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ON MONOTONICITY AND SUPERADDITIVITY PROPERTIES OF
THE ENTROPY FUNCTION

S. S. DRAGOMIR1 and C. J. GOH2

(Received 28 November 1998; revised 22 November 1999)

Abstract

We apply superadditivity and monotonicity properties associated with the Jensen discrete
inequality to derive relationships between the entropy function of a probability vector and a
renormalized arbitrary sub-vector. The results are extended to cover other entropy measures
such as joint entropy, conditional entropy and mutual information.

1. Introduction

Let X be a real linear space, C a convex subset and / : C -» R a real convex mapping.
Suppose y is a finite nonempty set of natural numbers with p, > 0 and £, € C for all
i e c/. Here and subsequently we write P/ := Xwe/ P> f°r ' a nonempty subset of J
(denoted by a single upper-case letter). Jensen's discrete inequality states that

\ ' iel I iel

For some related results, see [2]. We write

S(C,

SC

= the linear space of all real functions on C;

= the power set of J', that is, the set of all subsets of J^;

= [Pi)ies,Pi > 0 Vi g / ;

= {py = [pi}iej, J e 2"*}, the set of all subvectors of p;

= {$J = [&}iej, J e 2-*}, the set of all subsets of SC.
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516 S. S. Dragomir and C. J. Goh [2]

In [2], Dragomir et al. considered the functional

F : S(C, K) x 2J x &, x X, -+ IR

given by

F = F</, 7, py, $,) = £/>,/ (ft) - P,/ ( i -
ie./ \ J ieJ }

Henceforth we assume that p and % are fixed, so that F is essentially dependent on
only the first two arguments, that is, F(f, J, pj, £/) = F(f, J). The following results
were obtained in [2].

THEOREM 1.1. (i) As an index Junction onlJ, F(f,)is superadditive, that
is,ifJ,Ke2JfwithJnK = 0,then

F(f, JUK)> F(f, J) + F(f, K) > 0.

(ii) As an index function on 2**, F(f,-)is monotone, that is, if J, K € 2J and
K C J, then

F(f, J) > F(f, K) > 0.

COROLLARY 1.2. We have

(i) max,e2J. F(f, J) = F(f, J) > 0;
(ii) for every J € 2* with \J\ > 2,

F(f, J) > max \Pif (ft) + Pjf (ft) - (p, + Pj)f [EiktEAXl > o.

In the special case Jk = {1, 2 , . . . , k], we denote F(J, Jk) by

* / 1 * \

Fk(f) := 2p,/(ft) - PJ - J]p,ft > 0.

Here, as subsequently, P* := 5Z,=i Pi f°r^ (a lower-case letter) some positive integer.
We then have the following further corollary.

COROLLARY 1.3. We have

(i) maxJeJt,jt0 F(f, J) = Fk(J)> 0;

(ii) Fk(f)> imMt [/>,/(ft) + pjf (ft) - (p, + Pj)/ ( P p ' . ^ * ' ) ] ^ °!
(iii) Fk(f) > F t _ , ( / - ) > F k . 2 ( f ) > ••• > F 2 ( / ) > 0.

https://doi.org/10.1017/S1446181100012256 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012256


[3] On monotonicity and superadditivity properties of the entropy function 517

These superadditivity and monotonicity properties of the functional F have appli-
cation to bounds for entropy functions in information theory in the case of the convex
function / ( • ) = — Iog6(-) (b > 0). Suppose a random variable X has a finite range.
The entropy of X is a measure of the uncertainty associated with it. If some prior
information allows us to restrict the possible outcome of X to some subset of the
original range, without any change in the relative probability distribution, then it is
of interest to relate, by means of appropriate bounds, the uncertainty of the original
random variable to that of the restricted one. In this paper some such bounds are
established.

2. Bounds for the entropy mapping

Suppose X is a discrete random variable having range R = {*,, i e ^} and that
Pr(X = x^ = pi > 0 (i € ^). Let p be the corresponding probability vector. The
b-entropy (or more briefly the entropy) of X is defined by

Hb{X) = Hb(p) :=

(see [3]). The first inequality of the following bound on Hb(X) is well-known in
information theory (see, for example, [3]). The second was established as Theorem 4.3

THEOREM 2.1. The entropy ofX satisfies

0 < log, \S\ - Hb(X) < - i - \\S\lnb L
Furthermore, Hb(X) = 0 if and only ifpt = 1 for some i; and Hb(X) = logt \<#\ if
and only if pi = \/\<?\ for each i € J.

