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Abstract

Suppose U and V are m x n matrices over the complex field. We obtain a representation
for the Moore-Penrose inverse of the sum U + V. A well-known result of Cline is then derived as
a special case of a corollary of this representation.

1. Introduction

If A is an m x n matrix over the complex field, then the Moore-Penrose
inverse of A, which is denoted by A "\ is an n x m matrix such that

(1.1) AAA=A

(1.2) AAA= A*

(1.3) (AA^)* = AA^

(1.4) (A^A)* = A'A.

Suppose U, V are m x n matrices. Cline (1965) obtained a formula for
(U + V)+ under the assumption UV* = 0. We will derive a formula for
(U + Vy by constructing a new matrix from U, V, Jn, and Jm where

1 if 5 = k -t + l
(1.5) A=(y,J— /« = ]

.0 otherwise

and using our result in Hung, Markham (1975). We note at this point that
Jk is that permutation matrix with ones on the secondary diagonal and zeroes
elsewhere, and Jl = I.

Furthermore, we determine necessary and sufficient conditions for
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(U + V)+ to have the form stated in Cline's Theorem 2, p. 106. We then give
some simpler forms for certain special cases. Finally we give an example for
which U*V^0 but (U + V)+ has the form given in Cline (1965).

Some techniques employed in the proofs of our theorems are similar to
techniques used in Pye, Boullion, and Atchison (1973).

2. A formula for (U + V)+

THEOREM 1. // both U and V are m x n matrices, then

(U+ V)+ = JJl[(I - T*K+E)L+(Jn - E*K+)+ T*K+] (U* + V*),

where Jn is as defined in (1.5), and

K= U*U+V*V,

E = (U*V+V*U)Jn,

R = VJn- UK+E,

S = JmUJn - JmVK+E,

L = R*R +S*S,

T= K+E(I-L + L),

J= I+T*T.

PROOF. Let

U VJ" \
v jmwj-

_ 1/2(1/+V) 0
- - ^ Q 2Jm(U-V)j

= dia.g((U+V),Jm{U-V)JK).

Thus, N+ = diag((t/+ V)+, Jn(U- V)*Jm). Therefore, M = Q,NQIimplies
M + = Q2N

+OJ. That is,

i / (u+vy + (u-vy [(u + vy - (u - vy]jm \
2\jn[(u+ vy-(u-vy] jn[(u + vy + (u- vy]jm)•
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Now, by the theorem in Hung, Markham (1975), we have

(K+(U*-EF) K+(V*Jm-EH)\
\ F H / '

where K = U*U+ V*V,

E = (U*V+ V*U)Jn,

R = VJn- UK+E,

S = JmUJn~m

L = R*R +S*S,

J = I+T*T,

F= L'R* + rlT*K+(U* - EL+R*),

H= L'S* + J 'T*K+(V*Jm -EL+S*).

Since the Moore-Penrose inverse is unique, we have

(2.i) \[{u + vy + (u- vy] = K+(U* - EF),

(2.2) \[{U + V)+ - (U - V)+]Jm = K+(V*Jm - EH),

(2.3) Un[(u+ vy-(u- vy] = F,

(2.4) \jn [(u + vy + (u - vypm = H.

Thus, from (2.1) and (2.2), we get

(2.5) (U+ vy = K+(U*+ V*)-K+E(F+HJm)

and from (2.3) and (2.4), we obtain

(2.6) (U+ V)+= JnF + JnHJm.

Now, S*Jm+R* = (Jn-E*K+) (U*+ V*) implies

Jn - E*K+)+ T*K+](U* + V*).

Hence the proof is complete.
Cline (1965) used the condition UV* = 0 and his formula for

(UU*+ VV*)+ to obtain a formula for (U + V)+. From our theorem, we
obtain the following corollary, of which Cline's formula is a special case.
Cline's condition UV* = 0 becomes U*V = 0 in our corollary, and this
implies (U + V)E = (U + V)(U*V+ V*U)Jn =0 which is a necessary and
sufficient condition for (U + V)+ to have the form (3.1) of Cline (1965).
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Let N(A) denote the null column space of A. It is well-known that
N(A)CN(B) if and only if B = BA* A.

