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Universal Series on a Riemann Surface

Raphaël Clouâtre

Abstract. Every holomorphic function on a compact subset of a Riemann surface can be uniformly

approximated by partial sums of a given series of functions. Those functions behave locally like the

classical fundamental solutions of the Cauchy–Riemann operator in the plane.

1 Introduction

In [8], Stefanopoulos shows the existence of a series of fundamental solutions of the

Cauchy-Riemann operator that are universal on subsets of C. More precisely, he

obtains the following theorems.

Theorem 1.1 Let K be a compact subset of C with connected complement, and let

{sn}n be a countable set in C \K with an accumulation point there. Then there exists a

sequence {cn}n in C with the property that, given f ∈ O(K), there exists an increasing

sequence {nk}k in N such that

lim
k→∞

sup
z∈K

∣

∣

∣

∣

f (z) −

nk
∑

j=1

c j
1

z − s j

∣

∣

∣

∣

= 0.

Moreover, the set of such sequences {cn}n is Gδ and dense in C
N, endowed with the carte-

sian topology, and contains a dense vector subspace of C
N, except for the zero sequence.

Theorem 1.2 For a ∈ R let σ = [a,∞) and set Cσ = C \σ. Let {an}n be a countable

subset of σ with an accumulation point in σ. Then there exists a sequence {cn}n in C

with the property that, given f ∈ O(Cσ), there exists an increasing sequence {nk}k in N

such that for any compact set K ⊂ Cσ ,

lim
k→∞

sup
z∈K

∣

∣

∣

∣

f (z) −

nk
∑

j=1

c j
1

z − a j

∣

∣

∣

∣

= 0.

Moreover, the set of such sequences {cn}n is Gδ and dense in C
N, endowed with the carte-

sian topology, and contains a dense vector subspace of C
N, except for the zero sequence.

The aim of this paper is to generalize those ideas to the case of non-compact Rie-

mann surfaces. One of the main tools used by Stefanopoulos to prove those theo-

rems was an abstract characterization of universality that we shall now present (see

[8, Theorem 2.1], or [4, Proposition 7] along with [7, Theorem 1.2]).
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1026 R. Clouâtre

Let X be a complex vector space endowed with a metric d that is compatible with

the vector space operations and invariant under translation. Given a sequence x =

{xk}k ⊂ X, define U (x) to be the set of sequences of complex numbers {ak}k such

that the partial sums
∑n

k=1 akxk, n ∈ N are dense in X.

Theorem 1.3 The following assertions are equivalent:

• U (x) 6= ∅;
• span{xn, xn+1, . . . } is dense in X for all n ∈ N;
• U (x) is a dense Gδ set in C

N and contains a dense subspace of C
N, except for the zero

sequence.

The other crucial result in [8] is a theorem on approximation by fundamental

solutions of a differential operator, which we recall here in the particular case that is

of interest to us (see [9]).

Theorem 1.4 Let K ⊂ C be a compact subset and σ ⊂ C \K with an accumulation

point there. Then span{ 1
z−y

: y ∈ σ} is dense in O(K).

The main result of this paper, proved in Section 4, is a version of the above the-

orem that holds in the case of open Riemann surfaces. Using it, we then proceed to

establish theorems analogous to 1.1 and 1.2.

2 A Cauchy-type Integral Formula

The goal of this section is to derive an integral formula that will prove to be an invalu-

able tool later on. From now on, by a Riemann surface M we shall mean a connected

complex manifold without boundary of dimension 1. We shall be mainly interested

in the case where M is open (non-compact). We shall therefore make use of the fol-

lowing theorem by Gunning and Narasimhan (see [5]). For an open set Ω ⊂ M,

denote by O(Ω) the set of all holomorphic functions on Ω.

Theorem 2.1 Let M be an open Riemann surface. There exists Φ ∈ O(M), which is a

local homeomorphism.

Define the univalence radius of Φ at y ∈ M as ry = sup Ay , where Ay is the

set of all r > 0 such that {|ζ − Φ(y)| < r} is the biholomorphic image by Φ of

a neighbourhood of y. Denoting by B(a, r) the open disc in C with center a ∈ C

and radius r > 0, for each y ∈ M choose sy such that 0 < sy < ry and set U y =

Φ
−1(B(Φ(y), sy)), the closure of which is compact. The collection {U y}y∈M is thus

an open cover of M.