Suppose we wish to relate the entropy of some renormalized sub-probability vector
of p to that of p. For J c . / , define a new random variable Xj having range
Rj := {xi, i € J} and probability distribution [pj := pi/Pj > 0, / € J}. Put py =
{pJ

t,j € J}. The entropy of X} is then given by Hb{Xj) := £ \ e y pj log, (l/pj).

THEOREM 2.2. We have

logb\S\-Hb(X)= max {Py[logJ7| - Hb(Xj)])

> max {(p/+p,)[log,2-//6(X(,,))]}>0. (2.1)
1<|</<|J»1
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PROOF. We may express Hb(Xj) as

J j

Also

Hb(XUJ}) = logb(p, Pi \ogbi\lPl)
e=ij

for all i,j € J'.
Setting/ (•) = — log^G) and £, = l//>, in Corollary 1.2 yields

log, \S\-Hb(X)

= max

max (
1<<<J<\S\

log ( —-—)
\Pi+PjJ Pi +Pj

[4]

]]
Inequality (2.1) follows from

lOg6 ( i^l) -^r

and

I ) 1 E
P> + Pj ) Pi + Pj fr^j

- Hb(Xj)

= log* 2 - Hb(X{iJ)).

We may define the random variables Xk,k — 2, 3 , . . . , |J^|, where X^^=X and Xt

has range {Jti, * 2 , . . . , ^ } and corresponding probability vector {pi/Pk,
pk/Pk}. Corollary 1.3 yields the following.

COROLLARY 2.3. With the above assumptions,

>--->Pi[\ogb2-Hb(X2)]>0.

Theorem 1.1 (i) can also be used to derive a relationship between the entropies of
a probability vector and a pair of its mutually exclusive sub-probability vectors, after
renormalization. We address the situation in which <? decomposes properly into J
and K, that is, J = J U K with J D K = 0 and J, K # 0.
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[5] On monotonicity and superadditivity properties of the entropy function 519

THEOREM 2.4. Let the random variables Xj and XK have ranges Rj and RK

respectively, with corresponding probability vectors

PJ = [Pi/Pj, i € J) and p* = {p,/PK, i € K].

Then

log, \J\ - Hb(X) > ] P PA[logb \A\ - Hb(XA)] > 0. (2.2)
A=J,K

PROOF. Setting/(•) = -log,(-) and*, = 1/p, in Theorem 1.1 (i) provides

- Hb(X) >
A=J,K \_i<=A

A=J,K \ieA r* r A I

whence we have the desired result.

More interesting results can be deduced from Theorem 2.4. Define a new random
variable Z by Z = 1 if X e Rj and Z = 0 if X € RK. Then Pr(Z = 1) = Pj and
Pr(Z = 0) = PK with Pj + PK = 1, \J?\ = \J\ + \K\ and the entropy of Z is given
by

Hb(Z)= Y, PA\o
A=J,K

We may rewrite (2.2) as

- H b ( X ) ~

The right-hand side may be expressed as

iejr P' A=J,K ieA ?' A=J,K A

Since 0 < H(Z) < log^ 2, we have the following.

COROLLARY 2.5.

0 < Hb(X) - ^ PAHb(XA) = H{Z)< min {log, 2, log, ( | y | | ^ | P , ) } • <2-3)

If \J\ = \K\ = \y\/2 in (2.3), then log , ( | ^ | / ( |7 |^ |^ | P O) = log,2 for all Pj
and PK such that Pj + PK = 1 and the last term in (2.3) is equal to log, 2 for all
probability distributions. If | J | ^ \K\, the minimum is dependent on the relative
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magnitude of |7 | and Pj. In fact, a little analysis allows (2.3) to be expressed in a
more explicit form. Suppose

| / | < \J\/2 < \K\. (2.4)

The difference between the two terms in braces in (2.3) is

l08ft2 = Pj logi W\ + logb W\l

which is linear in Pj, and by virtue of (2.4) we have

logb(\K\/\J\) > 0, logb(\S\/(2\K\)) < 0.

