COMMUTATIVITY CONDITIONS ON RINGS WITH INVOLUTION

PAOLA MISSO

1. Let R be a ring with involution *. We denote by S, K and Z = Z(R) the symmetric, the skew and the central elements of R respectively.

In [4] Herstein defined the hypercenter T(R) of a ring R as

$$T(R) = \{a \in R \mid ax^n = x^n a, \text{ all } x \in R, \text{ for some } n = n(a, x) \ge 1\}$$

and he proved that in case R is without non-zero nil ideals then T(R) = Z(R).

In this paper we offer a partial extension of this result to rings with involution.

We focus our attention on the following subring of R:

$$H = H(R) = \{a \in R \mid as^n = s^n a, \text{ all } s \in S, \text{ for some } n = n(a) \ge 1\}.$$

(We shall write H(R) as H whenever there is no confusion as to the ring in question.)

Clearly H contains the central elements of R. Our aim is to show that in a semiprime ring R with involution which is 2 and 3-torsion free, the symmetric elements of H are central. This result cannot be strengthened as is easily seen by looking at the 2×2 matrices over a field with symplectic involution.

As a consequence we prove that, under the above hypotheses, the set

 $\{a \in S \mid (as)^n = s^n a^n, \text{ all } s \in S, \text{ for some } n = n(a) \ge 1\}$

is precisely $Z \cap S$.

We begin our study of H by recalling that an element $a \in R$ is quasiunitary if $a + a^* + aa^* = a + a^* + a^*a = 0$; such an element induces the automorphism

$$\varphi: x \to x + ax + xa^* + axa^* = (1+a)x(1+a)^{-1}$$

This automorphism preserves S and K, and leaves the elements of Z invariant and it preserves H. We write this as:

Remark 1. H is an invariant subring of R; that is, H is preserved by the automorphisms induced by the quasi-unitary elements of R.

Received July 19, 1980 and in revised form January 20, 1981.

We now recall a remark due to Herstein [5, Theorem 6.1.1].

Remark 2. Let R be 2-torsion free and let k be a skew quasi-regular element of R. If $a \in H$, then

 $(1 - k)^{-1} (ak - ka) (1 + k)^{-1} \in H.$

The first question one would ask is what can be said about H(R) when R is a simple artinian ring. This was done in [6] where we showed that under the above hypotheses $H \cap S = Z \cap S$.

We now quote a result which is essential to this note, namely:

THEOREM A. Let R be a ring with *, 2 and 3-torsion free. If $a \in H \cap S$, $s \in S$ and $k \in K$ then as - sa and ak - ka are nilpotent.

Proof (sketched). In [6] we have shown that for $a \in H \cap S$ and $s \in S$, then as - sa is nilpotent. The proof runs as follows: we first consider the subring $\langle a, s \rangle$ of R generated by a and s. Factoring out its nil radical N we get a ring $\overline{A} = \langle a, s \rangle / N$ which is still 2 and 3-torsion free. We now concentrate our attention to the prime images of \overline{A} and relate our question to the investigation of H in simple artinian rings.

The skew analog follows similarly.

2. Throughout the paper all rings are 2 and 3-torsion free. We begin with

LEMMA 1. Let R be a prime ring with involution. Then H contains no symmetric nilpotent elements.

Proof. Let $a \in H \cap S$ be such that $a^2 = 0$. For every $x \in R$, $ax + x^*a$ is a symmetric element; hence

 $a(ax + x^*a)^n = (ax + x^*a)^n a.$

This implies $a(x^*a)^n = (ax)^n a$ which means $(ax)^n a \in S$.

Therefore, for all $x, y \in R$ we have:

$$\begin{aligned} ((ax)^n (ay)^n)^n a &= (((ax)^n (ay)^n)^n a)^* = a((y^*a)^n (x^*a)^n)^n = \\ ((ay^*)^n (ax^*)^n)^n a &= ((ay)^n (ax)^n)^n a. \end{aligned}$$

We have shown that, for all $x, y \in R$,

$$((ax)^{n}(ay)^{n})^{n} - ((ay)^{n}(ax)^{n})^{n} \in l_{R}(a)$$

where $l_R(a) = \{r \in R \mid ra = 0\}$ is the left annihilator of a.