Lemma 2.2 For each y ∈ M, let fy be a meromorphic function defined on Φ(U y)

such that fy1
= fy2

on Φ(U y1
) ∩ Φ(U y2

). Then there exists a unique meromorphic

(1, 0)-form ω on M such that (Φ−1)∗ω = fydζ on Φ(U y).

Proof Notice that on Φ(U y1
) ∩ Φ(U y2

), we have

(Φ|U y2
◦ (Φ|U y1

)−1)∗( fy2
dζ) = (Id)∗( fy2

dζ) = fy2
dζ = fy1

dζ.

We can therefore define ω as (Φ|U y
)∗( fydζ) on U y .
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Since we shall use the previous result in another form, we state it here, its proof

being similar to the one above.

Lemma 2.3 For each y1, y2 ∈ M, let fy1,y2
be a meromorphic function defined on

Φ(U y1
)×Φ(U y2

) such that fy1,y2
= fy3,y4

on Φ(U y1
)×Φ(U y2

)∩Φ(U y3
)×Φ(U y4

). Then

there exists a unique meromorphic (1, 0)-form ω on M×M such that (Φ−1×Φ
−1)∗ω =

fy1,y2
dζ1 on Φ(U y1

) × Φ(U y2
), where ζ1, ζ2 are the coordinates on C×C.

Recall that given an open cover {Vi}i of M, a Mittag–Leffler distribution is a col-

lection of meromorphic functions fi defined on Vi such that fi − f j ∈ O(Vi ∩V j) for

all i, j. We say that such a distribution has a solution if there exists a meromorphic

function f on M such that f − fi ∈ O(Vi) for all i. According to [6, Theorem 5.5.1],

we have the following.

Theorem 2.4 If M is a Stein manifold, every Mittag–Leffler distribution has a solu-

tion.

Moreover, [2, Corollary 26.8] gives the following.

Theorem 2.5 Every open Riemann surface is Stein.

Let {U y = Φ
−1(B(Φ(y), sy))}y be the usual open cover of M, and let {Vα} be

an open cover of M × M \ {(p, p) : p ∈ M}, that is, an open cover of M × M

without its diagonal, where each Vα is a subset of M × M \ {(p, p) : p ∈ M} that

can be expressed as a product of open subsets of M on which Φ is biholomorphic.

Then {U y × U y ,Vα}y,α is an open cover of M × M. Set fy =
1

Φ(p)−Φ(q)
, which is

meromorphic on U y ×U y and fα = 0 on Vα. It is easily checked, using the fact that

Φ is injective, that this gives a Mittag–Leffler distribution. Now, we know that M is

Stein by the previous theorem and thus that M × M is also Stein, see [3]. Hence,

by Theorem 2.4, there exists a meromorphic function C(p, q) defined on M × M

which is a solution to our Mittag–Leffler problem. This function C , which has the

same local behaviour as a translated fundamental solution of the Cauchy–Riemann

operator in the plane, is the candidate to replace the functions of the type 1
z−a

in the

statements of our theorems corresponding to 1.1 and 1.2.

Lemma 2.6 Let f1, f2 be meromorphic functions on M which are both solutions of the

Mittag-Leffler problem {(Vi , gi)}, where each Vi is a chart. Then, f1 − f2 ∈ O(M).

By considering gy(p, q) = fy(q, p) = − fy(p, q) on U y × U y and gα = 0 on

Vα, we see that C(q, p) and −C(p, q) are both solutions of this new distribution. By

Lemma 2.6, we get that C(p, q) = −C(q, p) + h(p, q) with h ∈ O(M × M). This

relation will be of great use later. Now, by Lemma 2.3, there exists a (1, 0)-form,

which we shall denote by γ(p, q), that can locally be expressed as

C ◦ (Φ−1 × Φ
−1)dζ.

It is then clear that γ(p, q) is holomorphic away from the diagonal {(p, p) : p ∈ M},

by construction of C(p, q). Using γ(p, q), the formula we seek is within our reach.
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1028 R. Clouâtre

Theorem 2.7 Let f ∈ C∞
c (M), y ∈ M and U = Φ

−1(B(Φ(y), sy)). For 0 < ǫ < 1,

define Uǫ = {p ∈ U : |Φ(p) − Φ(y)| < ǫsy} and set Mǫ = M \Uǫ. Then,

−2πi f (y) = lim
ǫ→0

∫

Mǫ

γ( · , y) ∧ ∂ f .

