

(Note that λ1 �= λ2 unless q2 = 1 and m → ∞, or [m] = 0; otherwise, putting λ1/λ2 =
q−2r and m = r , we may take λ1 = qm/(q − q−1), and then λ1 − λ2 = [m]). Then there
is an isomorphism

φ : HD (n, 2) → bn

given by φ(ui) = Ui and φ(v) = U0. There is a homomorphism ψ : bn → HD (n, 2),
given by ψ(Ui) = ui , ψ(U0) = v.

Proof. It is straightforward to verify the cyclotomic Hecke relations under φ. A direct
calculation also shows that the image under φ of the numerator of e−2

2 , as in equation (25),
vanishes identically if we use the form of λ1 given in the proposition. The image of e−1

2
vanishes similarly. Thus φ is a surjective homomorphism (except possibly when q2 = 1).
A dimension count reveals that this surjective map is generically an isomorphism.

For ψ , equation (31) verifies relation (32). It is now enough to check that u1u2u1 = u1
(that is, in H(3, 2), that u1u2u1 − u1 = u1(u2u1 − 1) = [3]!e−3 ∈ D2). Write f =
u1u2u1 −u1 and consider fD2f . (If f ∈ D2, then f ∈ fD2f , at least if [3]! is invertible,
and this is a much smaller and simpler object to work with.) This (pre)idempotent subalgebra
includes

f (X1 +X2 − (λ1 + λ2))f = f ((1 + q−2)X − (λ1 + λ2))f,

f (X1X2 − λ1λ2)f = f (−q−1Xg1X − λ1λ2)f

and

fXg1g2(X1 +X2 − (λ1 + λ2))f = f (Xg1g2X +Xg1g2g1Xg1 −Xg1g2(λ1 + λ2))f

= f (−q−1Xg1X +Xg2g1g2Xg1 − q−2(λ1 + λ2)X)f

= f (−(q−1 + q−3)Xg1X − q−2(λ1 + λ2)X)f.

A linear combination of these is

[3]!((1 + q−4)λ1λ2 − q−2(λ2
1 + λ2

2))f,

so f ∈ fD2f , at least in an open subset of the parameter space. The coefficient may be
rewritten as [3]!q−2λ1λ2(q − q−1)2[m+ 1][m− 1], so this covers most of the interesting
cases. The remainder require a more tedious calculation.

Corollary 4.3. The finite characteristic bn decomposition matrices in [15] are a subset
of type-B Hecke decomposition matrices, via the correspondence given in Section 1.3.

Recall that m = ±1 implies the existence of a quotient algebra isomorphic to the
Temperley–Lieb algebra (in addition to the noted Temperley–Lieb subalgebra). The quotient
identifies X = 1 (or q2).
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5. On general d

5.1. Idempotents in H(n, d)

The primitive and central idempotents corresponding to the 2d one-dimensional repre-
sentations of H(n, d) over K may be constructed as follows. Fixing d, define

Pn = P+1
n = qn−1[n]

∏
i �=1

(
q2n−2λ1 − λi

)
. (33)

P−1
n = tPn, P+2

n = sPn, P+3
n = s2Pn, and so on. Define λ(0) = 1 and

λ(i) =
∑

d�j1>j2>···>ji>1

(
i∏
l=1

−λjl
)

(a sum over descending positive integer sequences (j1, j2, . . . , ji), with j1 � d).

Proposition 5.1. Set

βj+1 = qPj

Pj+1
; (34)

α0
j =

∏
i �=1(−λi)
Pj

;

αd−ij+1 = q2j λ(i−1) +∑i
l=2 q

(i−1)(2j−2)(q2j − 1)λl−1
1 λ(i−l)

Pj+1
(1 � i < d).

(35)

Then e+1
0 = 1,

e+1
j+1 = e+1

j

(
βj+1gj +

d−1∑
i=0

αij+1X
i
j+1

)
e+1
j , (36)

e−1
j = te+1

j , and so on.

For example, β1 = 0, αi1 = λ(d−1−i), and

e+1
1 =

∏
i �=1(X1 − λi)

P1
.

(There are more examples in Section 5.2.)

Proof of Proposition 5.1. We work by induction on j , with the example above as base.
Firstly, note that

e+1
j+1e

+1
j = e+1

j e+1
j+1 = e+1

j+1;
so, from Proposition 2.2, equation (36) gives a correct form for the R+1 idempotent up to
coefficients. Then note that in this form it is sufficient (see equation (10)) to check the identity
(gj − q)e+1

j+1 = 0, and the normalisation (that is, the idempotency). The former is a direct
calculation, and the latter may be checked by evaluating in R+1; that is, by substituting q
for gi and λ1 forX (in which case e+1

j+1 must evaluate to 1). To begin, we rewrite the claimed
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expression for (gj − q)e+1
j+1 as

(gj − q)

(
e+1
j

(
βj+1gj

)
e+1
j +

(
d−1∑
i=0

αij+1X
i
j+1

)
e+1
j

)

using commutation properties. By the inductive assumption, this is equal to

(gj − q)

(
e+1
j−1

(
βjgj−1 +

d−1∑
i=0

αijX
i
j

) (
βj+1gj

)
e+1
j +

(
d−1∑
i=0

αij+1X
i
j+1

)
e+1
j

)

= e+1
j−1βj+1

(
βj (gj − q)gj−1gj + (gj − q)

(
d−1∑
i=0

αijX
i
j

)
gj

)
e+1
j

+ (gj − q)

(
d−1∑
i=0

αij+1X
i
j+1

)
e+1
j

= e+1
j−1βj+1

(
(gj − q)

(
d−1∑
i=0

αijX
i
j

)
gj

)
e+1
j + (gj − q)

(
d−1∑
i=0

αij+1X
i
j+1

)
e+1
j .

Now, using the commutation rules on the first summand to bring the factor gj forward
through the Xij s, we find that the expression equals

(gj − q)

((
gjβj+1α

0
j + α0

j+1

)

+
d−1∑
i=1

(
βj+1

(
−qαij − (q − q−1)

(
d−1∑
l=i+1

αlj
(
Xj
)l−i))+ αij+1

)
Xij+1

)
e+1
j .

