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Abstract

We apply superadditivity and monotonicity properties associated with the Jensen discrete
inequality to derive relationships between the entropy function of a probability vector and a
renormalized arbitrary sub-vector. The results are extended to cover other entropy measures
such as joint entropy, conditional entropy and mutual information.

1. Introduction

Let X be areal linear space, C a convex subsetand f : C — R areal convex mapping.
Suppose £ is a finite nonempty set of natural numbers with p; > O and §; € C for all
i € #. Here and subsequently we write P; := 3., p; for I a nonempty subset of .#
(denoted by a single upper-case letter). Jensen’s discrete inequality states that

f (% Zpis,) <5 L P 6

iel iel
For some related results, see [2]. We write

S(C, R) := the linear space of all real functions on C;
27 := the >power set of &, that is, the set of all subsets of #;
P = {pilics,pi >0 Vie S,
P, = (p; = (pi}ics, J €27}, the set of all subvectors of p; '
Z = {&}ics & € C, Vi € F); |
Zs =& = (£}ies, J €27), the set of all subsets of 2.
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516 S. S. Dragomir and C. J. Goh {2}
In {2], Dragomir et al. considered the functional

F:S(CCRYx2'  x Py xZys—> R
given by
1
F=F(f,J,PJ,§J)=ZPif(Ei)—PJf (FJZP.'&)-
ieJ ie

Henceforth we assume that p and & are fixed, so that F is essentially dependent on
only the first two arguments, thatis, F(f, J, p;, &,) = F(f, J). The following results
were obtained in {2].

THEOREM 1.1. (i) As an index function on 2°, F(f,-) is superadditive, that
is, if J, K € 27 with JNK = @, then '

F(f,JUK) > F(f.J)+ F(f, K) > 0.

(ii) As an index function on 2, F(f,-) is monotone, that is, if J, K € 2 and
K C J, then

F(f,J) 2 F(f,K) =2 0.

COROLLARY 1.2. We have

(i) max;os F(f,J)=F(f,#)=0;
(ii) for every J € 27 with |J| > 2,

F(f, J) > max [p.f ©)+p,f &) ~ (i +p)f (M)] >0
ijes Di +pl
In the special case J, = {1, 2, ... , k}, we denote F(f, J,) by
k 1 k
F(f) =Y _ pif &)= Pif (Fk > pisi) > 0.
i=1 i=1

Here, as subsequently, P, := Zf;l pi for k (a lower-case letter) some positive integer.
We then have the following further corollary. :

COROLLARY 1.3. We have

(1) max;es 20 F(f, )= F(f) =0

i pi&i+p;é; .
() Fe(f) = ,max, pif &) +pif&)—(pi+p))f ot > 0;
(i) F(f) = Foi(f) = Fa(f) = -~ = R(f) = 0. !
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These superadditivity and monotonicity properties of the functional F have appli-
cation to bounds for entropy functions in information theory in the case of the convex
function f (-) = —log,(:) (b > 0). Suppose a random variable X has a finite range.
The entropy of X is a measure of the uncertainty associated with it. If some prior
information allows us to restrict the possible outcome of X to some subset of the
original range, without any change in the relative probability distribution, then it is
of interest to relate, by means of appropriate bounds, the uncertainty of the original
random variable to that of the restricted one. In this paper some such bounds are
established.

2. Bounds for the entropy mapping

Suppose X is a discrete random variable having range R = {x,,{ € #} and that
Pr(X = x;) = p; > 0(i € #). Let p be the corresponding probability vector. The
b-entropy (or more briefly the entropy) of X is defined by

Hy(X) = Hy(p) := )_ pilog,(1/p.)
iesf

(see {3]). The first inequality of the following bound on H,(X) is well-known in
information theory (see, for example, [3]). The second was established as Theorem 4.3
of [1].

THEOREM 2.1. The entropy of X satisfies

0 < log, |4 - Hb<X)sn[|f|Zp, }
ies

Furthermore, H,(X) = O ifand only if p; = 1 for some i; and Hy,(X) = log, |.#] if
andonly if p; = 1/| | foreach i € S.

