COMMUTATIVITY CONDITIONS ON RINGS WITH INVOLUTION

PAOLA MISSO

1. Let R be a ring with involution *. We denote by S, K and $Z=Z(R)$ the symmetric, the skew and the central elements of R respectively.

In [4] Herstein defined the hypercenter $T(R)$ of a ring R as

$$
T(R)=\left\{a \in R \mid a x^{n}=x^{n} a \text {, all } x \in R \text {, for some } n=n(a, x) \geqq 1\right\}
$$

and he proved that in case R is without non-zero nil ideals then $T(R)=Z(R)$.

In this paper we offer a partial extension of this result to rings with involution.

We focus our attention on the following subring of R :

$$
H=H(R)=\left\{a \in R \mid a s^{n}=s^{n} a, \text { all } s \in S, \text { for some } n=n(a) \geqq 1\right\}
$$

(We shall write $H(R)$ as H whenever there is no confusion as to the ring in question.)

Clearly H contains the central elements of R. Our aim is to show that in a semiprime ring R with involution which is 2 and 3 -torsion free, the symmetric elements of H are central. This result cannot be strengthened as is easily seen by looking at the 2×2 matrices over a field with symplectic involution.

As a consequence we prove that, under the above hypotheses, the set

$$
\left\{a \in S \mid(a s)^{n}=s^{n} a^{n}, \text { all } s \in S \text {, for some } n=n(a) \geqq 1\right\}
$$

is precisely $Z \cap S$.
We begin our study of H by recalling that an element $a \in R$ is quasiunitary if $a+a^{*}+a a^{*}=a+a^{*}+a^{*} a=0$; such an element induces the automorphism

$$
\varphi: x \rightarrow x+a x+x a^{*}+a x a^{*}=(1+a) x(1+a)^{-1} .
$$

This automorphism preserves S and K, and leaves the elements of Z invariant and it preserves H. We write this as:

Remark 1. H is an invariant subring of R; that is, H is preserved by the automorphisms induced by the quasi-unitary elements of R.

Received July 19, 1980 and in revised form January 20, 1981.

We now recall a remark due to Herstein [5, Theorem 6.1.1].
Remark 2 . Let R be 2 -torsion free and let k be a skew quasi-regular element of R. If $a \in H$, then

$$
(1-k)^{-1}(a k-k a)(1+k)^{-1} \in H .
$$

The first question one would ask is what can be said about $H(R)$ when R is a simple artinian ring. This was done in [6] where we showed that under the above hypotheses $H \cap S=Z \cap S$.

We now quote a result which is essential to this note, namely:
Theorem A. Let R be a ring with *, 2 and 3 -torsion free. If $a \in H \cap S$, $s \in S$ and $k \in K$ then as - sa and $a k-k a$ are nilpotent.

Proof (sketched). In [6] we have shown that for $a \in H \cap S$ and $s \in S$, then $a s-s a$ is nilpotent. The proof runs as follows: we first consider the subring $\langle a, s\rangle$ of R generated by a and s. Factoring out its nil radical N we get a ring $\bar{A}=\langle a, s\rangle / N$ which is still 2 and 3 -torsion free. We now concentrate our attention to the prime images of \bar{A} and relate our question to the investigation of H in simple artinian rings.

The skew analog follows similarly.
2. Throughout the paper all rings are 2 and 3 -torsion free. We begin with

Lemma 1. Let R be a prime ring with involution. Then H contains no symmetric nilpotent elements.

Proof. Let $a \in H \cap S$ be such that $a^{2}=0$. For every $x \in R, a x+x^{*} a$ is a symmetric element; hence

$$
a\left(a x+x^{*} a\right)^{n}=\left(a x+x^{*} a\right)^{n} a .
$$

This implies $a\left(x^{*} a\right)^{n}=(a x)^{n} a$ which means $(a x)^{n} a \in S$.
Therefore, for all $x, y \in R$ we have:

$$
\begin{aligned}
\left((a x)^{n}(a y)^{n}\right)^{n} a=\left(\left((a x)^{n}(a y)^{n}\right)^{n} a\right)^{*} & =a\left(\left(y^{*} a\right)^{n}\left(x^{*} a\right)^{n}\right)^{n}= \\
\left(\left(a y^{*}\right)^{n}\left(a x^{*}\right)^{n}\right)^{n} a & =\left((a y)^{n}(a x)^{n}\right)^{n} a .
\end{aligned}
$$

We have shown that, for all $x, y \in R$,

$$
\left((a x)^{n}(a y)^{n}\right)^{n}-\left((a y)^{n}(a x)^{n}\right)^{n} \in l_{R}(a)
$$

where $l_{R}(a)=\{r \in R \mid r a=0\}$ is the left annihilator of a.
We now set $\bar{R}=a R / a R \cap l_{R}(a)$. Since R is a prime ring, \bar{R} is also a prime ring. Moreover \bar{R} satisfies the polynomial identity $\left(x^{n} y^{n}\right)^{n}=$ $\left(y^{n} x^{n}\right)^{n}$.