Proof First note that γ( · , y) is holomorphic on Mǫ. Moreover, since γ( · , y) ∧ f is

of type (1, 0) and M is of complex dimension 1, we have that ∂(γ( · , y) ∧ f ) = 0 on

Mǫ. Hence, we have

d(γ( · , y) ∧ f ) = ∂(γ( · , y) ∧ f ) + ∂(γ( · , y) ∧ f ) = ∂(γ( · , y) ∧ f )

= ∂γ( · , y) ∧ f + γ( · , y) ∧ ∂ f = γ( · , y) ∧ ∂ f

on Mǫ.

Note that Mǫ is a manifold with boundary, so by Stokes’ theorem, we get

∫

∂Mǫ

γ( · , y) ∧ f =

∫

Mǫ

d(γ( · , y) ∧ f ) =

∫

Mǫ

γ( · , y) ∧ ∂ f .

On the other hand, on Φ(U ) we have

(Φ|−1
U )∗(γ( · , y)) =

(

C( · , y) ◦ Φ|−1
U

)

dζ =

( 1

ζ − Φ(y)

)

dζ + g(ζ, y)dζ,

where g is a holomorphic function of ζ , hence

lim
ǫ→0

∫

∂Uǫ

γ( · , y) ∧ f = lim
ǫ→0

∫

|ζ−Φ(y)|=ǫsy

(

( f ◦ Φ
−1)(ζ)

ζ − Φ(y)
+ g(ζ, y)( f ◦ Φ

−1)(ζ)

)

dζ

= lim
ǫ→0

∫ 2π

0

( f ◦ Φ
−1)(Φ(y) + ǫsyeiθ)i(1 + ǫsyeiθg(ζ, y))dθ

= 2πi( f ◦ Φ
−1)(Φ(y)) = 2πi f (y).

Finally, we obtain that

lim
ǫ→0

∫

∂Mǫ

γ( · , y) ∧ f = − lim
ǫ→0

∫

∂Uǫ

γ( · , y) ∧ f = −2πi f (y)

= lim
ǫ→0

∫

Mǫ

γ( · , y) ∧ ∂ f .

3 Statement of the Main Result

Using the notation introduced in the previous section, we have the following.
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Theorem 3.1 Let M be an open Riemann surface, K ⊂ M a compact subset and

σ ⊂ (M \ K) with an accumulation point in each component of M \ K. Then Σ =

span{C( · , y) : y ∈ σ} is dense in O(K). Moreover, for all f ∈ O(K), there exists

{ fn} ⊂ Σ such that fn → f uniformly on K and for all p ∈ K and for all chart (V, ψ)

containing p,
∂α

∂xα
( fn ◦ ψ−1)(ψ(p)) →

∂α

∂xα
( f ◦ ψ−1)(ψ(p)),

for all multi-index α.

The proof, exposed in the next section, uses a classical argument to show density,

namely the Hahn–Banach Theorem, along with an application of the Cauchy integral

formula established in Theorem 2.7.

4 Approximation by Fundamental Solutions of the
Cauchy–Riemann Operator

We begin with a lemma that provides us with a way to approximate an open Riemann

surface by a sequence of compact subsets; see [2, Corollary 23.6]. Recall first that

given a compact subset K ⊂ M, hM(K) stands for the union of K with all the relatively

compact components of its complement.

Lemma 4.1 Let M be an open Riemann surface. There exists a sequence {K j} of

compact subsets of M such that:

•
⋃

j K j = M;
• K j ⊂ int(K j+1);
• If K ⊂ M is compact, then there exists j ∈ N such that K ⊂ K j

• hM(K j) = K j .

Given an open set Ω ⊂ M, let {K j} be such an exhaustion of Ω. If f , g ∈ C(Ω),

define

d( f , g) =

∞
∑

j=1

1

2 j

supK j
| f − g|

1 + supK j
| f − g|

.

Endow C(M) with this metric. An element G ∈ (C(M)) ′ is a linear functional on

C(M) that is continuous with respect to the topology induced by d. We shall set out

a few lemmas before fulfilling our promise to prove the main result. The first one is

obvious.

Lemma 4.2 Let M, N be Riemann surfaces, G ∈ (C(M)) ′ and f ∈ C(M ×N). Then

G( f ( · , q)) is continuous in q.

We also need the following, which is not very surprising.