But Xje
+1
j = q2j−2λ1e

+1
j , so we see that this is equal to

(gj − q)

((
−q−1βj+1α

0
j + α0

j+1

)

+
d−1∑
i=1

(
βj+1

(
−qαij − (q − q−1)

(
d−1∑
l=i+1

αlj

(
q2j−2λ1

)l−i))+ αij+1

)
Xij+1

)
e+1
j .

Then, equating coefficients to zero, we get

α0
j+1 = q−1α0

j βj+1,

αd−1
j+1 = qαd−1

j βj+1,

αd−2
j+1 =

(
qαd−2
j + (q − q−1)αd−1

j (q2j−2λ1)
)
βj+1,

and

αij+1 =
(
qαij + (q − q−1)

d−1∑
l=i+1

αlj (q
2j−2λ1)

l−i
)
βj+1 (0 < i < d).
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Without regard for normalization, any one coefficient may be chosen arbitrarily, so
(without loss of generality) try βj+1 = qPj/Pj+1. Then αd−1

j+1 = ρd−1
j+1 /Pj+1, where

ρd−1
j+1 = q2j , α0

j+1 = λ(d−1)

Pj+1
, and αd−2

j+1 = ρd−2
j+1 λ1 + ρd−1

j+1 λ
(1)

Pj+1
,

for some ρd−2
j+1 . Then

ρd−2
j+1 = q2ρd−2

j + (q2 − 1)q2j−2q2j−2 = q2j−2(q2j − 1).

Similarly,

αd−3
j+1 = ρd−3

j+1 λ
2
1 + ρd−2

j+1 λ
(1)λ1 + ρd−1

j+1 λ
(2)

Pj+1
,

and, for 1 � i < d ,

αd−ij+1 =
∑i
l=1 ρ

d−l
j+1λ

l−1
1 λ(i−l)

Pj+1

for some ρ−
j+1. Then

ρd−3
j+1 = q2ρd−3

j + (q2 − 1)(q2j−2q2j−4(q2j−2 − 1)+ (q2j−2)3) = q4j−4(q2j − 1)

ρd−4
j+1 = q2ρd−4

j

+ (q2 − 1)((q2j−2)q4j−8(q2j−2 − 1)+ (q2j−2)2q2j−4(q2j−2 − 1)+ (q2j−2)4)

= q6j−6(q2j − 1),

and

ρd−ij+1 = q(i−1)(2j−2)(q2j − 1) (1 < i < d).

Finally, the normalization condition,

λ(d−1) +
d−1∑
i=1

((
q2j λ(i−1) +

i∑
l=2

q(l−1)(2j−2)(q2j − 1)λl−1
1 λ(i−l)

)(
q2j λ1

)d−i)

= Pj+1 − q2Pj

is verified by direct computation.

By inspection of these idempotents, we see that the algebras will not be generic in
specialisations in which λi/λj = q2r for some i, j, r ∈ N, nor in certain specialisations in
which q is a root of unity (this also follows immediately from [1, 59]). Let us disregard,
for the moment, the cases in which X is degenerate or non-invertible. Then, noting that
rescaling all the λis by the same factor produces an isomorphic algebra, we can fix λ1 = 1
(say) and adopt as parameters q and λi/λ1; see [59]. It is illuminating to proceed by example
(and confer [58, Section 5]).

5.2. The case d = 3

The primitive and central idempotents corresponding to the six one-dimensional repre-
sentations of H(n, 3) may be constructed as follows. Fixing d = 3, define Pn = P+1

n and
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P±i
n as in equation (33). For example,

P1 = P±1
1 = (λ1 − λ2)(λ1 − λ3);

P2 = q[2](q2λ1 − λ2)(q
2λ1 − λ3).

As before, βj = qPj−1/Pj , and here

α0
j =

∏
i �=1(−λi)
Pj

;

α1
j = q2j−4(q2j−2 − 1)λ1 − q2j−2(λ2 + λ3)

Pj
;

α2
j = q2j−2

Pj
.

(37)

Compute e±lj by e+1
0 = 1, and then

e+1
j+1 = e+1

j

(
βj+1gj + α0

j+1 + α1
j+1Xj+1 + α2

j+1X
2
j+1

)
e+1
j , (38)

e−1
j = te+1

j , and so on. For example

e+1
1 = X2

1 − (λ2 + λ3)X1 + λ2λ3

P1

and

e+1
2 = e+1

1

(
qP1g1 + λ2λ3 + ((q2 − 1)λ1 − q2(λ2 + λ3))X2 + q2X2

2

P2

)
e+1

1

= q
(X2

1 − (λ2 + λ3)X1 + λ2λ3)

P1

(X2
2 − (λ2 + λ3)X2 + λ2λ3)(g1 + q−1)

P2
.

Given these results, let us consider the generalised Soergel procedure for d = 3 corre-
sponding to that in Section 1.2 for d = 2. For illustration, we consider a field k in which
the equations λi/λ1 = q−ni (i = 2, 3) and λ1/λ3 = q−n1 are solved for positive integer
ni only in the case n2 = 2, n3 = 4 (in particular, in this instance q is not a root of unity).
Figure 4 illustrates the location of the corresponding reflection hyperplanes (shown as thick
lines) in the HD (that is, A2) weight space. The Kazhdan–Lusztig polynomials for this
geometry are given in the figure on [58, p. 1289]. The claim, then, is that if µ is a weight
in the fundamental alcove A0 (such as 0), then�(µ) has the following simple content (and
Loewy structure).

Lµ
Lµ.s Lµ.t
Lµ.st Lµ.ts

Lµ.sts

(Here s and t are the walls ofA0 – we are abusing the notationA.s of Section 1.2 to apply to
weights in the obvious way.) Of course, localising at small n, some of these simple modules
will vanish. Let us consider n = 0, 1, 2, 3.
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12

23

(,,)

((2),,)

(,,(2))

6

3

3

1

Figure 4: Weights of HD (n, 3) in weight space formalism: (a) for n = 0, 1, 2; and (b)
for n = 0, 1, 2, 3. Weight set �(0) consists of the empty weight (shown as a black circle
marked („) in (a); �(1) consists of the three weights marked with triangles, and so on (see
the main text).
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(For any k) we have HD (0, 3) ∼= k, with basis {1}. The weight for the corresponding
simple module is the innermost dot in the figures (marked (, , ) in Figure 4(a)). ForHD (1, 3),
the idempotents e+i1 are all well defined, and 1 = ∑3

i=1 e
+i
1 is an idempotent decomposition

into primitive idempotents. (The corresponding simples are marked as triangles.)