We now set $\overline{R} = aR/aR \cap l_R(a)$. Since R is a prime ring, \overline{R} is also a prime ring. Moreover \overline{R} satisfies the polynomial identity $(x^n y^n)^n = (y^n x^n)^n$.

Applying [5, Theorem 1.3.4] we get that \overline{R} is an order in a simple algebra Q, finite dimensional over its center C, where C is the field of

quotients of $Z(\bar{R})$. Moreover Q satisfies the same polynomial identities of \bar{R} ; in particular Q satisfies $(x^n y^n)^n = (y^n x^n)^n$.

We now write Q as D_m where D is a finite dimensional central division algebra. If F is a maximal subfield of D, then $Q \bigotimes_C F \cong F_r$ where $r^2 = \dim_C Q$ and F_r satisfies the given polynomial identity.

Suppose r > 1 and let e_{ij} be the usual matrix units. Then it is enough to set $a = e_{11}$ and $b = e_{11} + e_{12}$ to get $(a^n b^n)^n = b$ and $(b^n a^n)^n = a$, a contradiction; thus r = 1.

It follows that Q is commutative and so is \overline{R} . This implies that R satisfies the generalized polynomial identity axaya = ayaxa.

By [1, Proposition 6], R contains a *-closed subring R_0 containing a which is an order in the 2×2 matrices over a field C. Since

 $a \in H(R) \cap S \cap R_0 \subset H(R_0) \cap S \subset H(C_2) \cap S$

and, by [6], $H(C_2) \cap S \subset C$, it follows that a = 0.

By using the invariance of H, Lemma 1 and Theorem A imply the following:

LEMMA 2. If R is prime then $H \cap S$ centralizes all skew nilpotent elements.

Proof. Let $k \in K$ be such that $k^m = 0$. If $a \in H \cap S$, by Theorem A, $ak - ka \in N(\langle a, k \rangle)$ where $N(\langle a, k \rangle)$ is the nil radical of the subring generated by a and k. It follows that the element

 $\alpha = (1 + k)^{-1} (ak - ka) (1 - k)^{-1}$

still belongs to $N(\langle a, k \rangle)$; hence α is nilpotent.

On the other hand, by Remark 2, α is a symmetric element belonging to *H*. We then quote Lemma 1 to get $\alpha = 0$, and so, ak - ka = 0.

We recall that if R is a prime ring with involution and S = RC is the central closure of R, then S is endowed with an involution which extends the involution of R [5, Lemma 2.4.1].

We are now able to prove the main theorem of this paper. If $x, y \in R$, we use the notation [x, y] = xy - yx.

THEOREM 1. Let R be a semiprime ring with involution which is 2 and 3-torsion free. Then $H \cap S = Z \cap S$.

Proof. Suppose first that R is prime. Let $a \in H \cap S$. For all $x \in R$, then $x - x^* \in K$ and $x + x^* \in S$. Thus

$$[a, x + x^*] \in K$$
 and $[a, [a, x - x^*]] \in K$.

By Lemma 2 we get

 $[a, [a, x + x^*]] = 0$ and $[a, [a, [a, x - x^*]]] = 0$,

and it is easy to deduce that

(1) [a, [a, [a, x]]] = 0 for all $x \in R$.

If x, y are elements of R, then from (1) it follows that

[a, [a, x]] [a, [a, y]] = 0

(see for instance [5, Lemma 1.1.9]). Thus for all $x, y \in R$ we have:

 $(a^{2}x - 2axa + xa^{2}) (a^{2}y - 2aya + ya^{2}) = 0.$

By [5, Lemma 1.3.2] there exist λ , μ in the extended centroid C of R such that

(2)
$$a^2 - 2\lambda a + \mu = 0.$$

Moreover since $a \in S$ and char $R \neq 2$, we may assume λ and μ to be symmetric elements of C.