Applying [5, Theorem 1.3.4] we get that \bar{R} is an order in a simple algebra Q, finite dimensional over its center C, where C is the field of
quotients of $Z(\bar{R})$. Moreover Q satisfies the same polynomial identities of \bar{R}; in particular Q satisfies $\left(x^{n} y^{n}\right)^{n}=\left(y^{n} x^{n}\right)^{n}$.
We now write Q as D_{m} where D is a finite dimensional central division algebra. If F is a maximal subfield of D, then $Q \otimes{ }_{C} F \cong F_{r}$ where $r^{2}=\operatorname{dim}_{c} Q$ and F_{r} satisfies the given polynomial identity.

Suppose $r>1$ and let $e_{i j}$ be the usual matrix units. Then it is enough to set $a=e_{11}$ and $b=e_{11}+e_{12}$ to get $\left(a^{n} b^{n}\right)^{n}=b$ and $\left(b^{n} a^{n}\right)^{n}=a$, a contradiction; thus $r=1$.

It follows that Q is commutative and so is \bar{R}. This implies that R satisfies the generalized polynomial identity axaya $=$ ayaxa.

By [1, Proposition 6], R contains a ${ }^{*}$-closed subring R_{0} containing a which is an order in the 2×2 matrices over a field C. Since

$$
a \in H(R) \cap S \cap R_{0} \subset H\left(R_{0}\right) \cap S \subset H\left(C_{2}\right) \cap S
$$

and, by [6], $H\left(C_{2}\right) \cap S \subset C$, it follows that $a=0$.
By using the invariance of H, Lemma 1 and Theorem A imply the following:

Lemma 2. If R is prime then $H \cap S$ centralizes all skew nilpotent elements.

Proof. Let $k \in K$ be such that $k^{m}=0$. If $a \in H \cap S$, by Theorem A, $a k-k a \in N(\langle a, k\rangle)$ where $N(\langle a, k\rangle)$ is the nil radical of the subring generated by a and k. It follows that the element

$$
\alpha=(1+k)^{-1}(a k-k a)(1-k)^{-1}
$$

still belongs to $N(\langle a, k\rangle)$; hence α is nilpotent.
On the other hand, by Remark 2, α is a symmetric element belonging to H. We then quote Lemma 1 to get $\alpha=0$, and so, $a k-k a=0$.

We recall that if R is a prime ring with involution and $S=R C$ is the central closure of R, then S is endowed with an involution which extends the involution of R [5, Lemma 2.4.1].

We are now able to prove the main theorem of this paper. If $x, y \in R$, we use the notation $[x, y]=x y-y x$.

Theorem 1. Let R be a semiprime ring with involution which is 2 and 3-torsion free. Then $H \cap S=Z \cap S$.

Proof. Suppose first that R is prime. Let $a \in H \cap S$. For all $x \in R$, then $x-x^{*} \in K$ and $x+x^{*} \in S$. Thus

$$
\left[a, x+x^{*}\right] \in K \text { and }\left[a,\left[a, x-x^{*}\right]\right] \in K .
$$

By Lemma 2 we get

$$
\left[a,\left[a, x+x^{*}\right]\right]=0 \text { and }\left[a,\left[a,\left[a, x-x^{*}\right]\right]\right]=0,
$$

and it is easy to deduce that
(1) $[a,[a,[a, x]]]=0$ for all $x \in R$.

If x, y are elements of R, then from (1) it follows that

$$
[a,[a, x]][a,[a, y]]=0
$$

(see for instance [5, Lemma 1.1.9]). Thus for all $x, y \in R$ we have:

$$
\left(a^{2} x-2 a x a+x a^{2}\right)\left(a^{2} y-2 a y a+y a^{2}\right)=0 .
$$

By [5, Lemma 1.3.2] there exist λ, μ in the extended centroid C of R such that
(2) $a^{2}-2 \lambda a+\mu=0$.