The set of weights forHD (2, 3) are marked with squares. (The weights corresponding to
the multipartitions ((2), , ) and (, , (2)) have been explicitly labelled, to fix the coordinate
system.) Note that e+i2 is divergent in the case i = 2, 3. The easiest way to see what is
happening at n = 2 is to recall the d = 3 version of Proposition 1.2.

Proposition 5.2. Fixing k, there are three ways to quotient to pass from HD (n, 3) to
HD (n, 2), where n > 0.

The corresponding subsets of the set of weights for HD (2, 3) lie in three straight lines:
the dashed lines shown in Figure 4(a). Since we have shown that the d = 2 algebra is
isomorphic to a blob algebra in each of these cases, we can give a complete description.
The lines marked 12 and 23 correspond to singly critical blob algebras, with reflection
points the intersection points of these lines with the thick lines shown. Accordingly, there
are injective standard module morphisms (‘reflection’ morphisms) as indicated by arrows.
The other blob line is a semisimple quotient (from the parameters, it is nominally a singly
critical case, but the reflection point lies at the outside edge of localisation of weight space
to n = 2, so there is no image of any n = 2 weight in it). It is straightforward to show that
there are no other non-trivial morphisms. Since the d = 3 alcove structure is determined
by the three d = 2 quotients, and since the morphisms indicated are all also blob module
morphisms, their location is necessarily consistent with the d = 3 Soergel procedure.

For HD (3, 3), the three blob quotients correspond to the three dashed lines shown in
Figure 4(b). The reflection morphisms shown within these lines are again simply blob
morphisms. (Note that the reflection point on the third line now lies within the localisation
of weight space.) The only question, then, concerns the morphisms into the module withA2-
weight 0. This weight is marked in the figure by the rank of the module, Rank(�(0)|n=3) =
6. (This weight coincides with the weight for the unique simple ofHD (0, 3) in our scheme,
since that module is a localisation of �(0)|n=3.) A straightforward Frobenius reciprocity
argument (using the morphisms at level n = 2 and the generic restriction rules) shows that
there are at least two homomorphisms into this module; but it does not uniquely determine
the domain in either case. To confirm the indicated morphisms, consider the walk basis
of �(0)|n=3 and the walk orbits of these walks – see Figure 5. Note from the last of
these pictures that 321 ∼G(k) 333. It follows that there is a homomorphism between the
corresponding standard modules, by Proposition 3.13. (Note that walk 321 is not sorted,
but that the weaker condition of all steps in a given direction being taken consecutively is
sufficient for this construction.) The other claimed morphisms follow similarly.

It is worth noting that�(0)|n=3 may generically be defined as�(0)|n=3 = HD (3, 3)e(13),
where e(13) = e−3 is the usual q-antisymmetriser [58] (that is,�(0)|n=3 is the globalisation
of the unique simple of HD (0, 3)). This is an illuminating construct to consider in any
case. The module H(3, 3)e(13) is, of course, much larger. By Proposition 2.1 it has basis
{Xae(13) | a ∈ {0, 1, 2}3}. To determine a basis in our case, one must use the vanishing

of e−i2 (which generates a significant part of He(13)). This problem is dealt with elsewhere;
see [16].
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6

Figure 5: The six walks in T0(3), and their walk orbits.
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5.3. Conjectured basis for HD (n, d)

Consider w ∈ Sn, a permutation, and let S(w) be a corresponding reduced word in
the Coxeter generators {σi}. The set map from S(Sn) to Bn given by σi → gi is an
isomorphism [34]. Thus from w ∈ Bn we may read off a permutation (which we shall also
call w). Given such a permutation, define a symmetric relation (w) ⊂ n × n by: i(w)j if
i > j implies that w(i) < w(j) (and symmetry). That is, i(w)j if the lines i and j cross in
the diagram of w.

Claim 5.3. {X(a1,a2,... )w ∈ Cn | i(w)j implies that ai �= aj } is a basis for HD (n, d).

Idea of the proof. Note that the dimensions are right (consider the Robinson–Schensted
correspondence in the form given in [67], or, for example, in [66]). Thus it is enough to show
spanning or linear independence. For the latter, it is convenient to have a representation R
of HD (if it is linear independent in R, then the claim is proven and R is faithful).

The remainder of the paper is concerned with representations of HD .

6. On representations of bn and HD (n, d)

The ordinary Temperley–Lieb algebra has a powerful diagram calculus (see [50] for a
review). One motivation for the introduction of the blob algebra [55] was to bring the utility
of such a calculus to the representation theory of the periodic/affine algebras studied in [54]
(see also [50, Chapter 8], as well as [60, 38, 27, 30] and the references therein). In fact, all the
finite irreducible representations of these infinite-dimensional algebras may be constructed
using [55]. (Although completeness is not shown there, see [28, 57].) From the point of
view of lattice statistical mechanics, bn also renders the ‘seam’ boundary conditions (as in
[5]; see also [47], for example) of the ice-type model [4] into the algebraic formalism of
Temperley and Lieb [68]. Indeed, there are a number of mathematical and physical reasons
(in addition to the pursuit of our ingredient I2 for HD (−, d)) why a faithful ‘tensor space’
representation of the blob would be useful (confer [55, Section 4], as well as [60, 6, 22]).

By a tensor space representation of bn (or HD (n, d)), we mean a representation for
each n with underlying module of form V (n) = Vaux ⊗ V⊗n as a vector space, with Vaux
and V finite-dimensional vector spaces (confer [40]), on which the generators act ‘locally’
(in particular, bn−1 ⊂ bn acts trivially on the last factor V , so the restriction of V (n) is a
manifest direct sum of dim V copies of V (n− 1)); and a representation that is well defined
in arbitrary specialisations.

Let e ∈ HD (n+d, d)be idempotent.A moduleV (n+d) for a tensor space representation
overK is globalisable by e if e projects the last d tensor factorsV⊗d → K , and acts trivially
on other tensor space factors.