Lemma 4.3 Let K ⊂ M be a compact subset, G ∈ (C(M)) ′ with compact support

contained in the interior of K and g ∈ C∞(K × (M \ K)) holomorphic in the second

variable. Let ρ ∈ C∞
c (M) such that 0 ≤ ρ ≤ 1, ρ = 1 on supp(G) and supp(ρ) ⊂ K.

Extending ρ( · )g( · , q) by zero outside the support of ρ, we have that G[ρ( · )g( · , q)] is

holomorphic in the second variable for q /∈ K.
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It is also easy to prove that if h ∈ O(M × M), then G[h(p, · )] is holomorphic on

M. We now recall the definition and a result on the compactification of a Riemann

surface. See [1].

Definition 4.4 Let M be a Riemann surface and N be a topological space. Let

Ψ : M → N be a homeomorphism onto Ψ(M) ⊂ N. We say that Ψ is a compactifica-

tion of M if

• N is compact;
• Ψ(M) ⊂ N is open;
• Ψ(M) is dense in N.

We set β = N \ Ψ(M).

Theorem 4.5 Let M be a Riemann surface. There exists a unique compactification

Ψ : M → M of M such that

• M is a locally connected Hausdorff space;
• β is totally disconnected;
• β is non-separating in M: for each open connected subset G ⊂ M, G\β is connected.

The following fact about complementary connected components of compact sub-

sets of M is well known.

Lemma 4.6 Let M be an open Riemann surface. If K ⊂ M is compact, then M \ K

has only finitely many non relatively compact connected components.

Proof Let {Dα}α∈A be the non relatively compact connected components of M \ K.

Let Ψ : M → M be the unique compactification of M of Theorem 4.5. Since

M is compact and locally connected, there exist finitely many open connected sets

V1, . . . ,VN of M such that β ⊂
⋃N

i=1 Vi and Ψ(K) ∩ Vi = ∅ for all i. Suppose that

Ψ(Dα) ⊂ M \
⋃N

i=1 Vi . Seeing as M is compact, Ψ(Dα) must be relatively compact

in M. However, since M \
⋃N

i=1 Vi is closed, we have Ψ(Dα) ⊂ M \
⋃N

i=1 Vi ⊂ Ψ(M).

But then we get that Dα is relatively compact in M, because Ψ is a homeomorphism

on Ψ(M), an open subset of M. This contradiction shows that for each α ∈ A, there

exists iα such that Ψ(Dα)∩ (Viα \ β) 6= ∅. Moreover, Vi \ β ⊂ Ψ(M) \Ψ(K) is con-

nected for each i, since β is non-separating in M, and so Ψ
−1(Vi \β) ⊂ M \K is con-

nected also. Hence, two connected components Dα1
, Dα2

meeting Ψ
−1(Vi \ β) must

belong to the same connected component, which in turn implies that |A| ≤ N.

The next step is a bit technical, but of the utmost importance to us, as it pro-

vides a kind of integral representation of the compactly supported continuous linear

functionals on C(M).

Lemma 4.7 Let G ∈ (C(M)) ′ with support contained in K ⊂ M compact, W a

relatively compact neighbourhood of K and f ∈ C∞
c (M) ∩ O(W ). If θ ∈ C∞

c (M) is

such that θ = 1 on K and supp(θ) ⊂ W , then

G

(

θ(y)

∫

M\W

γ( · , y) ∧ ∂ f

)

= −

∫

M\W

α ∧ ∂ f

for some form α.
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Proof First note that G will act on functions of the y variable, a fact we shall empha-

size with the notation Gy . Also, the function

y 7→ θ(y)

∫

M\W

γ( · , y) ∧ ∂ f

is continuous on M if extended by zero outside the support of θ. Taking {Ui} an

open cover of M \W such that:

• Ui is locally finite for all i;
• Ui ∩ supp(θ) = ∅ for all i;
• for all i there exists yi ∈ M and syi

∈ Ayi
such that Ui = Φ

−1(B(Φ(yi), syi
)),

and {ρi} a partition of unity subordinate to {Ui}, we get

Gy

(

θ(y)

∫

M\W

γ( · , y) ∧ ∂ f

)

= Gy

(

∑

i∈I

∫

Φ(Ui )

(Φ−1)∗(ρi(p)θ(y)C(p, y))
∂( f ◦ Φ

−1)

∂ζ
dζdζ

)

=

∑

i∈I

Gy

(
∫

Φ(Ui )