Moreover since $a \in S$ and char $R \neq 2$, we may assume λ and μ to be symmetric elements of C.

Let now s be a symmetric element of R. Then, since $a^{2}-2 \lambda a=$ $-\mu \in C$, we have

$$
\left(a^{2}-2 \lambda a\right) s=s\left(a^{2}-2 \lambda a\right) ;
$$

hence $a^{2} s-s a^{2}=2 \lambda(a s-s a)$. Since $[a,[a, s]]=0$, it follows that

$$
2 \lambda(a s-s a)=a^{2} s-s a^{2}=(a s-s a) a+a(a s-s a)=2 a(a s-s a) .
$$

Therefore $2(a-\lambda)(a s-s a)=0$ and so, $(a-\lambda)(a s-s a)=0$.
Set $b=a-\lambda$. If $b \neq 0$, by the defining properties of the central closure of R, there exists a non-zero ideal $U=U^{*}$ of R such that $0 \neq b U \subset R$ (see [5, Chapter 1, §3]).

Let now $x \in U$ and s be a symmetric element of R; then

$$
k=b x(a s-s a)+(a s-s a) x^{*} b
$$

is a skew element of R. Since $\left[a,\left[a, s^{2}\right]\right]=0$ implies $[a, s]^{2}=0$, it follows that

$$
k^{2}=(a s-s a) x^{*} b^{2} x(a s-s a)
$$

and so $k^{3}=0$.
By Lemma 2, $a k=k a$ and recalling that $b=a-\lambda$, we get $b k=k b$. We then deduce $b^{2} k=b k b$ and so $b^{3} x(a s-s a)=0$, for all $x \in U$, $s \in S$. We have proved that $b^{3} U(a s-s a)=0$. Since R is prime it is immediate that $a s-s a=0$ or $b^{3} U=0$.

If $a s-s a=0$ for all $s \in S$ then, since a is also in S, we easily get $a \in Z$ (see [5, Theorem 2.1.5]).

If $b^{3}=0$, that is $(a-\lambda)^{3}=0$, from (2) we get $(a-\lambda)^{2}=0$.
Let now $s \in S$ be in R; from $[a,[a, s]]=0$ we get $[b,[b, s]]=0$. The last equality together with $b^{2}=0$ implies $-b s b=b s b$; that is $2 b s b=0$, and so $b S b=0$. Since $b^{*}=b$ and $b S b=0$ and R is prime then $b=0$ and so $a=\lambda$.

Let now R be any semiprime ring 2 and 3 -torsion free. Then R has a subdirect representation in prime rings whose characteristic is still different from 2 and 3.

Let P be a prime ideal of R. If $P^{*} \not \subset P$, then $P+P^{*} / P$ is a non-zero ideal of R / P and every element of such an ideal can be written as $x+P=$ $x+x^{*}+P$ where $x \in P^{*}$. Let $a \in H(R) \cap S$; then

$$
\begin{aligned}
& (a+P)(x+P)^{n}=(a+P)\left(x+x^{*}+P\right)^{n}=a\left(x+x^{*}\right)^{n}+P \\
& =\left(x+x^{*}\right)^{n} a+P=\left(x+x^{*}+P\right)^{n}(a+P)=(x+P)^{n}(a+P) .
\end{aligned}
$$

Hence, for all $x+P \in P+P^{*} / P$,

$$
(a+P)(x+P)^{n}=(x+P)^{n}(a+P)
$$

where $n \geqq 1$ is a fixed integer. Since the exponent n is bounded, the primeness of R enables us to apply a result of [2, Theorem 2.1], and we conclude that $a+P$ centralizes $P+P^{*} / P$. Therefore $a+P \in Z(R / P)$.

If $P^{*} \subset P$, then R / P has the involution induced by the one in R. Moreover if $u \in R / P$ is a symmetric element, u^{2} is a symmetric element of R / P which is the image of a symmetric element of R. An easy computation ensures that if $a \in H(R) \cap S$ then $a+P \in H(R / P) \cap S$. By the prime case studied above we can conclude that $a+P \in Z(R / P)$.
3. We consider the following set:

$$
V=\left\{a \in R \mid(a s)^{n}=s^{n} a^{n}, \text { all } s \in S \text {, for some } n=n(a) \geqq 1\right\} .
$$

In [2] Felzenszwalb characterized the center of a semiprime ring by proving that the set

$$
\left\{a \in R \mid(a x)^{n}=x^{n} a^{n}, \text { all } x \in R \text {, for some } n=n(a) \geqq 1\right\}
$$

is exactly the center of the ring. Here we shall extend this result to rings with involution. In fact, using Theorem 1, we prove the following:

Theorem 2. Let R be a semiprime ring with involution which is 2 and 3-torsion free. Then $V \cap S=Z \cap S$.