To establish ingredient I2 generically forHD (−, d) (that is, to establish that there exists
idempotent ed ∈ HD (n+ d, d) such that

edH
D (n+ d, d)ed ∼= HD (n, d); (39)

confer [12, 21]), certain generalised braid diagrams may be used [58]. However, the fol-
lowing proposition holds.

Proposition 6.1. Suppose that V (n + d) is the module for a faithful tensor space repre-
sentation of HD (n+ d, d) over C, and is globalisable by ed . Then equation (39) holds.
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Proof. To see this, note that under these assumptions the actions of ed and HD (n, d) on
V (n+ d) commute, and hence they commute in HD (n+ d, d). Thus

HD (n, d)ed ⊆ edH
D (n+ d, d)ed ⊆ HD (n+ d, d)

is a sequence of inclusions of algebras, and HD (n, d)ed is isomorphic to HD (n, d). Thus
the action of edHD (n+d, d)ed onV (n+d)would be isomorphic to theHD (n, d) action on
V (n). Since the latter has a trivial kernel, this would establish equation (39) in general.

Any faithful tensor space representation in which X acts non-trivially only in the first
normal tensor factorV (and an otherwise redundant factorV aux) would be a likely candidate,
because of the way in which ingredient I2 works in the An case; see [37].

Let us briefly review this.

Definition 6.2. The ordinary Hn action on V⊗n
N (dual to that of UqslN , as in equation

(11)) is
M
q
N : An-braid → End(V⊗n

N ),

gi �→ 1 ⊗ 1 ⊗ · · · ⊗ Mq ⊗ 1 ⊗ 1 ⊗ · · · ⊗ 1,

where 1 denotes the unit matrix; and Mq (the ith factor) is given by

Mq |N=2 =



q 0 0 0
0 q − q−1 −1 0
0 −1 0 0
0 0 0 q


 ,

Mq |N=3 =




q 0 0 0
0 −q−1 + q 0 −1 0
0 0 −q−1 + q 0 0 0 −1 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 q 0 0 0 0
0 0 0 0 0 −q−1 + q 0 −1 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 q



,

and so on.

In particular, each such representation obeys a quadratic local relation with coefficients
in R = Z[q, q−1]. (Specifically, Mq

N((g1 − q)(g1 − (−q−1))) = 0.)
Putting Ui = gi − q, we have

M
q
2 (UiUi±1Ui − Ui) = 0, (40)

so Mq
2 factors through Tn(q). (In fact, it is faithful on Tn(q); that is, Tn(q) = H 2

n (q).)
Recall from Section 1.3 that e−N denotes the HN q-symmetriser (normalisable as an

idempotent, provided that [N ]! is invertible in K [50]). For n � N , V nN is the tensor space
module for HN

n (q). It is easy to check that V nN is globalisable by e−N .

Recall also that the Tn action on V n2 breaks up directly, over any field, into summands
Pλ of fixed ‘charge’ or weight λ ∈ N0, and then

Pλ = +µ�λ�µ (41)

(generically a direct sum).
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It is desirable not only to have representations of bn that act on tensor space, but also
that they preserve some version of this charge conservation – that is, they are a direct sum
of analogues of permutation representations. (Note that the tensor space representation in
[55, Section 4] is neither full tilting [22] in general, nor charge-conserving.)

One way to proceed is to search for maps from bn to Tn′ (for some n′) (or, respectively,
from HD (n, d) to Hd

n′ ), and hence to obtain bn-modules by restriction of Mq
2 . Another

possibility is to enrich suitableTn′ -modules with the property of a bn-module by determining
an action of the blob operator on them. We begin by investigating the latter.

6.1. Generalised bialgebra construction

Let (M, ◦, e) be a finite monoid, and letA be aK-algebra with basisM and multiplication
defined on this basis bym1m2 = km1,m2(q)m1 ◦m2, where q is some set of parameters and
k12(q) ∈ K . (The possibilities for the coefficients will in general by constrained by M as
follows:

m1(m2m3) = m1km2,m3(q)(m2 ◦m3) = km2,m3(q)km1,m2◦m3(q)m1 ◦ (m2 ◦m3)

= km1,m2(q)(m1 ◦m2)m3 = km1,m2(q)km1◦m2,m3(q)(m1 ◦m2) ◦m3.

So km2,m3(q)km1,m2◦m3(q) = km1,m2(q)km1◦m2,m3(q), but there are plentiful solutions – for
example, any finite group algebra.) Suppose that there is a triple of points in parameter
space for which

km1,m2(q
′)km1,m2(q

′′) = km1,m2(q) (42)

for all m1,m2. Then A has a kind of generalised coproduct:

A ↪→ A′ × A′′,
m �→ (m,m),

making it a kind of generalised bialgebra, since

m1m2 �

����������������������������

km1,m2(q)m1 ◦m2�

��

(m1m2,m1m2)

km1,m2(q)(m1 ◦m2,m1 ◦m2) km1,m2(q
′)km1,m2(q

′′)(m1 ◦m2,m1 ◦m2)

(confer [39, Section 1.1.3(iv)], for example). In particular, the coproduct is an algebra
morphism, and if a submanifold S of parameter space can be found for which each pair
q′, q′′ ∈ S has a q ∈ S satisfying equation (42), then the sum over all q ∈ S of categories of
(left) modules is closed under tensor product. (The example of group algebras is the usual
bialgebra and tensor product.)

It is easy to show, using the diagram calculus (or via a mild generalisation of the
Temperley–Lieb diagram variant of cabling [48, Section A(iii)]), that Tn(q) is an algebra of
this type, with q = {q}. The diagram in Figure 6 illustrates the coproduct onU1U2 ∈ T4(q),
using lines of different thickness for different q. The cabling-like visualisation of the two
factors, in which they are embedded in a single pseudodiagram, is possible because the thin
and thick lines are arranged into subdiagrams that never meet in any composition.
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�→




,




∼

Figure 6: Coproduct on U1U2 ∈ T4(q).

�→

Figure 7: Reflected visualisation.