Suppose we wish to relate the entropy of some renormalized sub-probability vector
of p to that of p. For J C #, define a new random variable X; having range
R, := {x;, i € J} and probability distribution {pi’ =pi/P; >0,ieJ}. Putp, =
{p],j € J}. The entropy of X, is then given by Hy(X,) := }_,, pj log, (1/p}).

THEOREM 2.2. We have
log, | £ — Hy(X) = n}ax {Pllog, |J| — Hy(X )]}

> max {(pi +p;)llog,2 — Hy(X;;)]} = 0. 2.n

I<i<j <|#|
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518 S. S. Dragomir and C. J. Goh [4]
PROOF. We may express H,(X ;) as

Hy(X)) = ) % 1o, (Ps/p;) = log, P, + - Zp, log, (1/p,) -

jeJ . ]E/

Also

Y pelog,(1/pe)

feu

Hy (X)) = log,(pi + p;) + 3
foralli,j € 4.
Setting f (-) = —log,(-) and §; = 1/p; in Corollary 1.2 yields

log, |- #| — Hy(X)

_ |71
- Jerzr}’zg(#” |: [logb ( ZPJIIOgb

]6.’

2 1
>  max i+pj)|lo — log, (1
max [(p p,)[ 8 <p1+p,-) pitp & Pelogy( /pe)]]

>0.

Inequality (2.1) follows from

J
log, (U) - = Zp, log,(1/p;) =log, |J| — Hy(X ;)

P" jG.’
and
log'( 2 ) L log,(1/pe) = log, 2 — Hy(X;iiy)
- De P = — fp Ay 5y).
b pi+p; pitp & b b tij)
. We may define the random variables X, k = 2,3, ... , |.#|, where X| 5;=X and X
has range {x,, x2, ..., x¢} and corresponding probability vector {p,/ P, p2/ P, ... ,

pi/ Pi}. Corollary 1.3 yields the following.
COROLLARY 2.3. With the above assumptions,

log, | #] — Hy(X) = Py [108b(|f| -1 - Hb(X|J|-1)]

>
> ... > P[log,2 — Hy(X,)] = 0.

Theorem 1.1 (i) can also be used to derive a relationship between the entropies of
a probability vector and a pair of its mutually exclusive sub-probability vectors, after
renormalization. We address the situation in which .# decomposes properly into J
and K, thatis, F = J UK withJNK =@ and J, K # 0.
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THEOREM 2.4. Let the random variables X ; and Xy have ranges R, and Ry
respectively, with corresponding probability vectors

p’ ={pi/P;,i€J} and p*={pi/Pk,icK}.
Then ,
log, |.#| — Hy(X) > ) Pallog, |A| — Hy(X4)] = 0. 22

A=J.K

PROOF. Setting f (-) = —log,(-) and x; = 1/p; in Theorem 1.1 (i) provides

log, |.4] — Hy(X) > ) [Zp.»log,,pi + Py log,,(u!/P,)]

A=1K Liea
Pi
= Z Py (Z IOgb + log, |A|)
A=J.K ieA

whence we have the desired result.

More interesting results can be deduced from Theorem 2.4. Define a new random
variable Zby Z =1if X e R;and Z =0if X € Rx. ThenPr(Z =1) = P, and
Pr(Z = 0) = P¢ with P; + Px = 1, |.#| = |J| + | K| and the entropy of Z is given
by

Hy(Z) = ) Pylog,(1/Ps).

A=J K
We may rewrite (2.2) as

[Z]
log, (W) > Hy(X) — Z PyHy(X4).

A=J,K
The right-hand side may be expressed as

Zp,log,,—— > Zp,logb =Y P logb - = H(2).

iesd pi A=J.K icA pi A=J.K

Since 0 < H(Z) < log, 2, we have the following.

COROLLARY 2.5.