Thus the difference is negative when Pj = 0 and positive when Pj = 1. At the
intermediate value of

logb(2\K\/\S\)
1

the difference is zero. The case where | / | > lJ^I/2 > \K\ is completely symmetrical.
Thus the second inequality of Corollary 2.5 can be rewritten as

H(Z)<

logb(\K\/\J\) if (\J\ < \K\, Pj < P*)

oi(\J\>\K\,PJ>PJ>), (2.5)

otherwise.

A further refinement to the lower bound of Hb(Z) is possible. On applying the
second inequality of Theorem 2.1 to the random variable Z, we obtain

Hb(Z) > l o g , 2 - ^ [2(P2
K + Pj) -l}= logf t2 -^L(PK- Pj)2. (2.6)

On combining (2.5) and (2.6), we obtain a tighter bound than that of Corollary 2.5.

COROLLARY 2.6. We have

max Jo, l o g b 2 - ^ ( P K

< Hb(Z) = Hb(X) -
A=J,K

\ogb(\J?\/\K\) + Pj lof o( |A:|/ |7|) if(\J\ < \K\, Pj < P*)

or{\J\>\K\,Pj>P*),

logfc 2 otherwise.
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3. Extension to joint entropy

Let X, Y be random variables having respective ranges R = {*,, i 6 «/} and
S = [yj, j 6 J£f} and joint probability distribution p (x, y). The joint entropy of X
and Y is defined as

Hb(X, Y) := £ £ > ( * , > , ) l o g , - i — . (3.1)
xeR yeS P(*,y)

For the index subsets J e 2J and K € 2^ , we define a pair of new random variables
Xj and yv having ranges Rj := {*;, i € /} and SK := {y,, i e T̂} respectively. We
introduce the notation

PJK •= ^2 ^p(x,y), pJK(x,y) :=p(x,y)/PJK

xeRj y<=SK

and define the joint entropy of Xj and YK as

THEOREM 3.1. With the above assumptions, we have:

(i) log, \J x se | - Hb(X, Y) > PJK[logb \JxK\- Hb(Xj, YK)] > 0;
(ii) if(J, M) and (K, N) provide proper decompositions of£ and 1£ respectively,

then

log , \J x S£ | - Hb(X, Y) > J2 H PAB\\ogb \AxB\- Hb(XA, YB)] > 0.
A=J,M B=K,N

PROOF, (i) Setting/(•) = -log,(-), p, = p(x,y) and & = l/p(x,y) in Theo-
rem 1.1, we obtain

Y] Y,P(X' y) l°S»P(.x, y) + log, \J x K\
x y

= log, \J x S£ | - Hb(X, Y)

^ + logjy x K\
i yeSK

= PJK log, |7 x K\ -

= PJK[logb\JxK\-Hb(Xj,YK)].

(ii) The set ^ x j£? is the union of four disjoint sets:
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On putting/(•) = - log,() ,p , = /?(*, y) and £, = 1/p, in Theorem 1.1, we get

F(- log,(), J x jSf) > J2 E F ( ~ lo8»^)' A x

We have

F(-logb(),SxJ?)

= log, | ^ x jSf | - Hb(X, Y). (3.4)

Also for A = J,M and B = K, N we have

= P« log. ( ^ 1 ^ x 5.|) - E E P U , ,) log,

xeR/t yeSB

= PAB Uogb\A x N\

L
= P A B [ log , \AxB\- Hb(XA, YB)], (3.5)

since p(x, y) = PAB • PAB(X, V) and T,xeR/l T,yesB PAB(X, y) = 1. Equations (3.3)-
(3.5) taken together imply part (ii) of the theorem.

Theorem 3.1 (ii) leads directly to the following corollary.