It will be evident that the set of conditions (42) include −[2]q = [2]q ′ [2]q ′′ in this case
(consider a composition in which a closed loop arises, such asU1U1); and that this is the only
non-trivial condition. Through the cabling picture we may pass to another visualisation, in
which the thinner lines have been reflected in a vertical line at the left edge of the diagram
(confer [19]), as illustrated in Figure 7. There is no significant difference between these two
visualisations, except that it is perhaps slightly easier to describe the construction of certain
tensor product representations explicitly using the reflected form, as we shall see. Again, in
the reflected form we may view the picture as a single pseudodiagram (but again there is
no sense in which the right- and left-hand sides ever touch).

For example, we may tensor together two tensor space representations in the form:

ρ : Tn(q) −→ End(V 2n
2 );

ρ : Ui �→ Ms
2(Un−i )Mt

2(Un+i ).
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Here, the set of conditions (42) reduces to −[2]q = [2]s[2]t via, for example,

ρ(UiUi) ρ(Ui)ρ(Ui)

−[2]qρ(Ui) [2]s[2]t ρ(Ui).
Set

Uq(x) =




0 0 0 0
0 q 1 0
0 1 q−1 0
0 0 0 x




and Uq = Uq(0) (confer [18]). Just as Mr
2(Ui) is a matrix acting trivially on every tensor

factor except the ith and (i + 1)th, where it acts as −Ur , so let Mr,x
2 (Ui) denote a matrix

differing from this only in acting like −Ur (x) in that position.
Note that

(Us ⊗ Ut )(1 ⊗ Ur (x)⊗ 1)(Us ⊗ Ut ) =
(
r

st
+ st

r
+ x

t

s

)
(Us ⊗ Ut ) (43)

for any r, s, t, x (an explicit calculation).

Proposition 6.3. Fix q andm, put q = eiµq and u0 = [m]qe−, and choose r , s and t such
that

− cos(µq) = 2 cos(µs) cos(µt ); (44)

− sin((m− 1)µq)

sin(mµq)
= cos(µs + µt − µr)

cos(µr)
. (45)

(Note: exclude m = 0, and beware of q = 1. A convenient realisation is r = i(−q)m,
s = −i√iq, t = −√

iq; that is, µr = m(µq + π) + π/2, µs = (µq + π)/2 − 3π/4,
µt = (µq + π)/2 + 3π/4 – so rational µq/π and m give rational µr/π , µs/π , µt/π .)
Then there is an algebra homomorphism

ρ0 : bn(q,m) −→ End(V 2n
2 )

given by

ρ0 : e− �→ 1

[2]r M
r
2(Un); (46)

ρ0 : Ui �→ Ms
2(Un−i )Mt

2(Un+i ).

Proof. We may readily verify that ρ0(e−e− = e−).
The relations for Tn(q) ⊂ bn may be checked in ρ; that is, as above. (Note that [m]q =

sin(mµq)/sin(µq).) There remains U1e−U1 ∝ U1 (relation (2)). This is validated by the
explicit calculation in equation (43):

U1e−U1 = [m− 1]q
[m]q U1 �→ −

(
r
st

+ st
r

)
[2]r ρ0(U1).

Another way to see this is to note that, in tensor space, equation (43) allows us to make
sense of an extension of the pseudodiagrams in Figure 7, in which the left- and right-hand
sides meet as in Figure 8. (Specifically, this figure may be replaced by a scalar multiple of
one in which the loop composed of mixed line segments is omitted.)
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Figure 8: Extension of the reflected visualisation.

There is a similar homomorphism ρs , which simply replaces equation (46) with

ρs : e− �→ 1

[2]r M
r,[2]r
2 (Un) (47)

and equation (45) with

− sin((m− 1)µq)

sin(mµq)
= cos(µs + µt − µr)

cos(µr)
+ ei(µt−µs). (48)

This mild complication has the merit that the blob/box symmetry of the algebra [55] maps
this representation to one of the same type.

The isomorphism of bn to its opposite (note the symmetry of the relations under writing
back to front) provides an automorphism that is fixed by ρ0 (the representations of the
generators are symmetric matrices); thus ρ0 is contravariant self-dual. The same is true
of ρs .

These very exciting representations merit further study. Martin has recently shown [51]
that ρ0 is faithful, and Martin and Ryom-Hansen have shown [53] that it is full tilting
in the quasihereditary cases. The intriguing question now is: “How do they generalize to
higher d?” This question is not trivial. We have made considerable use of the Temperley–
Lieb diagram calculus here, and there is no such powerful tool in evidence for higher d,
short of the braid group itself. The remainder of the paper is essentially concerned with
addressing this question.

6.2. Other constructions

The blob algebra bn(q,m) is (at least) singly critical whenm ∈ Z
+, see Section 1.2: if q

is not a root of unity, then the procedure there still works, but with l set unboundedly large.
This means that the usual Pascal triangle of standard modules [55] is complicated by at
least one wall of ‘reflection’ homomorphisms from outside to inside across the alcove wall
at m, as exemplified in Figure 9. There is a suggestive combinatorial coincidence with Tn
manifest in the dimension of heads of the blob standard modules in certain singly critical
(that is, m ∈ Z) cases. This starts with the m = ±1 cases, where there is a bn quotient
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Figure 9: The Pascal triangle of bn standard modules (layers n = 0, 1, . . . , 7 are shown)
complicated at m ∈ Z by reflection homomorphisms. Here we show, by their dimensions,
the composition factors of each standard in cases m = −1,−2,−3.

given by e− �→ 0 (or, respectively, e− �→ 1). It follows immediately from the relations that
this quotient is isomorphic to Tn (and so the coincidence is explained). Figure 9 exhibits a
similar phenomenon atm = −2. These may be regarded as special cases of a more general
‘braid construction’.

In the next sections we describe this braid construction, and review aspects of the con-
nection between the blob algebra and periodic (and affine) systems that lead to other useful
maps from bn (and other H(n, d) quotients) into ordinary Hecke quotients, and hence into
tensor space.