Let now s be a symmetric element of R. Then, since $a^2 - 2\lambda a = -\mu \in C$, we have

 $(a^2 - 2\lambda a)s = s(a^2 - 2\lambda a);$

hence $a^2s - sa^2 = 2\lambda(as - sa)$. Since [a, [a, s]] = 0, it follows that

$$2\lambda(as - sa) = a^2s - sa^2 = (as - sa)a + a(as - sa) = 2a(as - sa).$$

Therefore $2(a - \lambda)(as - sa) = 0$ and so, $(a - \lambda)(as - sa) = 0$.

Set $b = a - \lambda$. If $b \neq 0$, by the defining properties of the central closure of R, there exists a non-zero ideal $U = U^*$ of R such that $0 \neq bU \subset R$ (see [5, Chapter 1, § 3]).

Let now $x \in U$ and s be a symmetric element of R; then

 $k = bx(as - sa) + (as - sa)x^*b$

is a skew element of R. Since $[a, [a, s^2]] = 0$ implies $[a, s]^2 = 0$, it follows that

 $k^2 = (as - sa)x^*b^2x(as - sa)$

and so $k^3 = 0$.

By Lemma 2, ak = ka and recalling that $b = a - \lambda$, we get bk = kb. We then deduce $b^2k = bkb$ and so $b^3x(as - sa) = 0$, for all $x \in U$, $s \in S$. We have proved that $b^3U(as - sa) = 0$. Since R is prime it is immediate that as - sa = 0 or $b^3U = 0$.

If as - sa = 0 for all $s \in S$ then, since a is also in S, we easily get $a \in Z$ (see [5, Theorem 2.1.5]).

If $b^3 = 0$, that is $(a - \lambda)^3 = 0$, from (2) we get $(a - \lambda)^2 = 0$.

Let now $s \in S$ be in R; from [a, [a, s]] = 0 we get [b, [b, s]] = 0. The last equality together with $b^2 = 0$ implies -bsb = bsb; that is 2bsb = 0, and so bSb = 0. Since $b^* = b$ and bSb = 0 and R is prime then b = 0 and so $a = \lambda$.

Let now R be any semiprime ring 2 and 3-torsion free. Then R has a subdirect representation in prime rings whose characteristic is still different from 2 and 3.

Let P be a prime ideal of R. If $P^* \not\subset P$, then $P + P^*/P$ is a non-zero ideal of R/P and every element of such an ideal can be written as $x + P = x + x^* + P$ where $x \in P^*$. Let $a \in H(R) \cap S$; then

$$(a + P)(x + P)^{n} = (a + P)(x + x^{*} + P)^{n} = a(x + x^{*})^{n} + P$$

= $(x + x^{*})^{n}a + P = (x + x^{*} + P)^{n}(a + P) = (x + P)^{n}(a + P).$

Hence, for all $x + P \in P + P^*/P$,

$$(a + P)(x + P)^n = (x + P)^n(a + P)$$

where $n \ge 1$ is a fixed integer. Since the exponent *n* is bounded, the primeness of *R* enables us to apply a result of [2, Theorem 2.1], and we conclude that a + P centralizes $P + P^*/P$. Therefore $a + P \in Z(R/P)$.

If $P^* \subset P$, then R/P has the involution induced by the one in R. Moreover if $u \in R/P$ is a symmetric element, u^2 is a symmetric element of R/P which is the image of a symmetric element of R. An easy computation ensures that if $a \in H(R) \cap S$ then $a + P \in H(R/P) \cap S$. By the prime case studied above we can conclude that $a + P \in Z(R/P)$.

3. We consider the following set:

 $V = \{a \in R \mid (as)^n = s^n a^n, \text{ all } s \in S, \text{ for some } n = n(a) \ge 1\}.$

In [2] Felzenszwalb characterized the center of a semiprime ring by proving that the set

 $\{a \in R \mid (ax)^n = x^n a^n, \text{ all } x \in R, \text{ for some } n = n(a) \ge 1\}$

is exactly the center of the ring. Here we shall extend this result to rings with involution. In fact, using Theorem 1, we prove the following:

THEOREM 2. Let R be a semiprime ring with involution which is 2 and 3-torsion free. Then $V \cap S = Z \cap S$.