COROLLARY 3.2. With the above assumptions we have

log, \J x jSf| - Hb(X, Y)

= max ( P u t l o g , \JxK\- Hb(XJt YK)] \ J x K C S x &, J, K ^0}

> max {(pim+pin +pjm +pjn)[logb4- Hb(X[U), Y{m,n])]} > 0.
t,J €±r

m,ne&

A result similar to Corollary 2.6 can be established for joint entropy.

COROLLARY 3.3. Suppose (J, M), (K, N) provide proper decompositions for
and -S? respectively. Then

max
I • —' inA i

\=J,M B=K,I\
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< Hb{X, Y) — y y PABHb(XA, YB)
A=J,K B=K,N

{ ( | J X J£ | \ 1

log* 4, log, — = .
\ 1 LA=J,M 1 i.D—K,N ' ' / J

PROOF. First define the new random variable Z by

1 if(X,Y)eJxK,

2 if(X,Y)eM xN,

3 if(X, Y)e J x N,

4 if{X,Y)eM xK

and put 4, := Pr(Z = i) for i = 1, 2, 3, 4. Then £*=1 It = 1 a n d t n e entropy of Z is

E ^nlog,-s-,

(3.6)

A=J,M B=K,N

which satisfies the usual entropy bound

Now

o < //fe(X, y) - E , YB)
A=J,M B=K,

' . y ) ^

p(x,y)logb

E PAfl(^,3')logi

PAB

lo^j~ E p
A=J,M B=K,N AB (x,y)eR^xSB

Next, we rewrite (3.1) as

Hb(Z) = Hb(X, 10 -

P(x,y)

(3.7)

A=V,Af B=K,N

, YB)

The second inequality of the corollary thus follows from (3.6)-(3.8). Furthermore,
applying Theorem 2.1 to Hb(Z), we have

lno E
A=J,M B=K,N
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which together with the fact that Hb(Z) > 0 yields the first inequality of the corollary.

In a similar way we may prove the following results for partial superadditivity and
partial monotonicity.

COROLLARY 3.4. (i) Let J e 2-*, J # 0. Then

log, \S x &\ - Hb{X, Y) > Pj[logb |7 x i f | - Hb(Xj, Y)] > 0;

(ii) log, \J x X\ - Hb(X, Y) = max{Py[logft \JxSf\- Hb(Xj, Y)] \ J e 2J,

t
(iii) if(J, M) constitutes a proper decomposition of\0, then

logfc \J-K2\- Hb(X, Y) > Y, ^Dogj, |A x jSf | - Hb(XA, Y)]>0

(iv) and

0 < Hb(X, Y) - £ P.//,(X,, y) < min {log,2, log, [ ^ J ^ L _ J J .

Similar results can be obtained in the second variable.

4. Some quasi-superadditivity/monotonicity properties
of conditional entropy

Let X and Y be two random variables having the ranges R := {*, | i € y] and
5 := {y, | i e jjf}. For index subsets J 6 2j r , AT € 2^ , we define the conditional
probability

PJK(X \y):=

where

PjKiy) ••= ^2p(x,y) and ^pjxix \ y) = 1 WyeSK.
xeRj xeRj

For 7 e ^ , the conditional entropy of Xj given y is defined by

This is related to the joint entropy by

Hb(Xj | Y) = Hb(Xj, Y) - Hb(Y). (4.1)

For this partial conditional entropy, we have the following superadditivity and mono-
tonicity properties.
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THEOREM 4.1. As an index set mapping, Pj[logb\J\ — Hb(Xj \ Y)] is superadditive
over J, that is, if(J, M) provides a proper decomposition of\#', then

log, \S\ - Hb(X | Y) > ] T PA[logb \A\ - Hb(XA | Y)] > 0.

A=J,M

PROOF. From (4.1) with X in place of Xj, Corollary 3.4 (iii) implies that

log, \J\ + log, |J£?| - Hb(X | Y) - Hb(Y)
\A\ + log, |JSf | - Hb(XA | Y) - Hb(Y)],

A=J,M
which is equivalent to

log, \J\ - Hb(X \Y)> ^2 ^ [ log , \A\ - Hb{XA | Y)] + Hb(Y)
A=J,M

A=J,M

PA[\ogb\A\-Hb{XA | Y)l
A=J,M

The following corollary follows directly from Theorem 4.1.