(Φ−1)∗(ρi(p)θ(y)C(p, y))
∂( f ◦ Φ

−1)

∂ζ
dζdζ

)

where the last equality holds since the sum is finite. f is holomorphic on a neigh-

bourhood of W and is of compact support in M, thus ∂ f is of compact support in

M \ W , and it suffices to integrate on the said support. By the choice of Ui , notice

that Φ(Ui) is compact and that Φ is injective on a neighbourhood Vi of Ui . We can

thus integrate on Φ(Ui) = Φ(Ui) rather than on Φ(Ui), which will not change the

value of the integral, since the boundary of that set is obviously of measure zero. We

obtain

G

(

θ(y)

∫

M\W

γ( · , y) ∧ ∂ f

)

=

∑

i∈I

Gy

(
∫

Φ(Ui )

(Φ−1)∗(ρi(p)θ(y)C(p, y))
∂( f ◦ Φ

−1)

∂ζ
dζdζ

)

=

∑

i∈I

∫

Φ(Ui )

(Φ−1)∗(ρi(p))Gy

[

(Φ−1)∗(θ(y)C(p, y))
] ∂( f ◦ Φ

−1)

∂ζ
dζdζ,

where, once again, we extend (Φ−1)∗(θ(y)C(p, y)) by zero outside the support of θ
in order for it to be continuous in y on M. The Riemann sums of the integral in

the middle expression converge uniformly in y on compact subsets of M to the said

integral, so the fact that G is continuous and linear yields the last equality. Note that

this last integral actually makes sense because of Lemma 4.2. Using the relation given
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by Lemma 2.6 between C(p, y) and C(y, p), we can write

G

(

θ(y)

∫

M\W

γ( · , y) ∧ ∂ f

)

=

∑

i∈I

∫

Φ(Ui )

(Φ−1)∗(ρi(p))Gy

[

(Φ−1)∗(−θ(y)C(y, p))
] ∂( f ◦ Φ

−1)

∂ζ
dζdζ

+
∑

i∈I

∫

Φ(Ui )

(Φ−1)∗(ρi(p))Gy

[

(Φ−1)∗(θ(y)h(p, y))
] ∂( f ◦ Φ

−1)

∂ζ
dζdζ

=

∑

i∈I

∫

Φ(Ui )

(Φ−1)∗(ρi(p))Gy

[

(Φ−1)∗(−θ(y)C(y, p))
] ∂( f ◦ Φ

−1)

∂ζ
dζdζ

+
∑

i∈I

∫

Φ(Ui )

(Φ−1)∗(ρi(p))Gy

[

(Φ−1)∗(h(p, y))
] ∂( f ◦ Φ

−1)

∂ζ
dζdζ

since h ∈ O(M × M), and thus

Gy

[

(Φ−1)∗(θ(y)h(p, y))
]

= Gy

[

(Φ−1)∗(h(p, y))
]

,

because θ = 1 on a neighborhood of supp G.

Now, by Lemma 2.2 applied to M \ W , we obtain a form α that can be expressed

locally as

Gy

[

(Φ−1)∗(θ(y)C(y, p))
]

dζ = Gy

[

θ(y)C(y,Φ−1(ζ))
]

dζ

on Φ(Ui). On the other hand, Gy

[

(Φ−1)∗h(p, y)
]

is holomorphic on M in the first

variable by the remark made below Lemma 4.3, so applying Lemma 2.2 once again

yields a holomorphic (1, 0)-form β such that

G

(

θ(y)

∫

M\W

γ( · , y) ∧ ∂ f

)

= −

∫

M\W

α ∧ ∂ f +

∫

M\W

β ∧ ∂ f .

Since f has compact support, we invoke Stokes’ theorem to write

0 =

∫

M

d(β ∧ f ) =

∫

M

∂(β ∧ f ) =

∫

M

∂β ∧ f +

∫

M

β ∧ ∂ f

=

∫

M\W

β ∧ ∂ f +

∫

W

β ∧ ∂ f =

∫

M\W

β ∧ ∂ f

and thus

G

(

θ(y)

∫

M\W

γ( · , y) ∧ ∂ f

)

= −

∫

M\W

α ∧ ∂ f .