Proof. Let $a \in V \cap S$ and suppose that $a^{n+1}=0$. Then, for all $s \in S$, $(a s)^{n} a=s^{n} a^{n+1}=0$. We will show that from $(a s)^{n} a=0$ it follows that $(a s)^{n-1} a=0$.

Let x be an element of R; then for all $s \in S$,

$$
(s a)^{n-1} x^{*}+x(a s)^{n-1} \in S
$$

and we have:

$$
0=\left(a\left((s a)^{n-1} x^{*}+x(a s)^{n-1}\right)\right)^{n} a=\left(a(s a)^{n-1} x^{*}+a x(a s)^{n-1}\right)^{n} a ;
$$

it follows that

$$
0=(a s)^{n-1}\left(a(s a)^{n-1} x^{*}+a x(a s)^{n-1}\right)^{n} a=(a s)^{n-1}\left(a x(a s)^{n-1}\right)^{n} a
$$

Hence $\left((a s)^{n-1} a x\right)^{n+1}=0$; this implies that $(a s)^{n-1} a R$ is a nil left ideal of R of bounded exponent. By Levitzki's Theorem we get $(a s)^{n-1} a=0$. By a repeated application of this argument, we obtain $a s a=0$, for all $s \in S$.

Let now $x \in R$; then $a\left(x+x^{*}\right) a=0$ and so, $a x a=-a x^{*} a$. Thus

$$
a(x a x) a=-a\left(x^{*} a x^{*}\right) a=a x a x^{*} a=-a x a x a,
$$

that is $2(a x)^{2} a=0$; hence $(a x)^{3}=0$ for all $x \in R$. By Levitzki, $a=0$.
Hence we may assume that $a^{n+1} \neq 0$. Since $a \in V \cap S$ then $(a s)^{n}=$ $s^{n} a^{n}$ and so, taking ${ }^{*},(s a)^{n}=a^{n} s^{n}$. Consequently

$$
a^{n+1} s^{n}=a(s a)^{n}=(a s)^{n} a=s^{n} a^{n+1} \text { for all } s \in S
$$

This shows that $a^{n+1} \in H \cap S$. By Theorem 1 we get that $a^{n+1} \in Z$. On the other hand

$$
(a s)^{n+1}=a(s a)^{n} s=a^{n+1} s^{n+1}=s^{n+1} a^{n+1} \text { for all } s \in S
$$

By the above argument it follows that $a^{n+2} \in Z$.
Let P be a prime ideal of R. Then if \bar{a} is the image of a in R / P then $\bar{a}^{n+1}, \bar{a}^{n+2} \in Z(R / P)$. Therefore, for every $\bar{x} \in R / P$,

$$
\bar{a}^{n+1} \bar{a} \bar{x}=\bar{a}^{n+2} \bar{x}=\bar{x} \bar{a}^{n+2}=\bar{a}^{n+1} \bar{x} \bar{a}
$$

which implies $\bar{a}^{n+1}(\bar{a} \bar{x}-\bar{x} \bar{a})=0$. Since \bar{a}^{n+1} is central and so regular we get $\bar{a} \bar{x}-\bar{x} \bar{a}=0$.

We have shown that \bar{a} is central in R / P, for every prime ideal P of R. Hence a is central in R.

References

1. M. Chacron, A commutativity theorem for rings with involution, Can. J. Math. 30 (1978), 1121-1143.
2. B. Felzenszwalb, Rings radical over subrings and some generalization of the notion of center, Univ. of Chicago Thesis (1976).
3. I. N. Herstein, Topics in ring theory (Univ. of Chicago Press, Chicago, 1969).
4. - On the hypercenter of a ring, J. Algebra 36 (1975), 151-157.
5. - Rings with involution (Univ. of Chicago Press, Chicago, 1976).
6. P. Misso, Elementi centrali in un anello primo con involuzione, Atti Accad. Sci. Lett. Arti Palermo (to appear).

Università di Palermo,
Palermo, Italy

