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NORMED RIGHT ALTERNATIVE ALGEBRAS 
OVER THE REALS 

JOSÉ I. NIETO 

1. One of the most interesting results on real normed division algebras says 
t h a t every real normed associative division algebra is finite dimensional 
[6, Theorem 1.7.6], and hence by a classical theorem of Frobenius either 
isomorphic to the real field, the complex field, or the algebra of quaternions. 
T h u s the dimension of the algebra can only be either 1, 2 or 4. In this note we 
show in Theorem 2 t h a t if in the previous result we replace the associativity of 
the algebra by the weaker assumption t h a t it is right alternative, t h a t is, the 
relation 

(1) (pcy)y = xy2 

holds for all elements x and y in the algebra, then the algebra is still finite 
dimensional, bu t in this case to the three previous possibilities a fourth one 
has to be added, namely, t h a t the algebra be isomorphic to the algebra of 
Cayley numbers , which is of dimension 8. 

We give two proofs of Theorem 2, one of them based on Theorem 1, which 
asserts t h a t every element of a real normed right al ternative algebra with 
a uni t has a non-empty spectrum. T h u s Theorem 1 extends a basic result of 
the theory of normed associative algebras to a wide class of non-associative 
algebras. 

W e leave here open the question whether every real normed division algebra 
is finite dimensional. In other words we do not know whether the finite dimen­
sionality of the algebra can be established without assuming the relation (1). 
Since, by a theorem of Milnor [5], every finite dimensional real division algebra, 
r ight al ternat ive or not, can only be of dimension 1, 2, 4 or 8, an affirmative 
answer to our question would prove t ha t the dimension of every real normed 
division algebra can only be these powers of 2. However the algebra would 
not have to be one of the four listed in Theorem 2. 

Acknowledgement. I would like to express here my grat i tude to my colleague 
Professor S. Takahash i for fruitful talks. 

2 . Let 21 be a right al ternat ive algebra over the real field R. T h e right 
multiplication operator Ra associated to a £ 21 is defined by Rax = xa. For 
a} b} c in 21 their associator is [a, &, c] = (ab)c — a (be). Wi th this terminology 
the r ight a l ternat ive law (1) is expressed either by 

(2) Ra2 = Ra* 
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or by 

(3) [a, b, b] = 0, 

which in turn implies 

0 = [a, b + c, b + c] = [a, b, b] + [a, b, c] + [a, c, b] + [a, c} c] = 

[a, b, c] + [a, c, 6], 
that is, 

(4) [a,c,b] = - [ a , 6, c]. 

The following two formulas have been derived by Skorniakov [7] and also by 
Kleinfeld [4] for right alternative rings of characteristic not 2 (i.e., 2x = 0 
implies x = 0); hence they hold in 21. 

(5) a[(bc)b] = [(ab)c]b 

(6) [a,b,c](cb) = ([a,b,c]b)c. 

LEMMA ON INVERSES. Let % be a real right alternative algebra with a unit 1 
and let I be the identity operator on 31. Then 

(i) ab = 1 = b'a implies ba = 1, 
(ii) ab = 1 = ba if and only if RbRa = I = RaRb, 

(iii) ab = 1 = ba and abf = 1 = Z/a imply b! — b. 

Proof, (i) is an immediate consequence of (5) since &a = [(bfa)b]a = 
&'[(a&)a] = b'a = 1. In (ii), RbRa = I = RbRa means that (xa)b = x = (x6)a 
for all x 6 21, and this implies, taking x = 1, that a& = 1 = 6a. Conversely, 
let us assume ab = 1 = 6a, and let x be an arbitrary element of 21. Then it 
follows from (6) and (5) that 

(xa)b — x = [x, a, b] = (Jx, a, b]a)b = ([(xa)b — x]a)b 

= {[(xa)b]a}b — (xa)b = (xa)6 — (xa)b = 0. 

Switching now the roles of a and b one obtains similarly that (xb)a — x = 0. 
Thus (xa)6 = x = (x6)a for all x Ç 21. For the proof of (iii) we note first that 
according to (ii), RbRa = I = RaRbf, and since the multiplication of operators 
is associative, we have Rb> = (RbRa)Rb> = Rb(RaRb>) = Rb. Hence xb1 = xb 
holds for all x 6 21, and in particular for x = 1. Thus br = b. 

In the Lemma, (i) expresses that if a has a right inverse b and a left inverse b' 
then b is an inverse of a. By (ii), b is an inverse of a (in 21) if and only if Rb 

is an inverse of Ra (in the associative algebra of linear operators on 21). (iii) is 
nothing else but the expression of the uniqueness of the inverse. 

