J. Functional Programming 4 (4): 557-559, October 1994 © 1994 Cambridge University Press 557

Book Review

Introduction to HOL: a theorem proving environment for higher order logic
by Mike Gordon and Tom Melham (eds.), Cambridge University Press,
1993, ISBN 0-521-44189-7

Background

This book is an introduction to the HOL system, an interactive theorem-proving environment
for classical higher-order logic. The book is derived from the documentation of the HOLS8S
system, and aims to serve two purposes: ‘(i) to provide a coherent and self-contained intro-
duction to the HOL system; (ii) to compress into a single volume most of the material that
is needed for day-to-day work with HOL. The book is spring-bound (in a similar way to
the Latex book), which re-enforces it’s aim as a real day-to-day book for the HOL user. It
is also a large book, having some 472 pages, although a large proportion of this is reference
material.

Mechanised theorem proving is an important topic in computer science, as witnessed both
by the increasing number of systems being produced (HOL, Coq, Isabelle, ALF, Nupil,
Lotos, Lego, etc.), and the increasing use of these systems for industrial problems. The
basic idea of theorem provers is to provide computer support for proving statements within
some mathematical logic. Using an automated system can ensure that only logically sound
inferences are made, and can help with the management of large proofs. Computer checked
or aided verification of systems is increasingly being demanded in industrial applications, and
particularly in defence and safety-critical applications.

The HOL system is one of the most widely used theorem provers, both in academia and
industry. It is free, comes with extensive documentation, libraries and an interactive help
system. HOL is a direct decendant of the innovative LCF (logic of computable functions)
theorem prover developed by Robin Milner in the early 1970s, and is an implementation of
a version of Church’s simple theory of types, a formalism dating back more than 50 years.
Basically, the HOL logic is first-order classical predicate logic, with the following differences:
the logic is higher-order (variables can range over functions and predicates); the logic is
typed; and there is no separate syntactic category of formulae (terms of boolean type play
the role of formulae). Alternatively, the HOL logic can be viewed as a typed lambda-calculus
extended with a few logical constants (equality, implication, and a higher-order version of
Hilbert’s choice operator). Higher-order logic is a powerful system, and much of classical
mathematics can be encoded in it.

The basic ideas of HOL are as follows. HOL is built on top of the strict functional language
ML, and proofs are constructed interactively using the ML system. The HOL system defines
ML types for the various logical entities, including terms, types, theorems, and theories. The
ML type of theorems is an abstract data-type, with operators corresponding to the axioms
and inference rules of higher-order logic. In this way, the type system ensures that only valid
inferences can be made. Types can often, but not always, be omitted in logical terms, and
are inferred using a similar inference algorithm (due to Milner) to that found in ML itself.
Perhaps the key use of ML in HOL is as a meta-language to program proof tactics, which are
functions that allow one to make top-down (or goal directed) proofs by breaking a theorem

https://doi.org/10.1017/50956796800001180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001180

558 Book review

into a number of simpler parts, proving these, and then combining the proofs of the parts to
give a proof of the whole. Sophisticated tactics are built up from simple tactics using tacticals,
which are functions that combine tactics to form other tactics. Without using tactics and
tacticals, one would be restricted to making bottom-up proofs beginning with axioms and
applying inference rules, which would be impractical for all but simple proofs.

HOL has mainly found application in the verification of hardware systems and commu-
nications protocols, as opposed to theorem proving in its own right. One uses the HOL
system to construct a proof that a concrete design (with respect to some suitable abstraction
of physical components) satisfies an abstract specification. In such proofs one often has an
obligation to verify a huge number of conditions, which is a task that can only properly be
addressed with computer support.

Summary

The book is divided into five parts. Part one is mostly just a condensed version of the
remainder of the book (intended to give a flavour of the HOL system and its use}, together
with three examples: verification of a parity-checking circuit, building a normalisation tool
for propositional terms, and a proof of the binomial theorem. Although the parity-checking
problem is quite a simple example, it reveals that considerable experience is needed even to
make simple proofs: ‘Trivial deductions sometimes require elaborate tactics, HOL experts
can prove arbitrarily complicated theorems if they are willing to use sufficient ingenuity.

The normalisation example begins with the comment that ‘It is sometimes claimed that
LCF-style systems can never be practical, because the efficiency needed to handle real examples
can only be obtained with decision procedures coded as primitive rules. It is hoped that this
chapter, ..., shows that the truth of such claims is not obvious.’ A simple (but inefficient)
normalisation tool is first built using the built-in rewriting tools. Then a more efficient tool
is built by programming a normalisation function directly in ML, and proving after each
application of this function that the normalised output term is equivalent to the input term,
by using the decision procedure for equality of propositional terms that forms part of the
standard library for the HOL system. I was somewhat dissapointed to find the following
comment ‘An even more efficient approach, ..., would be to avoid having to do this proof
by verifying the normalisation program by some sort of meta-theoretic reasoning about ML.
How to do this in HOL is not clear, ...’