COROLLARY 4.2.

log, \J?\ - Hb(X | Y) = max{Py[log, |7 | - Hb(Xj \ Y)]}

> max{(p, +p;)[ log,2 - Hb(X{iJ] \ Y)]} > 0.

Similarly, the following result follows directly from Corollary 3.4 (iv).

COROLLARY 4.3. Suppose (J, M) is a proper decomposition of'<#'. Then

A—J ,M

Superadditivity and monotonicity properties similar to those of Theorem 3.1 and
its corollaries do not in general hold for conditional entropy. However, for the partial
conditional entropy

Hb(X | YK) :=J2H ( ) l

some quasi-superadditivity and quasi-monotonicity properties can be established for
the second argument in Hb(- \ •).
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THEOREM 4.4. As a mapping on the index set K, PK[\og \J\ - Hb(X | YK)] is
quasi-superadditive, that is, if(K, N) is a proper decomposition of S£, then

_ /\K\PK\N\P"\

log, \J\ - Hb(X | Y) > J2 P'llo& 1̂ 1 - H"<X I Y°K + lo& \L •
B=KN ^ | J Z r | 'B=K,N

PROOF. Using the (partial) superadditivity of the joint entropy function //,(-, •) in
the second argument (c/. Corollary 3.4 (iii)), we have

log, \J x & I - Hb(X, Y) > > PB[logb\y x B\-Hb(X,YB)]>0,
B=K,N

which is equivalent to

log, \S\ + log, |Jf| - Hb(X I Y) - Hb(Y)

> J2 PB[logb \J\ + log, |B| - Hb(X | YB) - Hb(YB)]
B=K,N

or

log, m - Hb(X \Y)> J2 Psllog, \y\ - Hb(X I YB)]
B=K,N

+ Hb{Y)-\ogb\X\+ Y, PB[log,|S|-//i(yB)].
B=K,N

As Hb(Y) > Y.B=KiN PBHb(YB) > 0 and PK + PN = 1, the desired result follows.

THEOREM 4.5. Let K e 2-Sf, K ^ 0. 77ien Putlog | J\ - Hb(X | YK)] is quasi-
monotone as a mapping on the index set K, that is,

log, \J\ - Hb{X | Y) > PK[\ogb\y\ - Hb(X | YK)] + log,

PROOF. Using the partial monotonicity of the joint entropy function Hb{-, •) in the
second argument (cf. Corollary 3.4 (i)), we have

log, \S\ + log, |jgf| - Hb(X | 7) - Hb(Y)

> Putlog, | ^ | + log, |tf| - Hb(X | YK) - Hb(YK)],

which is equivalent to

log, | ^ | - Hb(x | y) > putlog, \J\ - Hb(x | y,)]

+ Hb(Y) - log, |jSfI + PK log, |AT| - PKHb(YK).

Since #fc(y) > PKHb(YK) + Px\KHb{Y^K) > PKHb(YK), the conclusion of the
corollary follows.
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Given / c J, K, J C ±£, J, K ^ 0, we define the conditional entropy of X}

given YK by

Hb(Xj | YK) := V Y ( )l

THEOREM 4.6. Let (J, M), (K, N) be respectively proper decompositions of J
andSC. Then

log, \y\ - Hb(X | Y) > ] T J^ PAB[logb \A\ - Hb(XA | YB)]
A=J,M B=K,N

\P*\N\P»

PROOF. From the superadditivity property of Hb(X, Y) (c/. Theorem 3.1 (ii)) and
(4.1) with Y replaced by YK, we obtain

log, \J? x S£\ - Hb(X | Y)-Hb(Y)

> Yl J2 PAB[logb \AxB\- Hb(XA | YB) - Hb(YB)],
A=J,M B=K,N

which is equivalent to

log, \J\ - Hb{X | Y) > £ J2 PAB[logd \A\ - Hb{XA | YB)] + Hb(Y)
A=J,M B=K,N

-logfc|.S?|+ J2 E PAB[\ogb\B\ - Hb(YB)). (4.2)
A=J,M B=K,N

Since for B = K, N we have

A=J,M

and

• ] T PABHb(YB) = PBHb(YB),
A=J,M

we deduce that

as Hb(Y) > ^B=K N PBHb(YB). The conclusion of the theorem follows from (4.2)
and (4.3).