. |Z|
0 < Hy(X) -;;KPAH,,(XA) = H(Z) < min [logb 2,log, (W)} . Q3

If |7} = |K| = |.#]/2 in (2.3), then log,(|.#|/ (/17| K|P¥)) = log,2 for all P,

and Py such that P; + Px = 1 and the last term in (2.3) is equal to log, 2 for all
probability distributions. If |J| # | K|, the minimum is dependent on the relative
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magnitude of |J| and P,;. In fact, a little analysis allows (2.3) to be expressed in a
more explicit form. Suppose

|J| < |£1/2 < |K]|. 24)

The difference between the two terms in braces in (2.3) is

IK| Bd

|Z]
log, [ —' ) _log,2 = P, log, — + log, 2.,
Og”(IJl“’llKl”x 08,2 = Fs108, 171 T 108 5

which is linear in P,, and by virtue of (2.4) we have
log,(IK1/|J]) > O, log,(I#1/(2IK[)) <O.

Thus the difference is negative when P, = 0 and positive when P, = 1. At the
intermediate value of :

log, 21K /1.2 1)
Pp=pP==—"___"
T T log (K I/ 1)

the difference is zero. The case where |J| > {#£|/2 > | K| is completely symmetrical.
Thus the second inequality of Corollary 2.5 can be rewritten as

log,(I21/1K1) + P, log,(IKI/1J)  if (1] < K|, P; < P})
H(Z) < or (|J| > |K|, P, = P}), (2.5)

log, 2 ' ‘ otherwise.

A further refinement to the lower bound of H,(Z) is possible. On applying the
second inequality of Theorem 2.1 to the random variable Z, we obtain

. 1 : . . 1
H,(Z) > log, 2 — i [2(PE + P}) - 1] =log,2 — i (Px = P):.  (26)
On combining (2.5) and (2.6), we obtain a tighter bound than that of Corollary 2.5.
COROLLARY 2.6. We have
1
0,log,2 — — (Px — P;)*
maX{ 08, lnb( x — P;) }

< Hy(Z) = Hy(X) = ) PuHy(X4)

A=J K
log,(IZ1/1K]) + Pylog,(IKI/1J)) i (1J] < |K|, P; < P})
< or (IJ] > |K|, P; =2 P}),
log, 2 otherwise.
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3. Extension to joint entropy
Let X, Y be random variables having respective ranges R = {x;,i € £} and

S = {y;,J € £} and joint probability distribution p(x, y). The joint entropy of X
and Y is defined as

Hy(X,Y):=Y > p(x,y)log, (3.1)

x€R yeS

1
px,y)

For the index subsets J € 2¢ and K € 2, we define a pair of new random variables
X ; and Y having ranges R; := {x;,i € J} and S¢ := {y;, i € K} respectively. We
introduce the notation

Pk 3=ZZP(X,}’), pik(x,y) :=px,y)/ P

x€R; yeSx

and define the joint entropy of X; and Yy as

1
Hy(X,, Yx) := pik(x, y)log, ——.
ooE A,EZDJ )ezs; " Pk (x,y)
THEOREM 3.1. With the above assumptions, we have:

(i) log,|# x Z|— Hy(X,Y) > Pigllog, |J x K| — Hy(X,, Yx)] > 0;
(ii) if(J, M)and (K, N) provide proper decompositions of & and £ respectively,
then

log, |.# x £| — Hy(X,¥) > Y > Pagllog,|A x Bl — Hy(X4, Y5)] = 0.

A=J,M B=K,N

PROOF. (i) Setting f (-) = —log,(), pi = p(x,y) and § = 1/p(x,y) in Theo-
rem 1.1, we obtain

YD px,y)log,p(x,y) +log, |V x K|

x y

=log,|.# x Z| - Hy(X, ¥)
> Y px,y)log,p(x,y) +log, |/ x K|

x€R; yeSx

= Psx [log,, 17 x K{+Y_ D pixix,y)log,psk(x, y)}

x€R; yeSx

= Py [log, |J x K| — Hy(X,, Yx)].
(ii) The set £ x .Z is the union of four disjoint sets:

FIxL=UxK)YUMxN)U( xN)UM x K). 3.2
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On putting f (-) = —log,(-), p; = p(x,y) and & = 1/p; in Theorem 1.1, we get

F(—log,(), # x £) = Y > F(—log,(),A x B). (3.3)