COROLLARY 1.1. (U + V)+ = K*{U* + V*) if and only if (U + V)E =
0, and in this case, we have

K*(U*+ V*)= L/+ + [G*+ + ( / - G*+V)U+U*+V*Q*(I - G

where G = (/ - U*U*+)V*, and

Q = [/ + (I - G + G)VIT L/*+ V*{I - G + G)]'.

PROOF. Suppose (U + V)+ = K*(U* + V*). Then, (U + V) (U + V)+

(U+V)=(U+V)K+(K + EJn). This implies (U+V)=(U+V) +
(U+V)K+EJn since N(K)CN(U) and N(K)CN(V). Thus,
(L/+ V)X+EJn =0. Hence, (U+V)K + E = 0 since / 2

n=/ . Therefore,
E*K*(U* + V*) = 0. Now by assumption (U + V)+ = K+(t/* + V*), we ob-
tain £*(t/ + V)+ = 0. This implies (17 + V)E = 0 since BA+ = 0 if and only if
AB* = 0. On the other hand, if (U + V)E = 0, then E*(U + V)+ = 0. Thus,
by (2.6) we have E*(JnF + JnHJm) = Q. This implies JnE*Jn(F + HJm) = 0.
Hence, E(F+HJ m ) = 0 since JnE*Jn = E. Therefore, by (2.5), we have
(U + V)+ = K+(L/* + V*). This completes the proof.

COROLLARY 1.2. (U + V)+ = JnL
+(Jn - E*K+) (U* + V*) if and only if

N(L)CN((U+ V)Jn).

PROOF. Suppose (U + V)+ = JnL
+(Jn - E*K^) (U*+ V*). Then,

(U+ V)+ = JnL+(S*Jm +R*) = JnL
+(LHJm

This implies (/ - JnL*LJn){V + V)+ = 0. Thus, {U + V ) ( / - JnL
+LJn) = 0.

That is, (U + V) = (U + V)JnL*LJn or (U + V)Jn = (U + V)JnL*L. Hence,
N(L)CN((U+ V)Jn).

For the necessity, we reverse the proof for sufficiency. Then the result
follows.

COROLLARY 1.3. {U + V)+ = JJ'T*K+(U* + V*) ifandonly ifh = 0.

PROOF. Suppose (U + V)+ = JJ^T*K+(U* + V*). Then, by Theorem
1, we can get / „ / - ' [ ( / - T*K+E)L + (Jn - E*K+)+ T*K+] (U* + V*)
= JJ'T*K+(U*+ V*).

This implies

(2.7) ( / - T*K+E)L+(Jn- E*K+)(U* + V*) = 0.

Postmultiplying (2.7) by (U + V)Jm we obtain
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(2.8) (/ - T*K+E)L^{Jn - E*K+) (U* + V*) (U + V)Jn =0.

Premultiplying (2.8) by L and using the fact LT* = 0, we have

LL*(Jn -E*K+)(K + £>„)/„ = 0.

That is,

LL*(JnK -E*K+K + JnEJn - E*K+EJn)Jn = 0.

Thus, LL+(JnKJn-E*K*E) = 0 since N(K)CN(E*) and £* = /„£/„.
Therefore, LL+L = 0 since L = JnKJn - E*K*E. This implies L = 0. On the
other hand, if L = 0, then the result follows immediately from Theorem 1.

If we let P = / + TT*, then the formula for

(U VJn

\JmV JJJJ

can be written as

P 'K+(U*-EL+R*)/ P 'K+(U
~ \L + R* + T*P'~ \L + R* + T*P'\U* - EL+R*) L*S*+T*P\V*Jm-EL

Thus, by the uniqueness of M*, we have

(2.9) H(U+ V)+ + (U- V)+)= P 'K+(U*-EL+R*)

vy -(u- vy)jm = P'K+( v*jm - EL+S*).