Since O(K) ⊂ C(K), we may endow O(K) with the topology induced by that of

C(K). Before proving our main result in its full generality, we must first establish a

special case.
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Theorem 4.8 Let M be an open Riemann surface, and let K ⊂ M be a compact subset

such that M \ K has finitely many connected components. Let σ ⊂ (M \ K) with an

accumulation point in each component of M \ K. Then Σ = span{C( · , y) : y ∈ σ} is

dense in O(K).

Proof Since M \K only has finitely many connected components, we can easily find

σ ′ ⊂ σ with a limit point in each of these connected components such that the dis-

tance between σ ′ and K is positive. We shall actually show that Σ
′
= span{C( · , y) :

y ∈ σ ′} ⊂ Σ is dense in O(K).

Let g ∈ (C(K)) ′ and suppose g|Σ ′ = 0, in other words suppose g(C( · , y)) = 0 for

all y ∈ σ ′. By the Hahn–Banach Theorem, it suffices to show that we have g(ψ) = 0

for all ψ ∈ O(K). To do so, we shall want to use our Cauchy-type integral formula, so

define G, a non-zero element of (C(M)) ′ supported by K, by setting G( f ) = g( f |K ).

Now fix an arbitrary ψ ∈ O(K), which is holomorphic on an open neighbourhood

Z of K by definition. Since the distance between K and σ ′ is positive, we can find W

a relatively compact open neighbourhood of K such that σ ′ ∩ W = ∅ and W ⊂ Z.

Moreover, we can choose W small enough so that σ ′ has an accumulation point in

every connected component of M \W . Let ρ ∈ C∞
c (M) such that 0 ≤ ρ ≤ 1, ρ = 1

on a neighbourhood of K and supp(ρ) ⊂ W . Notice that C(p, y) ∈ O(W ×(M\W )),

and extending by zero outside of supp(ρ), we also have ρ(p)C(p, y) ∈ C∞(M× (M \
W )). Since ρ(p)C(p, y) is holomorphic in the second variable for y /∈ W , we can

apply Lemma 4.3 to conclude that Gp(ρ(p)C(p, y)) is also holomorphic for y /∈ W .

Now, Gp(ρ(p)C(p, y)) = g(C( · , y)) = 0 for y ∈ σ ′ ⊂ σ, and since σ ′ accumulates

in each connected component of M \ W , this means that Gp(ρ(p)C(p, y)) = 0 for

all y ∈ M \W .

Let ρ1 ∈ C∞
c (M) such that 0 ≤ ρ1 ≤ 1, ρ1 = 1 on a neighbourhood of W and

supp(ρ1) ⊂ Z. Then ∂(ρ1ψ) = 0 on W . Since ρ1ψ ∈ C∞
c (M), using our Cauchy

formula yields

g(ψ) = G(ρ1ψ) = Gy

(

− lim
ǫ→0

1

2πi

∫

Mǫ

γ( · , y) ∧ ∂(ρ1ψ)

)

= Gy

(

− lim
ǫ→0

1

2πi

∫

Mǫ\W

γ( · , y) ∧ ∂(ρ1ψ)

)

= Gy

(

− lim
ǫ→0

ρ(y)

2πi

∫

Mǫ\W

γ( · , y) ∧ ∂(ρ1ψ)

)

,

where the last inequality holds because ρ = 1 on a neighbourhood of supp(G). But

supp(ρ) ⊂ W , and it is clear that γ( · , y) ∧ ∂(ρ1ψ) is smooth over M \W if y ∈ W ,

so extending by zero outside supp(ρ), we have

g(ψ) = Gy

(

− lim
ǫ→0

ρ(y)

2πi

∫

Mǫ\W

γ( · , y) ∧ ∂(ρ1ψ)

)

= Gy

(

−
ρ(y)

2πi

∫

M\W

γ( · , y) ∧ ∂(ρ1ψ)

)

.
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Using Lemma 4.7, we find

g(ψ) =
1

2πi

∫

M\W

α ∧ ∂(ρ1ψ).

Now let p ∈ M \W . By the proof of Lemma 4.7, there exists V ⊂ M \W a relatively

compact open set containing p such that Φ is injective on a neighbourhood of V and

(Φ−1)∗α = Gy

[

(Φ−1)∗(ρ(y)C(y, p))
]

dζ = Gy

[

ρ(y)C(y,Φ−1(ζ))
]

dζ

on Φ(V ). Since Gy

[

ρ(y)C(y, p)
]

vanishes on M\W ⊃ V , we see that supp(α) ⊂ W .