We have A=J.M B=K.N

F(—logy("), # x 2)

1
= Py elog, ( 2
5

—IR x S|> YD px,y)log,

ek yes P( Y
=log, |# x Z| - H,(X, V). 34
Alsofor A =J, M and B = K, N we have
F(—log,(-),A x B)

1
= Paplog, (EIRA X SB) Z Zp(x y) log, ( )

X€R, yeSH

= Z Zp(x,y)log,,p(x,y) +log, [R; x Skl

x€R4 yeSs

= Pas [log,, |Ax NI+ YY" paslx,y)log, pas(x, y):l

X€R, yESH

= Pap [log, |A x B| — Hy(X4, Yp)], (3.5)

since p(x,y) = Pap-pas(x,y)and 3 . > ¢ pas(x,y) = 1. Equations (3.3)—
‘(3.5) taken together imply part (ii) of the theorem.

Theorem 3.1 (ii) leads directly to the following corollary.
COROLLARY 3.2. With the above assumptions we have

log, |.# x &| — Hy(X, Y)
= max {Pyxllog, | x K| — Hy(X,, YO)] | I x K € F x £, J, K # 0}

> ‘,I?g} {(pim + Pin + Pjm + Pjn)llog, 4 — Hy(X iy, Y(m,n])]] > 0.
m',ne.z’

A result similar to Corollary 2.6 can be established for joint entropy.

COROLLARY 3.3. Suppose (J, M), (K, N) provide proper decompositions for %
and & respectively. Then

max[Ologb4—————[ YD) P, - ]]

A=JM B=K N
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SHX, V)= Y Y PasHy(Xa, Ya)

A=J,K B=K,N

< min {log, 4, 1 |7 x 2]
< min Ogb . Ogb HA=J'M ]..IB=K'N |A < B'PAB .

PROOF. First define the new random variable Z by

if(X,Y)eJ xK,
if (X,Y)e M x N,
if (X,Y)eJ xN,
f(X,Y)eM x K

PBOW N e

and put g; := Pr(Z = i) fori = 1, 2, 3, 4. Then Z?_, q,- = 1 and the entropy of Z is

Hy(Z)= ) ) Paslog,5—,

A=J,M B=K N
which satisfies the usual entropy bound

0 < Hy(Z) < log, 4. (3.6)
Now

0< HX, V)— ) Z PasHy(X 4, Yp)

A=J,M B=K,N

= Y px,y)log, (x y) =2 D P ) pas(y)log,———

(x,y)eRxS A=J .M B=K,N (x,y)ER, xSp Pa ( y)
= Y plx, ) log, ~——- Z Pas Y Pas(x,y)log, ( )

(x,y)ERXS B=K,N (x,y)ERAXSp

=2 D logo— Z p(x,y) = Hy(2). 3.7)

A=J.M B=K.N Pas (x,y)ERAx S5

Next, we rewrite (3.1) as

Hy(Z) = Hy(X,Y) = Y )" PasHy(X4, Ys)

A=J,M B=K,N

|# x Z| )
<lo . 3.8
=08 (nA=J,M I_IB=K,N |A x B|Fs (3.8)

The second inequality of the corollary thus follows from (3.6)—(3.8). Furthermore,
applying Theorem 2.1 to H,(Z), we have

0 <log, 4 — Hb(Z)<1—Z|: Y Y P ]
A=J,M B=K,N
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which together with the fact that H,(Z) > 0 yields the first inequality of the corollary.

In a similar way we may prove the following results for partial superadditivity and
partial monotonicity.

COROLLARY 3.4. (i) LetJ €2*,J #@. Then
log, |# x Z| — Hy(X, Y) = Py[log, | x Z| — Hy(X,, Y)] = 0;

(i) log, |.# x £| — Hy(X, Y) = max{P,[log, |/ x Z| - Hy,(X;, D] | J €27,
J # 0}
(iii) if (J, M) constitutes a proper decomposition of #, then
log, |.# x £| — Hy(X, ¥) > Y Pallog,|A x £| — Hy(X4, )] = 0
A=IM
(iv) and

. |£]
0 < Hy(X,Y) — A;M PyHy(X,, ¥) < min [10g,, 2, log, [W )

Similar results can be obtained in the second variable.

