THE MATRIX EQUATIONS $A=X Y Z$ AND $B=Z Y X$ AND RELATED ONES

BY
J. L. BRENNER AND M. J. S. LIM
'Dedicated to Olga Taussky-Todd in friendship.'

In [15], O . Taussky-Todd posed the problem of title, namely to find X, Y, Z when A, B are given. Clearly if X, Y, Z exist then A, B are either both invertible or both noninvertible.

In section 1, the problem is reviewed in case A, B are both invertible. The problem is seen to be fundamentally one of group theory rather than matrix theory. Application of results of Shoda, Thompson, Ree to the general group-theoretical results allows specialization to certain matrix groups.

In Section 2, examples and counterexamples are given in case A, B are noninvertible. A general necessary condition for solvability (involving ranks) is obtained. This condition may or may not be sufficient. For $\operatorname{dim} A=2,3$ the problem is settled: there is always a solution in the noninvertible case.

1. The invertible case. For the equations $A=X Y Z$ and $B=Z Y X$, solvability is decided by theorems 1.1 and 1.2. Related equations are treated below. They concern the five permutations of X, Y, Z.

Theorem 1.01. Let $A=X Y Z, B=Z Y X$ in any group. Then $A B^{-1}$ is a commutator [16].

Proof. $A B^{-1}=[X Y, Z Y]$.
Theorem 1.02. [1]. Suppose (in some group) $A B^{-1}$ is a commutator $U V U^{-1} V^{-1}$. Then X, Y, Z exist such that $A=X Y Z, B=Z Y X[$ or $B=X Z Y$ or $B=Y X Z]$.

Proof. $X=U B, \quad Y=B^{-1} V U^{-1}, Z=V^{-1} B$, [or $X=U V B, Y=B^{-1} U^{-1} B, Z=$ $B^{-1} V^{-1} B$; or: $\left.X=U, Y=V, Z=U^{-1} V^{-1} B\right]$.

Theorem 1.01 remains true if we replace $Z Y X$ by $X Z Y, Y X Z, Z X Y$, or $Y Z X$. Theorem 1.02 remains true if we replace $Z Y X$ by $X Z Y$ or $Y X Z$, but not by $Z X Y$ or $Y Z X$.
1.03 Proofs.

$$
\begin{gathered}
(X Y Z)(X Z Y)^{-1}=\left[X Y X^{-1}, X Z X^{-1}\right], \quad(X Y Z)(Y X Z)^{-1}=[X, Y], \\
(X Y Z)(Z X Y)^{-1}=[X Y, Z], \quad(X Y Z)(Y Z X)^{-1}=[X, Y Z] .
\end{gathered}
$$

1.04 Counterexample. There is a group in which $A B^{-1}$ is a commutator, but neither the set $A=X Y Z, B=Z X Y$ nor the set $A=X_{1} Y_{1} Z_{1}, B=Y_{1} Z_{1} X_{1}$ is solvable.

If X, Y, Z existed, then B would be conjugate to $A: B=Z A Z^{-1}$. The matrix example $A=\operatorname{diag}[2,2], B=\operatorname{diag}[1,4]$ shows that $A B^{-1}$ can be a commutator $U V U^{-1} V^{-1}$, with B not conjugate to A :

$$
U=\left[\begin{array}{rr}
12, & -10 \\
9, & 6
\end{array}\right], \quad V=\left[\begin{array}{rr}
3, & -2 \\
0, & 6
\end{array}\right] .
$$

Corollaries of the above results are the following.
Let $S L(n, K)$ denote the multiplicative group of all invertible $n \times n$ matrices over K with determinant unity, $\operatorname{GF}\left(p^{n}\right)$ denote the finite field with p^{n} elements. $S L(n, G F(m)$) will be abbreviated $S L(n, m)$.

Theorem 1.1. In the following groups, the equations $A=X Y Z, B=Z Y X$ ($B=$ $X Z Y, B=Y X Z)$ are always solvable
(a) $[12] S L(n, 2) \quad(n>2)$; this is false for $n=2$.
(b) $[12] S L(n, 3) \quad(n>2)$; this is false for $n=2$.
(c) [11] $\operatorname{SL}(n, m) \quad(n=2, m>3$; also $n>2)$
(d) [11] $S L(n, m) \quad m>3$
(e) $[9] S L(n, \mathbb{C})$
(f) [10] $S L(n, K), \quad K$ algebraically closed.

Let $G L(n, K)$ denote the multiplicative group of all invertible $n \times n$ matrices over K. Again, $G L(n, m)$ will denote $G L(n, G F(m)$).

Theorem 1.2. If A, B have the same determinant (but not otherwise), i.e. if A, B belong to the same coset of $G L(n, K)$ over $S L(n, K)$, the equations $A=X Y Z$, $B=Z Y X(X Z Y, Y X Z)$ are solvable (in $G L)$ in the following cases
(a) $[13] G L(n, m), n=2, m=3$,
(b) [9], [14], GL(n, \mathbb{C}).