7. Braids and the blob approach to periodic systems

In this paper, the ‘A-type braid group’ A-braid is the group of braidings of a row of
initially vertical strings numbered from the top left: 1, 2, . . . , which braidings are trivial on
all but finitely many strings. The subgroupAn-braid acts trivially on all but the first n strings
(so A0-braid = A1-braid ⊂ A2-braid ⊂ . . . ). Thus Hn is a quotient of CAn-braid, and gi
is the braid in which string i crosses over string i + 1. Evidently, such elements, and their
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Figure 10: Illustration of the folding injection of An-braid into itself.

inverses, generate the group [46, 8]. Let (−) : An-braid → An-braid be the automorphism
given by gi �→ gn−i ; see [50, Section 5.7.2]; confer [19].

Occasionally, we shall need to refer to the group of braidings of precisely n strings (as,
for example, in the Young subgroup construction – see [50, Section 13.1, p. 323]). This
group is obviously isomorphic to An-braid, and we shall distinguish them only by context.
Let 1m denote the identity element on precisely m strings, and let

1mC : An-braid → Amn-braid

be the corresponding cabling morphism (replace each string with m parallel strings).
Let � : An-braid → An-braid × An-braid be the group comultiplication. Let Y :

An-braid × An-braid ↪→ A2n-braid be the natural ‘Young’ embedding, extended to (a
version of) the full braid group by extending the numbering of strings to Z \ {0} – that is,
essentially the full line, not the half line – and placing the second copy of An-braid on the
‘minus’ side. Let F be the map back to the full braid group proper, obtained by folding
the left-hand side of the plane over on to the right-hand side at a point slightly shifted
from the origin (so that each negatively numbered string starting point lies just to the left
of its positively numbered version, and the system is bounded on the left again), and then
renumbering – see Figure 10. Let S be the map back to A-braid, obtained by renumbering
i �→ i + n+ 1 (i < 0) and i �→ i + n (for i > 0) and discarding all strings numbered less
than 1. Now define a map 12

F from An-braid → A2n-braid by commutativity of:

An-braid

�

��

12
F �� A2n-braid

An-braid × An-braid
1×(−) �� An-braid × An-braid Y �� A2n-braid

F

��

and similarly for 12
S . The map 12

F is similar also to the m = 2 cabling morphism, in that
each string now has a partner running parallel to it, but the over/under information is not
the same.

We now recall certain constructions from [50, Section 5.7] (some changes of notation
will be necessary). Let CÂn-braid denote the algebra associated to affine graph Ân there
(strictly speaking, only every other such graph has a pregraph, but this need not concern
us), let Ân-braid denote the underlying group (that is, the affinization of the ordinary braid
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group), and let g. denote the ‘extra’ generator associated to the affinizing vertex in Ân
compared to An−1. Define

G = g1g2 . . . gn−1

in An-braid (the element in which string 1 crosses over strings 2 to n), and note that
GgiG

−1 = gi+1 (i < n− 1).

Proposition 7.1 (see [50]). There is a homomorphism φ0 : Ân-braid �→ An-braid given
by identification on the An-braid subalgebra and g. �→ Ggn−1G

−1.

As noted for example in [48, Section 3], there are actually a number of closely related
ways of building representations of the affine (or periodic) case, corresponding to the choice
of periodic boundary conditions (the ‘cohomological seam’) in a physical system. This was
systematized, in [55, Section 3], by the introduction of the idempotent blob generator e−.
Using this, we can build an invertible generator g− = 1 + ae− (for a a suitable constant)
obeying

g−g1g−g1 = g1g−g1g− (49)

(see also Proposition 4.2), and we define G− = g−G. Then

g. �→ G−gn−1(G−)−1 (50)

defines a generalisation φa of φ0 for each suitable choice of a, ye (see [55, equation (25)]).
Note that neither equation (6) nor the blob construction for g− are needed to verify the

map in equation (50); only equation (49) is necessary. Thus the map generalises to H(n),
and even to the level of braids.

The connection between the B-type and periodic systems now follows, inasmuch as
Bn-braid may be realized as the group of braids on the cylinder, whereupon
π = gn−1gn−2 . . . g1g0 is the braid obtained from the identity braid by turning the bot-
tom edge of the cylinder through one vertex clockwise (that is, so as to take vertex 1 into
vertex 2, and so on); π ′, the corresponding generalisation of G− (that is, with g− replaced
by g0), is the anticlockwise turn. ThusBn-braid may be thought of as having affine Ân-braid
as a subgroup, with g. = πg1π

−1 = π ′gn−1(π
′)−1; confer [55, Section 3].

7.1. Homomorphisms of Bn-braid to An′ -braid

Let A = An-braid, and let n = {1, 2, . . . , n}. For b ∈ A and i ∈ n, define b(i) to be the
final position of string i in b.

Let p be any partition of (or, equivalently, any equivalence relation on) n. Then for each
such p, there is a subset of A = An-braid such that b ∈ A implies that b(i) ∼ i. This subset
is a subgroup: call it p−An-braid, or just p-braid. For example, if p is the ‘trivial’ relation
({n}), then p-braid =A; if p is the identity relation, then p-braid is the pure braid group (the
normal subgroup whose quotient is the permutation action on n, b(i), described above).

For convenience when dealing with general n, we shall describe a partition for which
each i > m, for some m, is in the same part by only giving the other parts. Thus {}-braid =
{n}-braid = A; and {{1}}-braid=: A′ is the group that is pure on string 1.

Let Li ∈ An-braid be the pure braid that takes string i behind all earlier strings, and then
back in front of them (that is, L1 = 1 and Li+1=giLigi); see Figure 11.
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i

Figure 11: Li ; here, the shaded area represents the identity braid on the first i − 1 strings.

i

=

Figure 12: Schematic for generalisations of LigiLigi = LiLi+1 = Li+1Li = giLigiLi as
in fb (b lives in the shaded region).

Note that in the Hecke algebra quotient, Li is the image of Xi ∈ H(n, 1)|λ1=1, that
LiLj = LjLi , and that Cn = ∏n

i=1 Li is the (‘clockwise’ or gi-built) pure twist element of
An-braid, denoted M2 in [50, Section 5.7.2].

Proposition 7.2. Let b be any element of Am−1-braid. Then there is an injective group
homomorphism

fmb : Bn-braid −→ {m− 1} − An+m−1-braid;
g0 �→ Cmb;
gi �→ gi+m−1.

Proof. Consider Figure 12. This checks the key relation explicitly.