Most of the section on the binomial theorem is concerned with modelling monoids, groups,
and rings in HOL, which I found quite fascinating. In fact, only an outline of the HOL proof
of the binomial theorem is given.

Part two is a substantial introduction (100 pages) to the ML programming language used as
a meta-language for HOL system, and is based on The ML Handbook (an unpulished report
from INRIA), in turn based on the Edinburgh LCF book. The introduction is paced well, and
there are many examples. Anyone familiar with the basic ideas of functional programming
should have not trouble learning ML by reading this part of the book.

Part three is a short review (30 pages) of the logical theory on which HOL is based. First,
a set-theoretic semantics for the HOL logic is given, based upon a universe of sets with
assumptions that are slightly weaker than those of Zermelo-Fraenkel set theory with the
Axiom of Choice. Then the proof system of HOL is described, and is shown to be sound
for the set-theoretic semantics. Finally, theories within HOL are treated in a formal way.
Part three is the most technical part of the book, but written in a non-threatening style. But
still I suspect that much of this material will be inaccessible to many readers coming from a
computing science background.

Part four (100 pages) describes the HOL system in detail. Topics covered include the
syntax of the logic in ML, the facilities for constructing and managing theorems and theories,
the types definition package, an overview of the various built-in theories, and the system
features for managing the ML interface to HOL. Part five (60 pages) gives a detailed account

https://doi.org/10.1017/50956796800001180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001180

Book review 559

of the various techniques for proving theorems using HOL, including bottom-up proofs
(using axioms and inference rules), conversions and conversion combining operators (used to
implement rewriting tools in HOL), and goal directed proofs (tactics and tacticals).

There are two appendices, which document a small selection of ML and HOL library
functions. Appendix A documents some standard ML functions, namely those that are used
in the parity checker example in Chapter five. The book admits that this choice is somewhat
ad hoc, but HOL comes with an interactive help system which in practice is what users will
most likely use in day-to-day work with the system. Appendix B provides an example of the
prescribed standard for documenting HOL libraries, in the shape of the library for proving
propositional formulae.

Comment

The HOL system is of interest to functional programmers for a number of reasons, not
the least of which is that it provides one of the largest and longest developed functional
programs. Being brought up on languages like Miranda and Haskell, it was fascinating to
see how many of the key ideas in modern functional languages were discovered by Milner in
his design of an appropriate meta-language for the LCF system. Polymorphic type inference
relieves the user from most of the burden of supplying type information in terms. The use of
abstract data types allows the type system to guarantee that only sound inferences are made.
The exception handling mechanism takes care of the fact that proof tactics may fail. Last,
but by no means least, the tacticals library is perhaps one of the first examples of the design
of a special purpose library of higher-order functions, now an important style of functional
programming; for example, special libraries exist for parsing, pretty-printing, handling 1/0,
building user interfaces, etc. ’

Being based on ideas about theorem proving from 20 years ago, there are now a number
of modern theorem provers than are more sophisticated than HOL. For example, the ALF
system (under development at Chalmers University, Sweden) implements a variant of Martin-
Lof’s theory of types, provides an X-windows interface for the development of proofs, and
can be used to prove properties of functional programs (something which HOL has not
proved well suited to). Nonetheless, HOL still remains an important system because of the
substantial effort that has been made in producing re-usable theory libraries and proof tools.

I came to this book with only a little knowledge of mechanised theorem proving. My
feeling after reading the book (and following up most of the citations pertaining to HOL)
is that I have a reasonable understanding of the HOL system, and what its limitations are,
but would require a considerable amount of effort to actually learn how to use the system to
any degree of competence. My main comment on the book is that it reads as if it has been
produced over a long period of time, as indeed the material has been, much having been
adapted from the original LCF documentation. A more unified book would have resulted if
some of the material had been reworked, although with a book of this size this would have
been a substantial undertaking.

If you are seeking an in depth treatement of the theoretical work on which HOL is based
(e.g. higher-order logic, polymorphic type systems, semantics), this is not the book for you.
Rather this is a book for someone that wants to learn the basics of the HOL system and
the ‘tactics and tacticals’ approach to theorem proving. It collects the basic material from the
vast documentation provided with HOL into a single volume that can comfortably be placed
into a briefcase and read on the train.

GRAHAM HUTTON

Department of Computer Sciences
Chalmers University of Technology
and University of Goteborg
Sweden

https://doi.org/10.1017/50956796800001180 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001180