Therefore,

g(ψ) =
1

2πi

∫

M\W

α ∧ ∂(ρ1ψ) = 0.

Rejoice, for we can now prove Theorem 3.1.

Proof Set M \ K =
⋃

α∈A Bα ∪ D1 ∪ · · · ∪DN , where each Bα is a relatively compact

connected component and each Di is a non relatively compact connected component

(see Lemma 4.6). K being compact implies that hM(K) = K ∪
⋃

α∈A Bα is also

compact (see [2, Theorem 23.5]), hence bounded. Because the Bα are disjoint, either

there are finitely many Bα and then the result follows from Theorem 4.8, or else for

each R > 0 there are only finitely many Bα whose inner radius

rα := sup
x∈Bα

sup{r ≥ 0 : B(x, r) ⊂ Bα}

is greater than or equal to R. In that case, set K j = K ∪
⋃

rα≤1/ j Bα, which has the

property that M \ K j only has finitely many connected components. We can thus

apply Theorem 4.8 to K j with σ j := σ ∩ (M \ K j) to get that Σ j = span{C( · , y) :

y ∈ σ j}, and hence Σ, is dense in O(K j).

Fortunately, there is a way to recover O(K) from the O(K j). Indeed, notice that if

f ∈ O(K), there exists an open set U ⊃ K such that f ∈ O(U ) and

δ f = inf
x∈∂U ,y∈K

d(x, y) > 0.

But then f ∈ O(K j) for all j such that 2/ j ≤ δ f , so O(K) =
⋃∞

j=1 O(K j), and Σ is

dense in O(K).

To prove the remaining statement, let f ∈ O(K). We just showed that there exists

j0 ∈ N such that f ∈ O(K j0
). As in the proof of Theorem 4.8, replace σ j0

with

σ ′
j0
⊂ σ j0

such that d(σ ′
j0
, K j0

) > 0 to get { fn} ∈ Σ
′
j0

such that fn → f uniformly on

K j0
⊃ K. But since d(σ ′

j0
, K j0

) > 0, there is a relatively compact open set V such that

K ⊂ V , f ∈ O(V ) and fn ∈ O(V ) for all n ∈ N. Fix p ∈ K, and let (U , ψ) be a chart

containing p with U ⊂ V . By the classical Cauchy formula, we know that for every

multi-index α,
∂α

∂xα
( fn ◦ ψ−1) →

∂α

∂xα
( f ◦ ψ−1)

uniformly on compact subsets of ψ(U ), and thus on ψ(p).
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This allows us to establish the existence of a series of “fundamental solutions” that

is universal on a compact subset of M.

Corollary 4.9 Let M be an open Riemann surface, K ⊂ M a compact subset, and

{a j} j ⊂ M \ K with an accumulation point in each connected component of M \ K.

Then there exists a sequence {b j} j in C with the property that, given f ∈ O(K), there

exists an increasing sequence {nk}k in N such that

lim
k→∞

sup
z∈K

| f (z) −

nk
∑

j=1

b jC(z, a j)| = 0.

Moreover, the set of such sequences {b j} j is Gδ and dense in C
N, endowed with the carte-

sian topology, and contains a dense vector subspace of C
N, except for the zero sequence.

Proof Apply Theorem 3.1 to {a j} j≥ J and use Theorem 1.3.

5 Universality on Open Subsets

By working a little harder, it is also possible to generalize Theorem 1.2 for open sub-

sets of Riemann surfaces. Call an exhaustion regular if it has the four properties of

Lemma 4.1. Now, let Ω ⊂ M be an open subset, and let {Kk}, {Ll} be two regu-

lar exhaustions of Ω. For each k ∈ N (respectively l ∈ N) , let Pk (respectively Ql)

be a connected component of Ω \ Kk (respectively Ω \ Ll). Two sequences of pairs

{Kk, Pk}k∈N and {Ll, Ql}l∈N such that Pk+1 ⊂ Pk for all k ∈ N and Ql+1 ⊂ Ql for all

l ∈ N are said to be equivalent if and only if for all k ∈ N there exists lk ∈ N such that

Qlk ⊂ Pk and for all l ∈ N there exists kl ∈ N such that Pkl
⊂ Ql. Such an equivalence

class will be called an end of Ω.