The spectrum of an element x of a right alternative algebra 21 with a unit 
over R is defined, as in the associative case, to be the set of all (a, /3) G R2 

for which x2 — 2<xx + (a2 + /32) • 1 is not invertible. We have 

THEOREM 1. Let %be a real normed right alternative algebra with a unit. Then 
the spectrum of each element x G 21 is not empty. 
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Proof. Leto^f (§1) denote the normed algebra of all linear bounded operators 
on 21. I t is clear t ha t for a <E 21, Ra £ & (21) with \\Ra\\ = | |a | | . T h e algebra 
J>f (21) is associative; / = R\ is its uni t and, as is well-known, each element 
of <=£? (21) has a non-empty spectrum. Using these facts it becomes very easy 
to prove, by contradiction, t ha t there exist real numbers a 0, Po for which 
x2 — 2a0x + (a0

2 + Po2) • 1 is not invertible. Indeed, if for all (a, P) £ R2 , 
w = x2 — 2ax + (a2 + P2) • 1 were invertible, then by (2) and (ii), Rw = Rx

2 — 
2aRx + (a2 + p2)I would be invertible in if7 (21) for all (a, p) £ R2 , which 
contradicts the non-emptyness of the spectrum of Rx inJJf (21). 

T H E O R E M 2. Let Hi be a normed right alternative division algebra over the reals. 
Then 21 is finite dimensional and isomorphic to either the reals, the complex 
numbers, the quaternions or the Cay ley numbers. 

First proof. T h a t 21 is a division algebra means t h a t for a ^ 0 and b a rb i t rary 
the equat ions 

ax = b, ya = b 

have unique solutions x, y in 21. By a theorem of Skorniakov [7] the assump­
tion t h a t 21 is a right al ternat ive division algebra over the reals implies t h a t 21 
is al ternat ive, has a unit , and each non-zero element is invertible. Let now x 
be an arbi t rary element of 21. By Theorem 1 there exist real numbers a, ft for 
which x2 — 2ax + (a2 + ft2) • 1 is not invertible. Consequently x2 — 2ax + 
(a2 + P2) - 1 = 0. T h u s x satisfies a quadrat ic equation with real coefficients, 
where the coefficient of 1 is zero only for x = 0, so t ha t 21 is an al ternat ive 
quadra t ic algebra over the reals. But this implies, according to a theorem of 
Albert [1, Theorem 1], t h a t 2Ï is finite dimensional and isomorphic either to 
the reals, the complex numbers, the quaternions or the Cayley numbers . 

Second proof. We know already from the first proof t h a t 21 is an al ternat ive 
division algebra. Hence by the Bruck-Kleinfeld-Skorniakov Theorem [8; 2 ; 3] 
21 is either associative or a Cayley-Dickson algebra of dimension 8 over its 
centre C, which is a field (C is by definition the set of all elements of 21 which 
commute and associate with all the elements of 21). 

In the associative case, we have, as already pointed out in § 1, t h a t 21 is 
either isomorphic to the reals, the complex numbers or the quaternions. In 
the non-associative case the centre is a normed field and hence the dimension 
of C over R is 1 or 2 [6, Theorem 1.7.5]. On the other hand since the dimension 
of 2Ï over R is equal to the dimension of 21 over C t imes the dimension of C 
over R, we conclude t h a t the dimension of 2Ï over R is finite and is either 
8 or 16. Bu t it is quite well-known t h a t an al ternat ive division algebra over the 
reals cannot have dimension 16. This dimension argument not only shows t h a t 
the dimension of C over R is one bu t also t h a t 21 is an al ternat ive division 
algebra of dimension 8 over the reals, and hence isomorphic to the Cayley 
numbers . This completes the second proof of the theorem. 
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Remark. Theorems 1 and 2 remain valid if instead of assuming 21 right 
alternative we assume it to be left alternative, i.e., x(xy) = x2y for all x and y 
in 31. Of course in the Lemma the right multiplication operators should be 
replaced by left multiplication operators and (i) changed to: ah = 1 = b'a 
implies ab' = 1. 

Added in proof. The question left open in § 1 has been raised in 1969 as a 
conjecture by I. Kaplansky in his Hawaii lectures on Algebraic and analytic 
aspects of operator algebras (Regional Conference Series in Mathematics, 
Monograph 2, published by the American Mathematical Society). 
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