For example, f 2
1 is g0 �→ g1g1, g1 �→ g2, and so on. Likewise, f 1

1 is g0 �→ 1, gi �→ gi
(i > 0).
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There is a group homomorphism extending the 12
C cabling morphism (confer [50, Chap-

ter 13]; note also [17]):

12
C : Bn-braid −→ A2n-braid;

g0 �→ g1;
gi �→ 12

C(gi).

There is a similar homomorphism extending the 12
S morphism:

12
S : Bn-braid −→ A2n-braid;

g0 �→ gn;
gi �→ gn−ign+i

(confer Figure 10), and another extending 12
F .

8. On tensor space representations of H(n, d)

The constructions above allow us to build representations of Bn-braid from type-A rep-
resentations (and if these are charge-conserving tensor space representations, then these
properties will be preserved, in some sense, as will globalisability). Our strategy now in
searching for maps from bn to Tn (and generalisations to d > 2) may be summarized by
the following picture.

H(n) Hn′ End(V⊗n′
)

H(n, d)

bn

X R

?

�d

φ

The Northeast-pointing maps are the canonical quotients from Sections 1 and 4 (we shall
call the combined map η), the map R is the ordinary representation on tensor space, and the
dotted line is the desired map occurring if R ◦ X factors through bn. The exercise is to find
among the maps X those for which R ◦ X factors thus. (As we shall see, the candidates
that we noted in Section 6.2 for maps from bn to Tn are just special cases of the simple
representations f mb of Bn-braid above.)

By Definition 6.2, each B-braid quotient of form

Bn-braid
fmb−→ Am+n-braid

MN−→ Vm+n
N (51)

(‘auxiliary space’ construction) or

Bn-braid
12−→ A2n-braid

MN−→ V 2n
N

(‘cabling-related’ construction) factors through a partial specialisation of H(n, d) (some d)
in which the g0 (that is,X) eigenvalues are determined in terms of q, but q is indeterminate.
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Obviously, the M2 ◦ f 2
1 quotient obeys a quadratic f (g0) = 0, so d = 2, and so it factors

through some specialisation of HeckeB(n); but f (g0) has coefficients in Z[q, q−1], so this
is still not generic (HeckeB has two parameters, q and Q, say).

Since all our mapsM2 ◦X map into the Tn action on V n2 (for some n), their image breaks
up at least as far as in equation (41).

Possible next steps here are: (i) to investigate the generic irreducible content of the
fb representations (of whatever specialisation of H(n, d) they might provide); and (ii) to
investigate what portion of the parameter space is actually accessible by this construction
(that is, what eigenvalues of g0 we can realise by varying b). Fixing q, this portion is discrete
(that is, of measure zero), but then so is the (at least singly critical) portion that we are most
interested in, so it is not necessarily too restricted.

Note that if we want to access a dense subset of the parameter space, this cannot be via
MN ◦f mb , since this depends continuously only on q. Instead, we could look at maps ending
on, say, ⊗d

i=1V
n
N |q=qi .

8.1. On cabling-related maps

Underlying the map 12
F is the full range of direct product representations of An-braid.

In particular, we can regard ⊗iM
qi
N as a representation of An-braid. In general, we may not

assume that these representations will factor through any particular Hecke quotient, but if
one does, then it could provide a generalisation of the extension of 12

F toBn-braid. We form

R⊗(gi) = M
q
N(gn−i )⊗Mr

N(gn+i )

and try, say, R⊗(g0) = 1 ⊗Ms
N(gn−i )⊗ 1, and we compute R⊗(g0g1g0g1 − g1g0g1g0).

In this particular case, withN = 3, the image vanishes only when q = r = s (a brute-force
calculation). An analogous deformation of the extended 12

C map at N = 3 fails in the same
way.

The 12
C cabling map with N = 2 does not in general factor through bn either. Fur-

ther investigations are hindered by the magnitude of the computations required, but these
negative results serve well to illustrate the extraordinary nature of the ρ-representations in
Proposition 6.3.

8.2. On N = 2 auxiliary spaces, bn, and ‘the coincidence’

In (51) we require that MN ◦ f mb (x) be also a representation (R, say) of η(x) for all x.
Firstly,

η : gi �→ q + Ui,

so equation (40) verifies equation (1). We also require that R(U1e−U1 − k−U1) = 0 for
some k− (the relation (5) is not sufficient to ensure this). Whenever we find a map, the other
question is: “Is it faithful?”

Since
η : g0 �→ α1 + βe−,

the spectrum of M2(f
m
b (g0)) must be quadratic if the map is to factor through the blob as

it stands. By equation (41), this spectrum may be determined from the action on the zero
charge sector P0 of V n2 . The following lists are the eigenvalues with multiplicities in this
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sector, arranged by standard Tn-module factor with the ‘spine’module on the left, and so on.

M2(L1) : {1};
M2(L2 = C2) : {q2, q−2};
M2(L3) : {q2, q−2, q−4};
M2(C3) : {1, 1, q−6};
M2(L4) : {1, 1, q2, q−4, q−4, q−6};
M2(C4) : {1, 1, q−4, q−4, q−4, q−12};
M2(C5) : {q−4, q−4, q−4, q−4, q−4, q−10, q−10, q−10, q−10, q−20};
M2(C6) : {q−8, . . . , q−8, q−12, . . . , q−12, q−20, . . . , q−20, q−32}.

The pattern for Ci will be obvious.
Note, therefore, that C1, C2 and C3 are the only possibilities here (unless we further

specialize to q a root of unity). ‘Null’ twist C1 corresponds to the m = ±1 case already
discussed. For the other cases, it remains to check that the candidates for images of the
generators obey U1e−U1 = k−U1 for some scalar k−.

Example:M2 ◦f 2
1 . (Let u1 and u0 denote the canonical preimages along η ofU1 and e−.)

An elementary calculation finds a value of k− for which

M2(f
2
1 (u1u0u1 − k−u1)) = 0.

