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COMMUTATIVITY CONDITIONS ON RINGS 
WITH INVOLUTION 

PAOLA MISSO 

1. LetR be a ring with involution *. We denote by 5, K and Z = Z(R) 
the symmetric, the skew and the central elements of R respectively. 

In [4] Herstein defined the hypercenter T(R) of a ring R as 

T(R) = {a Ç R | axn = xnay all x Ç R, for some n = n(a, x) ^ 1} 

and he proved that in case R is without non-zero nil ideals then 
T(R) = Z(£) . 

In this paper we offer a partial extension of this result to rings with 
involution. 

We focus our attention on the following subring of R: 

H = H(R) = {a £ R\asn = sna, all 5 £ S, for some n = n(a) ^ l j . 

(We shall write H(R) as H whenever there is no confusion as to the ring 
in question.) 

Clearly H contains the central elements of R. Our aim is to show that 
in a semiprime ring R with involution which is 2 and 3-torsion free, the 
symmetric elements of H are central. This result cannot be strengthened 
as is easily seen by looking at the 2 X 2 matrices over a field with 
symplectic involution. 

As a consequence we prove that, under the above hypotheses, the set 

{a £ S\ (as)n = snan, all s £ S, for some n = n(a) ^ l j 

is precisely Z C\ S. 
We begin our study of H by recalling that an element a £ R is quasi-

unitary if a + a* + aa* = a + a* + a*a = 0; such an element induces 
the automorphism 

ip: x —•> x + ax + xa* + axa* = (1 + a)x(l + a ) - 1 . 

This automorphism preserves S and i£, and leaves the elements of Z 
invariant and it preserves H. We write this as: 

Remark 1. if is an invariant subring of R; that is, H is preserved by 
the automorphisms induced by the quasi-unitary elements of R. 
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18 PAOLA MISSO 

We now recall a remark due to Herstein [5, Theorem 6.1.1]. 
Remark 2. Let R be 2-torsion free and let H e a skew quasi-regular 

element of R. If a £ H, then 

(1 - k)~l (ak - ka) (1 + k)-1 G H. 

The first question one would ask is what can be said about H (R) when 
R is a simple artinian ring. This was done in [6] where we showed that 
under the above hypotheses H P\ S = Z C\ S. 

We now quote a result which is essential to this note, namely: 

THEOREM A. Let Rbe a ring with *, 2 and 3-torsion free. If a £ H H S, 
s £ S and k Ç K then as — sa and ak — ka are nilpotent. 

Proof (sketched). In [6] we have shown that for a £ H C\ S and 
^ G S, then as — sa is nilpotent. The proof runs as follows: we first con
sider the subring (a, s) of R generated by a and s. Factoring out its nil 
radical N we get a ring Â = (a, s)/N which is still 2 and 3-torsion free. 
We now concentrate our attention to the prime images of A and relate 
our question to the investigation of H in simple artinian rings. 

The skew analog follows similarly. 

2. Throughout the paper all rings are 2 and 3-torsion free. We begin 
with 

LEMMA 1. Let R be a prime ring with involution. Then H contains no 
symmetric nilpotent elements. 

Proof. Let a Ç H C\ S be such that a2 = 0. For every x G R, ax + x*a 
is a symmetric element; hence 

a(ax + x*a)n = (ax + x*a)na. 

This implies a(x*a)n = (ax)na which means (ax)na G S. 
Therefore, for all x, y G R we have: 

((ax)n(ay)n)na = (((ax)w(a^)w)wa)* = a((;y*a)w(x*a)T = 

{(ay*)n{ax*)n)na = ((ay)n(ax)n)na. 

We have shown that, for all x, y Ç 7?, 

((ax)"(a3/)w)w - ((ay)n(ax)n)n G /«(a) 

where lR(a) = {r £ R \ ra = 0} is the left annihilator of a. 
We now set R = aR/aR C\ lR(a). Since R is a prime ring, ^ is also a 

prime ring. Moreover R satisfies the polynomial identity (xnyn)n = 
(ynxn)n. 

Applying [5, Theorem 1.3.4] we get that R is an order in a simple 
algebra Q, finite dimensional over its center C, where C is the field of 
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quotients of Z(R). Moreover Q satisfies the same polynomial identities 
of R; in particular Q satisfies (xnyn)n = (ynxn)n. 