4. Some quasi-superadditivity / monotonicity properties
of conditional entropy

Let X and Y be two random variables having the ranges R := (x; | i € &} and
S := {y; | i € &)}. For index subsets J € 27, K € 2%, we define the conditional
probability

_ pix(x,y)
pik(x | y)i=——7=-,
pik(y)

where
pik(y) == ZP(«\’-,}’) and ZPJK(X |y)=1 Vye S.

x€R, x€R;

For J € #, the conditional entropy of X, given Y is defined by

Hy(X; 1Y) =) D prex,y)log,

x€R, yesx pigex|y)
This is related to the joint entropy by
Hy (X, | Y) = Hy(X,, Y) — Hy(Y). 4.1

For this partial conditional entropy, we have the following superadditivity and mono-
tonicity properties.
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THEOREM 4.1. As an index set mapping, P;[log, |J|—H,(X, | Y)]is superadditive
over J, that is, if (J, M) provides a proper decomposition of .#, then

log, |2 — Hy(X | ¥) = Z Pyllog, |A] — Hy(X4 | V)] = 0.

A=IM
PROOE. From (4.1) with X in place of X, Corollary 3.4 (iii) implies that
log, |#] +log, || — Hy(X | Y) — Hy(Y)
> ) Pullog, |A| + log, |£| — Hy(Xx | Y) — Hy(Y)],

A=JM
which is equivalent to

log, |#| — Hy(X | ¥) = Y Pallog, |A| — Hy(X4 | )1+ H,(Y)

A=J M

—log, |Z1+ Y Pallog, || — Hy(Y)]

A=J M

= ) Pullog,|Al — Hy(X4 | V).

A=J M

The following corollary follows directly from Theorem 4.1.

COROLLARY 4.2.
log, | £l —Hy(X | ¥) = rjrg};s{P/[log,, [J| — Hy(X; | D]}
J#9
> 5133;{(17,' + pjllog, 2 — Hy(X(ijy | ]} = 0.

Similarly, the following result follows directly from Corollary 3.4 (iv).

COROLLARY 4.3. Suppose (J, M) is a proper decomposition of #. Then

: Ed
O<HX|D —A;M P H,(X,4 | Y) <min [logb 2, logb [W .

Superadditivity and monotonicity properties similar to those of Theorem 3.1 and
its corollaries do not in general hold for conditional entropy. However, for the partial
conditional entropy

1
Hy(X | Y¢) := Y Y psx(x,y)log, STy = X Yo - Hy(Xo),

x€R yeSg

some quasi-superadditivity and quasi-monotonicity properties can be established for
the second argument in H,(- | -).
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THEOREM 4.4. As a mapping on the index set K, Pxllog|#| — Hy,(X | Yx)] is
quasi-superadditive, that is, if (K, N) is a proper decomposition of £, then

IKIP"INIP”>

1 Fl-H,X|Y

Z Pgllog,|.#| — Hy(X | Yp)] + log, (

B=K.,N

PROOF. Using the (partial) superadditivity of the joint entropy function H,(-, -) in
the second argument (cf. Corollary 3.4 (iii)), we have

log, |.# x £| — Hy(X, Y) = ) Psllog,|# x B| — Hy(X, ¥s)] > 0,
B=KN
which is equivalent to

log, |.#| + log, || — Hy(X | Y) — Hy(Y)
> Y Psllog, |.#| +log, |Bl — Hy(X | Ys) — Hy(¥s)]

B=K N
or .
log, |-#| — Hy(X | ¥) > ) Psllog, |.#| — Hy(X | ¥5)]
B=K.,N
+ Hy(Y) —log, |£| + ) Psllog, |B| — Hy(¥5)].

B=K,N

As Hy(Y) = 3 p_ v PsHy(Ys) > 0and Py + Py = 1, the desired result follows.