Thus, from (2.9) and (2.10), we get

(U+ V)+ = P'1K+(U*+ V*)- P'K+EL*(R* + S*Jm).

This implies

(U+ V)+ = P 1 X + ( / - £ L + ( / n - £ * K + ) ) ( t / * + V*)

since R* + S*Jm = (/„ - E*K+)(U* + V*). Hence we have obtained an
alternate representation of (17+ V)+.

THEOREM 2. // both U and V are m X n matrices, then

(2.11) (U + V)+ = P lK*(I - EL+(Jn - E*K*)) (17* + V*).

COROLLARY 2.1. (17+ V)+=P'1K+(U*+ V*) if and only if RE* = 0
and S£* = 0.

PROOF. Suppose (U + V)+ = PlK+(U* + V*). Then, from (2.11), we
have
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(2.12) PlK+EL+(Jn - E*K+) (17* + V*) = 0.

Premultiplying (2.12) by P and then postmultiplying by (U + V)Jn, we
get K+EL+(Jn-E*K+)(K + EJn)Jn = 0. This implies E L + L = 0 since
N(K)CN(E*), £* = /„£/„, and L = JnKJn - E*K+E, as in the proof of
Corollary 1.3. Hence EL+ = 0. This implies EL = 0 since L+L = LL+. Now
L = R *R + S*S, so we have ER *RE* + ES*SE* = 0. This implies RE* = 0
and SE* = 0. On the other hand if RE* = 0 and SE* = 0, then
R*RE* + S*SE* = 0, which implies LE* = 0. That is EL = 0. Therefore
EL* = 0 and the result follows by (2.11).

COROLLARY 2.2. (17 + V)+ = K+[I - EL+(Jn - E*K+)] (U*+V*) if
and only if (U + V)T = 0.

PROOF. Suppose

(2.13) (17+ V)+ = K+(I - EL+(Jn - E*K+))(U* + V*).

Postmultiplying (2.13) by (U + V)Jn and premultiplying by (U + V), we get

(U+ V)Jn = (U+ V)K+((K + EJn)Jn - EL+L).

Thus (U+V)K+E(I-L+L) = 0 since N(K)CN(U) and N(K)CN(V).
Hence (U+V)T = 0 since T = K+E(I- L+L). On the other hand if
(U+V)T = 0, then

(2.14) T*(U*+ V*) = 0.

Postmultiplying (2.14) by ((17+ V)(U + V)*)+, we have T*(U+V)+ = 0.
This implies TT*(U + V)+ = 0. Therefore, P{U + V)+ = (U + V)+ since P =
I + TT*. From Theorem 2, we can see that

P(U + V)= K+(I - EL+(Jn - E*K+)) (U* + V*).

Hence the proof is complete. Furthermore, we have noted the following:

(U+ V)T = 0 if and only if N(L)CN((U+ V)K+E)

and in particular if L is nonsingular, then T = 0 implies (L7+V)T = 0.
Therefore Corollary 2.2 is applicable if L is nonsingular. In case L = 0, the
conditions of Corollary 2.1 are satisfied.

3. An application

We can use Theorem 1 to determine (AB)+. If we partition

(B,
= (AUA2), - ^
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conformably, then AB = A,Bt + A2B2, so now we can apply the theorem
with U = AiBu V = A2B2. For example, suppose

A =
1 0
0 1

- 1 0

0 0 0 \
0 1 0 = (A,,A2),
10 0 /

B =
1 0 0

= \B:
1 0 0

I 1 1

Then

AB =

and

/0 - 1 0\ /0 - 1 0\
?2 = (1 - 1 0 ), U= 1 0 0 '

\1 1 0 / \0 1 0/

Hence

/0 0 0'
= l 0 - 1 0

\ i o 0/

/ 0 1 0 \
^, and V * l / = - 1 0 0 "

\ 0 0 0 /

Thus U* V + V* U = 0, which implies £ = 0. Now clearly (U + V)E = 0, and
Corollary 1.1 is applicable.
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