We now write Q as Dm where D is a finite dimensional central division 
algebra. If F is a maximal subfield of D, then Q®cFÇ=:Fr where 
r2 — dimcQ a n d FT satisfies the given polynomial identity. 

Suppose r > 1 and let etj be the usual matrix units. Then it is enough 
to set a = £n and b = eu + eu to get (anbn)n - b and (bnan)n == a, a 
contradiction ; thus r = 1. 

It follows that Q is commutative and so is R. This implies that R 
satisfies the generalized polynomial identity axaya = ay axa. 

By [1, Proposition 6], R contains a *-closed subring R0 containing a 
which is an order in the 2 X 2 matrices over a field C. Since 

a e H(R) nsnRoC H(R0) n S C H(C2) r\ s 
and, by [6], H(C2) H S C C, it follows that a = 0. 

By using the invariance of H, Lemma 1 and Theorem A imply the 
following: 

LEMMA 2. If R is prime then H Pi S centralizes all skew nilpotent 
elements. 

Proof. Let k G K be such that km = 0. If a £ H H 5, by Theorem A, 
ok — ka ^ N((a, k)) where N((a, k)) is the nil radical of the subring 
generated by a and k. It follows that the element 

a = (1 + fc)-1 (ak - ka) (1 - fc)"1 

still belongs to N((a, k))\ hence a is nilpotent. 
On the other hand, by Remark 2, a is a symmetric element belonging 

to H. We then quote Lemma 1 to get a = 0, and so, ak — ka = 0. 

We recall that if R is a prime ring with involution and S = RC is the 
central closure of R, then S is endowed with an involution which extends 
the involution of R [5, Lemma 2.4.1]. 

We are now able to prove the main theorem of this paper. If x, y £ R, 
we use the notation [x, y] = xy — yx. 

THEOREM 1. Let R be a semiprime ring with involution which is 2 and 
S-torsion free. Then H P\ S = Z P\ 5. 

Proof. Suppose first that R is prime. Let a £ H C\ S. For all x £ R, 
then x — x* £ K and x -f- x* Ç S. Thus 

[a, x + x*] G X and [a, [a, x — x*]] £ K. 

By Lemma 2 we get 

[a, [a, x + x*]] = 0 and [a, [a, [a, x — x*]]] = 0, 
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and it is easy to deduce that 

(1) [a, [a, [a,x]]] = 0 for all x e R. 

If x, y are elements of R, then from (1) it follows that 

[a, [a,x]] [a, [a, y]] = 0 

(see for instance [5, Lemma 1.1.9]). Thus for all x, y G R we have: 

(a2x — 2axa + xa2) (a2y — 2a;ya + 3/a2) = 0. 

By [5, Lemma 1.3.2] there exist X, \i in the extended centroid C of R 
such that 

(2) a2 - 2\a + M = 0. 

Moreover since a f 5 and char R ^ 2, we may assume X and M to be 
symmetric elements of C. 

Let now 5 be a symmetric element of R. Then, since a2 — 2Xa = 
— M € C, we have 

(a2 - 2Xa)s = 5(a2 - 2Xa) ; 

hence a2s — sa2 = 2X(as — 5a). Since [a, [a, 5]] = 0, it follows that 

2X(as — sa) = a2s — 5a2 = (as — sa)a + a(as — 5a) = 2a (as — 5a). 

Therefore 2 (a — \)(as — 5a) = 0 and so, (a — X) (as — sa) = 0. 
Set b — a — X. If 5 5̂  0, by the defining properties of the central 

closure of Ry there exists a non-zero ideal U = £/* of R such that 
0 ^ bU CR (see [5, Chapter 1, § 3]). 

Let now x £ U and 5 be a symmetric element of R; then 

£ = bx(as — 5a) + (as — sa)x*b 

is a skew element of R. Since [a, [a, s2]] = 0 implies [a, 5]2 = 0, it follows 
that 

k2 = (as — 5a)x*fr2x(a5 — 5a) 

and so k* = 0. 
By Lemma 2, a& = ka and recalling that 6 = a — X, we get £& = &6. 

We then deduce b2k = èfeô and so bzx(as — sa) = 0, for all x G £/, 
5 £ S. We have proved that bzU(as — sa) = 0. Since i? is prime it is 
immediate that as — 5a = 0 or bzU = 0. 

If a5 — 5a = 0 for all 5 G 5 then, since a is also in 5, we easily get 
a Ç Z (see [5, Theorem 2.1.5]). 