THEOREM 4.5. Let K € 2%, K # Q. Then Pxllog|#| — Hy(X | Yx)] is quasi-
monotone as a mapping on the index set K, that is,

| o
o8y |71~ H(X | 1) > Pelog, 11 = HoCX | Yol +1og, (1 )

PROOF.. Using the partial monotonicity of the joint entropy function H,(-, -) in the
second argument (cf. Corollary 3.4 (i)), we have
log, |Z] +log, |-L| — Hy(X | ¥) — Hy(Y)
> Pkllog, |#] +log, |K| — Hy(X | Y¢) — Hy(Yx)],
which is equivalent to
log, |.#| — Hy(X | Y) = Pxllog, |£] — Hy(X | Yk)]
+ Hy(Y) —log, |.Z] + Py log, | K| — Px Hy(Yx).

Since Hy(Y) > Py Hy(Yx) + Pk Hy(Yeo\k) = Px Hp(Yx), the conclusion of the
corollary follows.
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Given J C £, K,J C &, J, K # @, we define the conditional entropy of X,
given Yy by

1
Hy(Xy | Y¢) := ) ) pux(x,y)log, Ty = e Y = HuY).

XERJ yESK

THEOREM 4.6. Let (J, M), (K, N) be respectively proper decompositions of %
and Z. Then

log, |#| — Hy(X | Y) = > ) Pasllog,|Al — Hy(X4 | ¥5)]

A=J,M B=K,N
|K|P"|N|P"’)

+logb( 2

PROOF. From the superadditivity property of H,(X, Y) (¢f. Theorem 3.1 (ii)) and
(4.1) with Y replaced by Yg, we obtain

log, |.# x £| — Hy(X | Y) — Hy(Y)
> Y ) Pasllog,|A x Bl — Hy(Xa | Ya) — Hy(Yp)],
A=J .M B=K,N
which is equivalent to

log, |.#| — Hy(X | ¥) = ) ) Pasllog,|A| — Hy(X4 | Y5)] + Hu(Y)

A=J,M B=K N

—log, |21+ Y Y Pasllog, |B| — Hy(¥s)]. (4.2)

A=J.M B=K N

Since for B = K, N we have

> Paplog,|B| = Pylog,|B|

A= M
and
. Z PABHb(YB) = PBHb(YE)v
A=J M
we deduce that

IKIP"lNIP”> (IKIP"INIP”)
H,(Y) - E PgH,(Yp) + 1o (——— > lo 1, 4.3
b A s H,(Yp) 48 2] Ep 2] 4.3)

as Hy(Y) = Y 5_ x.n PsHy(Yg). The conclusion of the theorem follows from (4.2)
and (4.3).

The following quasi-monotonicity property of conditional entropy follows from the
monotonicity of joint entropy (see Theorem 3.1 (i)). The proof is similar to that of
Theorem 4.5.
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COROLLARY 4.7. Let K € 2%, K # 0, J € 27, J # 8. Then we have

log, [£| — Hy(X | Y) > Psxllog, |7] — Hy(X; | Yx)] +log, (IK|7/|£]).

5. Extension to mutual information

The marginal probability distributions of two random variables X, Y with joint
probability distribution p (x, y) are respectively

p(x)=) p(x,y) and gO) =) p(x,y),
y x

sothat ) p(x) = land )_ q(y) = 1. Here 3, }°  are by default respectively
summations over the full ranges of R and S. Define the mutual information of X
and Y by

p(x,y)

L(X,Y):= ,y) log, ————.
b( ) ZZP(X y) ogbp(x)q(y)

x€R yeS§

For some index subsets J € 2 and K € 2¥, we define the pair of new random
variables X; and Yy having ranges in R, := {x;,i € J} and Sx := {y;,i € K}
respectively.

The mutual information of X ; and Yy is defined as

pik(x,y)

L(X,, Yx) := ZZP!K(X,}’) log, m

xeJ yek

THEOREM 5.1. With the above assumptions,

W) L(X,Y)= Pixlp(X,, Y);
Gi) if(J, M), (K, N) are proper decompositions of & and £ respectively, then

LX,¥)= Y Y Pash(Xa, Ya).