This value then determines that the blob parameter m = −2 here.
Since span(1, g1) = span(1, g1g1) here (and V n2 is a faithful Tn-module), the image of

Bn-braid here is the whole of Tn+1. Thus equation (41) determines the structure of V n+1
2

as a Bn-braid-module. For n = 2, it is

V 3
2 = 1 + (2 + 1)+ (2 + 1)+ 1 (52)

(representing summands by their dimensions), which is the structure as a T3-module. Since
we hit the whole of T3, equation (52) is the irreducible decomposition with q generic. Let
us call the two inequivalent modules here M1 and M2. The generic simples of H(2, 2), as
indexed by their 2-partitions (see Section 1), are:

2-partition ((2), ) ((1), (1)) (, (2)) ((12), ) (, (12))

dimension 1 2 1 1 1
,

all but the last two of which survive the quotient to b2. Note, therefore, that if the T3 standard
M2 breaks up no further (that is, q-generically) it is a blob representation for m = −2, but
that M2 ◦ f 2

1 cannot be a faithful bn-module.
For B3-braid, we have V 4

2 = 1 + (3 + 1)+ (2 + 3 + 1)+ (3 + 1)+ 1 (as a T4-module)
as follows; confer HeckeB .

2-partition ((3), ) ((2, 1), ) ((13), ) ((2), (1))
dimension 1∗ 2 1 3∗

2-partition ((12), (1)) ((1), (2)) ((1), (12)) (, (3)) . . .

dimension 3 3∗ 3 1∗ . . .

(Blob representations are indicated with a *.)
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Recall that at m = −2, blob standards break up as shown in Figure 9. In particular, at
n = 3,

1 2 3 1
−→ 1

.

Note that here, and for all n, the heads of the bn standards to the right of the m = −2 line
may indeed be identified with the (generic) irreducible Tn+1-modules. This is neat, but it
follows that none of these representations is faithful.

To summarize the last two sections, we have not been successful in generalising the
ρ-representations. The search for full tilting modules for general d continues, and we report
these negative results partly in order to avoid unnecessary duplication later. More positively,
the representations that we have found are interesting from the point of view ofYang–Baxter
equations in physics [4], but we shall discuss these applications elsewhere.
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We commend the following recent papers on related topics to the reader: [63, 31].

Appendix A. On the Bernstein centre Z(H(n)) and Z(H(n, d))

Some of the manipulations of ideals in Section 4 and thereafter are not trivial. The
following mechanical exposition of the Bernstein centre and its image in Z(H(n, d)) may
help the reader to see where they come from.

Following on from equation (19), we define ĝi = [Xi, gi] (thus ĝi = (Xi −Xi+1)gi +
(q − q−1)Xi+1). Then

ĝiXj = Xσi(j)ĝi (53)

and

ĝi ĝi+1ĝi = Xigi(Xi+1gi+1 − gi+1Xi+1)Xigi + . . .

= XigiXi(Xi+1gi+1)gi −Xigi(gi+1giXigi)Xigi + . . .

...

= Xi+1gi+1Xig
−1
i Xi+1gi+1 − gi+1Xi+1Xig

−1
i gi+1Xi+1 + . . .

= Xi+1gi+1Xi(gi − (q − q−1))Xi+1gi+1

−gi+1Xi+1Xi(gi − (q − q−1))gi+1Xi+1 + . . .

= Xi+1gi+1XigiXi+1gi+1 − gi+1Xi+1Xigigi+1Xi+1 + . . .

= ĝi+1ĝi ĝi+1. (54)

LetK be our ground ring (an integral domain), letK[X−] be the ring of polynomials in the
Xis, and let K(X−) be the field of fractions. Note that we can write

αiĝi = gi + βi,

where both αi and βi lie in K(X−). (Note that in our quotient �d , the image of K[X−]
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itself generically, but not always, contains αi and βi . For example, when d = 1 and q2 = 1,
thenXi −Xi+1 is not invertible.) It then follows from equation (53) that any element of the
extension of H(n) by K(X−) can be expressed in the form

h =
∑
w∈Bn

cwĝw,

where cw ∈ K(X−) and ĝw is obtained by putting hats on the generators in w. Indeed, the
extension may be decomposed as ⊕

w∈Bn

K(X−)ĝw (55)

(an induction on the usual length function on Bn).
Suppose that h has at least one w �= 1, with cw �= 0 (that is, h �∈ K(X−) subalgebra).

Then there is at least one i such that w(i) �= i (under the obvious generalisation of the σi
action in equation (53)), and

hXi =
∑
w

cwĝwXi =
∑
w

cwXw(i)ĝw,

so the ĝw component of hXi −Xih is cw(Xw(i) −Xi) �= 0. Thus

ZK[X−](H(n)) = K[X−] ⊇ Z(H(n)).

But with c ∈ K[X−], then ĝwc − cĝw = (cw − c)ĝw, so Z(H(n)) = X
 , as Bernstein
says.

Naturally, Z(H(n, d)) ⊇ �d(X

), depending in principle on the ground ring. The ar-

gument above mostly works in this case (to show equality), although the possible special-
isations of the ground ring become more restricted (λi �= 0, plus the restrictions already
mentioned, for example). Note also that �d(K[X−]) is finite-dimensional. This makes it
interesting to study �d(X
) – an algebra that is, in a sense, more complicated than X


itself. For example, H(2, 1) ∼= Hn and dim(Z(H2) = H2) = 2, so dim(�1(X

)) = 2.

Here a basis for �1(X

) is

{1, X +X2 = λ1(1 + g2
1)}.

(Note that this example illustrates the problem with q2 = 1.)
For another example, recall that dim(Z(H(2, 2))) = 5 generically, so dim(�1(X


)) = 5.
Here a basis for �2(X


) is

{1, X +X2, XX2, X
2 +X2

2, (X +X2)XX2}
(this is not supposed to be obvious!). Another basis, convenient for comparison with the
basis of H(2, 2), is

{1, X +X2, XX2, (X +X2 − (λ1 + λ2))g1, (XX2 − λ1λ2)g1}. (56)

The set of monomial symmetric polynomials in two variables X1 and X2 (a basis for
Z(H(2))) may be indexed by the set �2 of Young diagrams of not more than two rows.
(Write ma = (Xa)
 ; then m(0) = 1 and m(1) = X1 + X2, and so on.) Note that the set of
such polynomials in which the degree of no individual variable exceeds d−1, is not a basis
for �d(X
) in general, as we see from the examples above.
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