If 63 = 0, that is (a - X)3 = 0, from (2) we get (a - X)2 = 0. 
Let now 5 G 5 be in R; from [a, [a, 5]] = 0 we get [6, [b, s]] = 0. The 

last equality together with b2 = 0 implies —656 = bsb; that is 2&s& = 0, 
and so bSb — 0. Since b* = b and frSfr = 0 and R is prime then b = 0 
and so a = X. 
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Let now R be any semiprime ring 2 and 3-torsion free. Then R has a 
subdirect representation in prime rings whose characteristic is still 
different from 2 and 3. 

Let P be a prime ideal of R. If P* <£ P , then P + P* /P is a non-zero 
ideal of P / P and every element of such an ideal can be written as x + P = 
x + x* + P where x G P*. Let a £ # ( P ) H 5; then 

(a + P) (x + P)n = (a + P) (x + ** + P)n = a(x + x*)w + P 

= (x + x*)wa + P = (x + x* + P)w(a + P) = (x + P)n{a + P). 

Hence, for all x + P Ç P + P * / ^ \ 

(a + P) (x + P)n = (x + P)w(a + P) 

where n ^ 1 is a fixed integer. Since the exponent w is bounded, the 
primeness of R enables us to apply a result of [2, Theorem 2.1], and we 
conclude that a + P centralizes P + P^/P. Therefore a + P 6 Z(R/P). 

If P* C P , then P / P has the involution induced by the one in P . 
Moreover if u Ç P / P is a symmetric element, w2 is a symmetric element 
of R/P which is the image of a symmetric element of P . An easy com
putation ensures that if a Ç H(R) H 5 then a + P f H (R/P) H 5. By 
the prime case studied above we can conclude that a + P £ Z(R/P). 

3. We consider the following set: 

F = {a £ R | (as)n = snan, all ^ 5 , for some n = n(a) ^ 1}. 

In [2] Felzenszwalb characterized the center of a semiprime ring by 
proving that the set 

{a G R | (ax)w = xnan, all x 6 P , for some w = w(a) ^ 1} 

is exactly the center of the ring. Here we shall extend this result to rings 
with involution. In fact, using Theorem 1, we prove the following: 

THEOREM 2. Let R be a semiprime ring with involution which is 2 and 
^-torsion free. Then V C\ S = Z C\ S. 

Proof. Let a 6 V C\ S and suppose that an+l = 0. Then, for all s £ S, 
(as)na = snan+l = 0. We will show that from (as)na = 0 it follows that 
{as)n~la = 0. 

Let x be an element of R; then for all s £ S, 

(sa)"-1** + xias)91-1 Ç 5 

and we have: 

0 = (a((sa)n-1x* + x(as)n~l))na = (afca)»-1** + ax{as)n~l)na\ 
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it follows that 

0 = (as)n-1(a(*a)n-1s* + ax(as)n~l)na = (a5)w~1(ax(a5)w-1)na. 

Hence ((as)n~lax)n+1 = 0; this implies that (as^^aR is a nil left ideal 
of R of bounded exponent. By Levitzki's Theorem we get {as)n~la = 0. 
By a repeated application of this argument, we obtain asa = 0, for all 
s e s. 

Let now x G R; then a(x + x*)a = 0 and so, axa = —ax^a. Thus 

a(xax)a = —a(x*ax*)a = axax*a — — axaxa, 

that is 2(ax)2a = 0; hence (ax)3 = 0 for all x £ R. By Levitzki, a = 0. 
Hence we may assume that an+1 9e 0. Since a £ V l^\ S then (as)n = 

5wan and so, taking *, (sa)n = ansn. Consequently 

an+isn = a(say = (asya = 5»a»+i fQr a j j s ç 5 

This shows that an+1 G H C\ S. By Theorem 1 we get that an+l 6 Z. On 
the other hand 

(as)n+l = a(sa)ns = an+lsn+l = sn+1an+1 for all s £ S. 

By the above argument it follows that an+2 G Z. 
Let P be a prime ideal of R. Then if ô is the image of a in R/P then 

â»+i, âw+2 e Z{R/P). Therefore, for every ôc e R/P, 

ân+1âx = ân+2x = xân+2 = ân+lxâ 

which implies ân+l(âx — xâ) = 0. Since ân+1 is central and so regular we 
get âx — xâ = 0. 

We have shown that â is central in R/P, for every prime ideal P of R. 
Hence a is central in R. 
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