The following quasi-monotonicity property of conditional entropy follows from the
monotonicity of joint entropy (see Theorem 3.1 (i)). The proof is similar to that of
Theorem 4.5.
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COROLLARY 4.7. Let K e 2*, K £ 0, J e 2-*, J ^ 0. 77w?n we have

log, | J^| - Hb(X | 10 > PyK[log, \J\ - Hb(Xj | y , ) ] + log, (\K\r'/\&\) .

5. Extension to mutual information

The marginal probability distributions of two random variables X, Y with joint
probability distribution p (x, y) are respectively

(x,y) and q(y) =

so that J2xp(x) = 1 and ^2yq(y) = 1. Here J ^ , £ y are by default respectively
summations over the full ranges of R and 5. Define the mutual information of X
and Kby

For some index subsets / e 2 / and K 6 2^ , we define the pair of new random
variables Xj and Y^.having ranges in Rj := {JC(, i € J} and S* := {y,, i e T̂}
respectively.

The mutual information of Xj and YK is defined as

THEOREM 5.1. Wi/A //ie above assumptions,

(i) /*(X, n > PJKUXJ, YK);

(ii) i/(7, M), (̂ T, Â ) are proper decompositions of ^ and ££ respectively, then

h(x,Y)>

PROOF, (i) S e t / ( ) = -logfc(-), p, = p(^,y) and & = p(x)q(y)/p(x,y) in
Theorem 1.1 to obtain

= MX, r>
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(ii) From the decomposition (3.2), an application of Theorem 1.1 leads to

b ^ p l (5.1)
A=J,MR=K,N \ PKX,y) /

Furthermore, from the proof in (i) above, we have

( -logb(),y x ̂ ,p(x,y),^^P\ = Ib(X, Y), (5.2)
p(x,y) )

ogb{-),A x B,p(x,y),P(x)q(y)) = PABIb(XA, YB)
P(x,y) )

for A = M, J and B = K, N. The desired result follows from (5.1) and (5.2).

The following corollary follows immediately from Theorem 5.1 (i).

COROLLARY 5.2. With the above assumptions, we have

Ib(X, Y) = max {PJKh(X, Y)}

> max{(P,,m + Pj,m + Pt,n + Pj,n)h(XUJ], K{m,n))} > 0.

A sharper bound on the various mutual information measures can be established as
follows.

THEOREM 5.3. Suppose (J, M), (K, N) are respectively proper decompositions of
J and<£. Then

max 0, J^ m a x{°' log* 2 ~ j - I (pA - 2 1

I n(A,B)=(J,MUK,N)
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< Ib(X, Y) - Y, E P*Bh(XA, YB)
A=J.M B=K,N

— max j 0, logfc 4 — — 4
I L A=J,M B=K,N J J

PROOF. From the identity Ib(X, Y) = Hb(X) + Hb(Y) - Hb(X, Y) we derive

C := Ib{X, Y) -
A=J,M B=K,N

• libyA. , / ) — y 7 *AB \*~^b\^*- A) i i*b\ *• B) — *~*b\-**- A > * B))

A=J,M B=K,N

^ ttb(A) — j rAtib\AA) -\- nb(i ) — j rBtib\iB)

A=J.M B=K,N

-Hb(X,Y)+ J^ PjBHb(Xj,YB)- J2 PMBHb(XM,YB).
B=K,N B=K,N

From Corollary 2.6, we have

a, := max (o, logfc2 - - U P , - PMA < Hb(X) - T PAHb(XA)

and

ct2 := max (o, log, 2 - ^ ( P * - PN)A < Hb(Y) - J^ pBHb(YB)

From Corollary 3.3, we have

a 3 :=max|o , logfc4- — 4E E
L A=J,M B=K,N

< Hb(X, 50 - E E PA*Hb(XA, YB)
A=J,M B=K,N
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Putting these results together, we have

Ct\ ~\~ Q?2 — @3 ^ C ^ B\ ~|~ $2 — 0^3

and the theorem is proved.
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