Definition 5.1 An end E of Ω meets S ⊂ M \ Ω if there is a point s ∈ S such that

for all choices of {Kk, Pk}k∈N in E and for all k ∈ N, we have s ∈ P̃k, where P̃k is the

connected component of M \ Kk containing Pk. Similarly, a connected component P

of Ω \ K meets S ⊂ M \ Ω if there is a point s ∈ S such that s ∈ P̃.

The next result links the ends of Ω with the complementary components of arbi-

trary compact subsets of Ω.

Lemma 5.2 Let Ω ⊂ M be an open set, let S ⊂ M \ Ω be any set, and let K ⊂ Ω be

a compact subset such that hΩ(K) = K. If each end of Ω meets S, then each connected

component of Ω \ K meets S.

Proof Let P be a connected component of Ω \ K such that P̃ is disjoint from S, and

consider a regular exhaustion {K j} of Ω. By definition of a regular exhaustion, there

exists J0 ∈ N such that K ⊂ K j for all j ≥ J0. Hence, we can find P J0
a connected

component of Ω\K J0
such that P J0

⊂ P, for otherwise we would have P ⊂ K J0
, which

in turn would mean that P is relatively compact in Ω, contrary to the hypothesis that

hΩ(K) = K. We shall now show by induction that it is possible to choose a sequence

{P j} j≥ J0
of connected components of Ω \ K j in such a way that P j+1 ⊂ P j for all
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j ≥ J0. P J0
is already chosen, so suppose that P j is defined for j ≥ J0. First note

that P j is not contained in K j+1, otherwise it would have to be relatively compact, as

above. Now, let U be a connected component of P j ∩ (Ω \ K j+1) 6= ∅ and define

P j+1 ⊂ Ω \ K j+1 as the connected component containing U . Also define F to be the

connected component of Ω \ K j containing P j+1. Since P j+1 contains U , we have

P j+1 ∩ P j 6= ∅ and thus F = P j , which shows that P j+1 ⊂ P j . But then {K j , P j} j≥ J0

defines an end of Ω which does not meet S.

A result analogous to [8, Lemma 4.1] now follows easily from Lemma 5.2.

Theorem 5.3 Let M be an open Riemann surface, Ω ⊂ M an open subset and {a j} j ⊂
M \ Ω a countable set such that, if we denote by A the set of limit points of {a j}, then

each end of Ω meets A. Then, given f ∈ O(Ω), ǫ > 0 and N ∈ N, there exist n ∈ N

and b1, . . . , bn ∈ C such that d( f ,
∑n

j=1 b jC( · , a j+N )) < ǫ.

Proof By Lemmas 4.1 and 5.2, choose {Kk} a regular exhaustion such that each

connected component of Ω \ Kk meets A. It is easy to show that for every k ∈ N,

each connected component of M \ Kk contains a connected component of Ω \ Kk,

and thus contains an element of A. Therefore, pick m ∈ N large enough so that
∑∞

k=m+1
1
2k < ǫ/2 and apply Theorem 3.1 to {a j} j>N and Km to obtain complex

numbers b1, . . . , bn such that

sup
Km

∣

∣

∣

∣

f (z) −

n
∑

j=1

b jC(z, aN+ j)

∣

∣

∣

∣

<
ǫ

2m
.

Setting θn
N (z) =

∑n
j=1 b jC(z, aN+ j) and using the fact that Kl ⊂ Km for all l ≤ m, we

get

d

(

f ,
n

∑

j=1

b jC( · , aN+ j)

)

=

m
∑

k=1

1

2k

supKk
| f − θn

N |

1 + supKk
| f − θn

N |

+

∞
∑

k=m+1

1

2k

supKk
| f − θn

N |

1 + supKk
| f − θn

N |
< m sup

Km

| f − θn
N | +

ǫ

2
< ǫ.

Finally, we find a generalization of Theorem 1.2.

Corollary 5.4 Let M,Ω and {a j} j be as in the preceding theorem. Then, there exists

a sequence {b j} j in C with the property that, given f ∈ O(Ω), there exists an increasing

sequence {nk}k in N such that

lim
k→∞

d

(

f ,

nk
∑

j=1

b jC( · , a j)

)

= 0.

Moreover, the set of such sequences {b j} j is Gδ and dense in C
N, endowed with the carte-

sian topology, and contains a dense vector subspace of C
N, except for the zero sequence.

https://doi.org/10.4153/CJM-2011-013-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-013-x


Universal Series on a Riemann Surface 1037

Proof Use Theorems 5.3 and 1.3.
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