Theorem 1.3. [8] In a connected semi-simple algebraic group defined over an algebraically closed field, every element is a commutator. Therefore in such a group $A=X Y Z, B=Z Y X$ are simultaneously solvable.

Theorem 1.4. Let A, B be quaternions of the same norm. Then quaternions X, Y, Z exist such that $A=X Y Z, B=Z Y X[3]$.

Theorem 1.5. Given $A=X Y Z W, B=W Z Y X$. Then

$$
A B^{-1}=[X Y Z, W Y Z]\left[W Y W^{-1}, W Z W^{-1}\right]
$$

Theorem 1.6. Given $A=X Y Z W M, B=M W Z Y X$. Then

$$
A B^{-1}=[X Y Z W, M Y Z W]\left[M Y Z M^{-1}, M W Z M^{-1}\right]
$$

See [6a].
2. The singular case. If $X Y Z$ is not invertible, neither is $Z Y X$. In this section we first give a condition on the ranks of A, B that is necessary for the existence of a
simultaneous solution of $A=X Y Z, B=Z Y X$. Then an example of two 4×4 singular matrices A, B is given for which no solution exists. Next it is shown that the general problem reduces to the case $A=\operatorname{diag}(I, 0)$.

For 2×2 and 3×3 matrices the problem is resolved; there is always a solution if A, B are both singular. Also in the important case that A, B are diagonal, singular, and of the same rank, there is always a solution. The products of the non-zero diagonal elements can be different.

In every case we have examined, there is a solution provided the necessary condition holds.
2.01 Theorem. If A, B are $n \times n$ matrices with (real or) complex entries, and if $n \times n X, Y, Z$ exist such that $A=X Y Z, B=Z Y X$, then $|\operatorname{rank} A-\operatorname{rank} B| \leq 2 n / 3$.

Proof. The general assertion will follow from the application of theorem 2.05 to the particular assertion of theorem 2.01 in the case $A=0$. In this case, it must be shown that rank $B \leq 2 n / 3$.

Assume per contra that rank $B[2 n / 3]+k, k$ a positive integer. Thus rank $X \geq[2 n / 3]+k$. From the relation $A=0=X Y Z$, it now follows that $r_{1}=\operatorname{rank} Y Z \leq n-[2 n / 3]-k$. Write $r_{1}=n-[2 n / 3]-k-l, l \geq 0$.

Let $r_{2}=\operatorname{rank} Z Y$. From [3], it follows that $\left|r_{2}-r_{1}\right| \leq\left[\left(n-r_{1}\right) / 2\right]$. Thus

$$
r_{2} \leq r_{1}+\left[\left(n-r_{1}\right) / 2\right]=n-[2 n / 3]-k-l+[[n / 3]+(k+l) / 2] \leq[2 n / 3] .
$$

This relation contradicts the assumption rank $B>[2 n / 3]$, and the theorem follows.
2.02 Remark. The bound is sharp, as the example $X=\operatorname{diag}[0,1,1]$,

$$
Y=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad Z=\operatorname{diag}[1,1,0]
$$

shows. By forming direct sums, an example with difference [2n/3] can be constructed for any value of n.
2.03 Remark. An example can be constructed such that

$$
\prod_{1}^{k} X_{i}=0, \quad \coprod_{1}^{k} X_{i} \text { has rank }[(k-1) n / k] .
$$

2.04 Corollary. If A is the 4×40-matrix and B has rank 3, the equations $A=X Y Z, B=Z Y X$ have no simultaneous solution.
2.05 Theorem. Let P, Q be invertible $n \times n$ matrices. Set $A_{1}=P A Q, B_{1}=P B Q$. The equations $A=X Y Z, B=Z Y X$ have a simultaneous solution if and only if the equations $A_{1}=X_{1} Y_{1} Z_{1}, B_{1}=Z_{1} Y_{1} X_{1}$ have a simultaneous solution.

Proof. $X_{1}=P X Q, Y_{1}=Q^{-1} Y P^{-1}, Z_{1}=P Z Q$.
2.06 Theorem. The equations $A=X Y Z, B=Z Y X$ have a simultaneous solution if and only if the equations $A^{\prime}=X_{2} Y_{2} Z_{2}, B^{\prime}=Z_{2} Y_{2} X_{2}$ have a simultaneous solution.

Proof. $X_{2}=Z^{\prime}, Y_{2}=Y^{\prime}, Z_{2}=X^{\prime}$.
2.07 Theorem. Let A, B be diagonal, singular, and of equal rank. Then $A=X Y Z$, $B=Z Y X$ have a simultaneous solution.