A=J.M B=K.,N

PROOF. (i) Set f (-) = —log,(-), pi = p(x,y) and & = p(x)q(y)/p(x,y) in
Theorem 1.1 to obtain

p(x)q(y) px)q(y)
‘°gb(¥¥”""”m) S reten (5200

=L(X,Y)
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> Py logb( ZZ ., P( )‘I(}’))

xeR_, y&€Sx p(x }’)

=S Z p(x y) (p(x)q(y))

x€R; yeSk p(x,y)

= Pk (logb [Z Zp(x)q(y)] > psk(x,y)log, (p(KZ(};))))

x€R; yeSk xeR; yeSx

Psk(x,y)
= Pk [};’hg;l’/x(x y) log, PJ(X)CIK()’):' = Py l,(X,, Yx).

(ii) From the decomposition (3.2), an application of Theorem 1.1 leads to

p(x)q(y)
y (— lOgb('), j X Z,p(x, y), m—)

>y ) f(—log,,(-),A xB,p(x,y),‘ip(%’;l)). (5.1)

A=J,M B=K,N (x,y)
Furthermore, from the proof in (i) above, we have
p(x)q(y)
px,y)

P()90)
px,y)

for A =M, J and B = K, N. The desired result follows from (5.1) and (5.2).

y (_ logb(')y j X _?, P(x’ y)’ ) = Ib(Xv Y)’ (52)

Z (— log,(-), A x B, p(x,y), ) = Ppply(X 4, Yp)

The following corollary follows immediately from Theorem 5.1 (i).

COROLLARY 5.2. With the above assumptions, we have
I,(X, Y) = max {P;xl,(X, Y)}
PEICI
P£KCEL
Z T?}{(Pl.m + Pj,m + Pi,n + Pj,n)Ib(X(i,jh Y(m.n))] > 0.

mnes

A sharper bound on the various mutual information measures can be established as
follows.

THEOREM 5.3. Suppose (J, M), (K, N) are respectively proper decompositions of
& and ¥. Then

1
max {0, > max{0, log, 2 — (P — P,,)Z]

(A,B)=(J.M),(K,N)
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— min {log,, 4, log, ( 1.7 x 2] )]
nA:J.M nB=K.N |A x B|Fse
SLX, V)= Y Y Pasly(Xa, Ya)

A=JM B=K,N

| | 2]
S e |

(A,B)=(J,M),(K,N)

1 2
—maX{O,lOgb“—m[“ Z Z PAB—I]]

A=J,M B=K N

PROOF. From the identity I, (X, Y) = Hy(X) + Hy(Y) — H,(X, Y) we derive

C:=LX,Y)— D> D Pasly(Xs, ¥5)

A=J M B=K,N

= Hy(X)+ Hy (N = Hy(X, )= 3" Pan(Hy(Xa)+Hy(Ys) — Hy(Xa, Y5)

A=J M B=K N
= Hy(X)— Y PaHy(Xa) + Hy(Y) = D PsH,(Ys)
A=J M B=K,N
~Hy(X,Y)+ Y PisHy(X;, Y5) = Y PusHy(Xu, Ys).
B=K,N B=K,N

From Corollary 2.6, we have
o :=max {0, log 2—L(P — Py} < Hy(X)— Y PaHy(Xa)
1 - s b lnb J M = b Allp A

A=J M
. Ed
< min [log,,2, log, [IJI”J]Ml”M = B,

and

1 .
o 1= max [O, log, 2 — H(PK - PN)Z} < Hy(Y) - Z Py Hy(Y5p)

B=K,N
. |-Z|
< min {logb 2, log, I:IKIP"INI””“ = B,.

From Corollary 3.3, we have

1
a3 :=max{0,logb4—m|:4 Z > P}B—lj“

A=J.M B=K,N

SH(X,Y)— )" D" PasHy(Xa, Ys)

A=J .M B=K N
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. |# x 2|
< min {log, 4, log, l_[A_J - HH 1A % Bl = Bs.

Putting these results together, we have

gt —F/<C<Bi+hh—o

and the theorem is proved.
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