Proof. Let $a \in V \cap S$ and suppose that $a^{n+1} = 0$. Then, for all $s \in S$, $(as)^n a = s^n a^{n+1} = 0$. We will show that from $(as)^n a = 0$ it follows that $(as)^{n-1}a = 0$.

Let x be an element of R; then for all $s \in S$,

$$(sa)^{n-1}x^* + x(as)^{n-1} \in S$$

and we have:

$$0 = (a((sa)^{n-1}x^* + x(as)^{n-1}))^n a = (a(sa)^{n-1}x^* + ax(as)^{n-1})^n a;$$

it follows that

$$0 = (as)^{n-1}(a(sa)^{n-1}x^* + ax(as)^{n-1})^n a = (as)^{n-1}(ax(as)^{n-1})^n a$$

Hence $((as)^{n-1}ax)^{n+1} = 0$; this implies that $(as)^{n-1}aR$ is a nil left ideal of R of bounded exponent. By Levitzki's Theorem we get $(as)^{n-1}a = 0$. By a repeated application of this argument, we obtain asa = 0, for all $s \in S$.

Let now $x \in R$; then $a(x + x^*)a = 0$ and so, $axa = -ax^*a$. Thus

$$a(xax)a = -a(x^*ax^*)a = axax^*a = -axaxa,$$

that is $2(ax)^2 a = 0$; hence $(ax)^3 = 0$ for all $x \in R$. By Levitzki, a = 0.

Hence we may assume that $a^{n+1} \neq 0$. Since $a \in V \cap S$ then $(as)^n = s^n a^n$ and so, taking *, $(sa)^n = a^n s^n$. Consequently

$$a^{n+1}s^n = a(sa)^n = (as)^n a = s^n a^{n+1}$$
 for all $s \in S$.

This shows that $a^{n+1} \in H \cap S$. By Theorem 1 we get that $a^{n+1} \in Z$. On the other hand

$$(as)^{n+1} = a(sa)^n s = a^{n+1}s^{n+1} = s^{n+1}a^{n+1}$$
 for all $s \in S$.

By the above argument it follows that $a^{n+2} \in Z$.

Let P be a prime ideal of R. Then if \bar{a} is the image of a in R/P then \bar{a}^{n+1} , $\bar{a}^{n+2} \in Z(R/P)$. Therefore, for every $\bar{x} \in R/P$,

$$\bar{a}^{n+1}\bar{a}\bar{x} = \bar{a}^{n+2}\bar{x} = \bar{x}\bar{a}^{n+2} = \bar{a}^{n+1}\bar{x}\bar{a}$$

which implies $\bar{a}^{n+1}(\bar{a}\bar{x} - \bar{x}\bar{a}) = 0$. Since \bar{a}^{n+1} is central and so regular we get $\bar{a}\bar{x} - \bar{x}\bar{a} = 0$.

We have shown that \bar{a} is central in R/P, for every prime ideal P of R. Hence a is central in R.

References

- 1. M. Chacron, A commutativity theorem for rings with involution, Can. J. Math. 30 (1978), 1121-1143.
- 2. B. Felzenszwalb, Rings radical over subrings and some generalization of the notion of center, Univ. of Chicago Thesis (1976).
- 3. I. N. Herstein, Topics in ring theory (Univ. of Chicago Press, Chicago, 1969).
- 4. On the hypercenter of a ring, J. Algebra 36 (1975), 151-157.
- 5. —— Rings with involution (Univ. of Chicago Press, Chicago, 1976).
- 6. P. Misso, Elementi centrali in un anello primo con involuzione, Atti Accad. Sci. Lett. Arti Palermo (to appear).

Università di Palermo, Palermo, Italy