Proof. By theorem 2.05, it is sufficient to consider the case $A=\operatorname{diag}\left[I_{k}, O_{n-k}\right]$,

$$
B=\operatorname{diag}\left[O_{r}, b_{r+1}, \ldots, b_{k}, b_{k+1}, \ldots, b_{k+r}, O_{n-k-r}\right]
$$

where O_{j} is the $j \times j$ zero matrix, and $b_{i} \neq 0, i=r+1, \ldots, r+k$. If Z is the circulant matrix corresponding to the permutation $(1,2, \ldots, n)$, i.e. with first row $(0,1,0, \ldots, 0)$, then $A=X Y Z$ requires $X Y=A Z^{-1} ; B=Z Y X$ requires $Z^{-1} B=Y X$. Direct computation of $A Z^{-1}, Z^{-1} B$ shows that, although singular, they are equivalent. Thus X, Y can be found. In fact, a little more is proved: the ranks of A, B can even differ by 1 , provided both are singular [4].
2.08 Theorem. Let $A=P B Y P^{-1} Y^{-1}\left[A=P Y P^{-1} B Y^{-1}\right]$. Then $A=X Y Z, B=Z Y X$ have a simultaneous solution.

Proof. $X=P Y^{-1}, Z=B Y P^{-1} Y^{-1}\left[X=P, Z=B Y^{-1}\right]$.
Note the contrast with theorem 1.01. In this theorem, A, B need not be invertible.
Note. The referee has called our attention to the paper [2] concerning solutions of the equation $T=P A Q-Q A P$. This equation is amenable to attack by the methods of this article whenever T is of the form $S(I \oplus 0) U$. Write $T=S(I \oplus 0) U$, $P=S P_{1} U, Q=S Q_{1} U, A=U^{-1} A_{1} S^{-1}$.

Lemma. The equation $I \oplus 0=P_{1} A_{1} Q_{1}-Q_{1} A_{1} P_{1}$ is solvable in finite-dimensional nonsingular matrices of dimension >1. (There is clearly no solution for dimension 1 , except when $I \oplus 0 \equiv 0$.)

Proof. The first step is to solve $I=P A Q-Q A P$. Since $0=P A Q-Q A P$ is trivially solvable, the lemma will follow. But $I=P A Q-Q A P$ is solvable provided $I=V-W$ for some V, W such that $V W^{-1}$ is a commutator. This is easy: set $V=(1+a) I, W=a I$, where $(1+a)^{n}=a^{n} ; V W^{-1}=\varepsilon I$.

It can even be shown that $I=V-W$ can be solved subject to the further restrictions (i) $\operatorname{det} V=\operatorname{det} W=\Delta$, (ii) V, W real if Δ is real. This extends the result of [2] from the unitary space to the real space.

It should now be clear (direct sums) that there are many commutators $C=$ $X Y X^{-1} Y^{-1}$ in \mathscr{H} such that $C-I$ is invertible, $C-I=Z^{-1}$. Thus $V=I+Z, W=Z$ satisfy $V W^{-1}=C$, so that finally every operator T of the form $S(I \oplus 0) U, S, U$ invertible in (real or complex) Hilbert space can be written in the form $P A Q-Q A P$, with P, A, Q invertible.

References

1. J. L. Brenner, Math. Reviews 16, 326 (1955).

1a. J. L. Brenner, Some Simultaneous equations in matrices. Duke Math. J. 39, 801-805 (1972).
2. A. Brown and C. Pearcy, Operators of the Form PAQ-QAP, Can. J. Math. 20 (1968), 13531361.
3. J. de Pillis and J. L. Brenner, Generalized elementary symmetric functions and quaternion matrices, Linear Algebra and its Applications, 4, 55-69 (1971).
4. H. Flanders, Elementary Divisors of AB and BA, Proc. Amer. Math. Soc. 2, 871-874 (1951).
5. H. B. Griffiths, A note on commutators in free products, Proc. Camb. Philos. Soc. 50, 178-188 (1954).
6. P. Hall. Correspondence.

6a. R. C. Lyndon, The equation $a^{2} b^{2}=c^{2}$ in free groups. Mich. Math. J. 6, 89-95 (1959).
7. B. Neumann. Correspondence.
8. R. Ree, Commutators in semisimple algebraic groups, Proc. Amer. Math. Soc. 15, 457-460 (1964).
9. K. Shoda, Einige Sätze uber Matrizen, Jap. J. Math. 13, 361-365 (1936).
10. K. Shoda, Über den Kommutator der Matrizen, J. Math. Soc. Japan 3, 78-81 (1951).
11. R. C. Thompson, Commutators in the special and general linear groups, Trans. Amer. Math. Soc. 101, 16-33 (1961).
12. R. C. Thompson, Commutators of matrices with coefficients from the field of two elements, Duke J. 29, 367-374 (1962).
13. R. C. Thompson. On matrix commutators, Portugaliae Math. 21, 143-153 (1962).
14. O. Taussky-Todd, Generalized commutators of matrices and permutations of factors in a product of three matrices, Studies in Math. Mech. presented to R. von Mises, N.Y. Academic Press, 1954, 67-68.
15. O. Taussky-Todd, Problems on matrices and operators, Bull. Amer. Math. Soc. 76, 977 (1970).
16. M. J. Wicks, Commutators in free products, J. London Math. Soc. 37, 433-444 (1962).

Department of Mathematics,
University of Victoria, Victoria, B.C., Canada
J. L. Brenner 10 Phillips Rd. Palo Alto, California 94303

