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1. Introduction

Bonsall and Tomiuk have shown, in (3), the connection between the local
compactness of a monothetic semi-algebra and the spectral properties of a
generating element. This theme was developed, in (4), to give a complete
characterisation of prime, strict locally compact monothetic semi-algebras in
terms of the spectrum of a generator (Theorem A). Here we extend this result
to the case of a semi-simple locally compact monothetic semi-algebra (Theorem
B).

In Section 2 we collect the relevant terminology and state the main result.
The proofs are given in Section 3. Theorem 1 in Section 3 was suggested to us
by F. F. Bonsall. Its use has considerably simplified our original proof.

2. Terminology and main result
Let B be a complex Banach algebra with identity e. R will be the set of

real numbers, R+ the set of non-negative real numbers and R++ the set of
strictly positive real numbers. A non-empty subset A of B is called a semi-
algebra if x+y, xy and ax are in A whenever x and y are in A and a is in R+.
A semi-algebra A is strict if Ar\{—A) = (0); it is locally compact if A contains
non-zero elements and if, in addition,

An{x:\\x\\ g 1}
is a compact subset of B.

The semi-algebra A is said to be monothetic if A has a single generator,
that is, if there exists an element t e A such that A is the closure in B of the set

P(t) = {oclt+...+xkt
k: a, £ 0 ( / = 1, . . . , * ) ; k= 1,2, . . .}.

In this case we write A = A{t). Obviously, A(t) is commutative.
The commutative semi-algebra A is semi-simple if a2 # 0 for each non-

zero ae A, and it is prime if there are no divisors of zero in A, in other words,
if a, be A and a # 0, b # 0 then ab ^ 0.

The resolvent set of any element / eB is denoted by p(t). Its complement
o(t) in the complex plane C is the spectrum of t. The spectral radius of t is
denoted by r{i), and the resolvent operator (ze—t)~l by R(z; t). A point
X e o(i) is called a simple pole of t if it is a pole of the function

z-*R(z; t)
of order one.
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The following theorem is essentially Theorem 8 in (4).

Theorem A. Let t be a non-zero element of B. A(f) is a prime, strict, locally
compact semi-algebra if and only if

0<r(t)eo(t)
and

a(t)n{X:\ X | = r(t)}

is a finite set of simple poles of t.

We now formulate the main result of this paper.

Theorem B. Let t be a non-zero element of B. A(t) is a semi-simple, locally
compact semi-algebra if and only if a{f) decomposes uniquely into two disjoint
closed subsets at and a2 such that

(i) &! is a finite (possibly empty) set of simple poles oft and

a,nR++ = 0 ;

(ii) either a2 = 0 or there exists an a>0 in o2 such that

a2 = ait)n{X:\X\ ^ a}
and

a2r\{X:\ A | = a}

is a finite set of simple poles oft.

Remarks, (a) If we write t2 for the " part " of t associated with the spectral
set <72 then, by Theorem A, A{t2) is prime, strict and locally compact.

(b) If o1 = 0, A{t) is strict. This is a simple consequence of Theorem A.
If A(t) is locally compact, strict and semi-simple then by (2), Lemma 8,

r(t)>0, and hence a slight modification of Theorem 7 in (4) shows that A(t)
is prime. Thus the converse of (6) also follows from Theorem A.

3. Proofs
Theorem 1. Let t be a non-zero element of B. Then A(t) is locally compact

and semi-simple if and only if there exists an idempotent p in A(t) such that

(i)A(t) = A(tp)®A(t-tp);

(ii) either A(tp) = (0) or A(tp) is locally compact, semi-simple and

A(tp) = -A(tp);

(iii) either A(t—tp) = (0) or A(t—tp) is locally compact, prime and strict.

Proof of necessity. Suppose that A(t) is locally compact and semi-simple.
Put C = A(t)n(—A(t)); then C is a finite dimensional semi-simple algebra
over R, and so C contains a unit element p ((1) p. 37, Theorem 1). Observing
that tp and t—tp are in A(t), and writing t = tp + (t—tp), we have

A(t) = A(tp)+A(t-tp).
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Suppose that xeA(tp)r\A(t—tp). Then there exist y and z in A(t) such that
x = yp = z—zp. Hence x = 0. Therefore

A(tp)nA(t-tp) = (O) (1)
and (i) follows.

If xeC, then x = xp and hence xeA(tp). Conversely, take xeA(tp).
Then x = yp for some j>eA(t). Thus —x = y(—p)e/!(*). But then xeC.
Hence C = ^(?/>). This proves (ii).

Suppose that x and —x are in A(t-tp). Then x e C = -<4((p). By (1),
x = 0. Therefore A(t—tp) is strict. It is also locally compact and semi-simple
as a subsemi-algebra of /4(/). A slight modification of Theorem 7 in (4) shows
that it is therefore prime. This proves (iii).

Proof of sufficiency. Let there exist an idempotent p such that conditions
(i), (ii) and (iii) hold. Local compactness of A(tp) and A{t—tp) and condition
(i) clearly imply that A(t) is locally compact.

Let a in A(t) be such that a2 = 0. Then (ap)2 = a2p = 0 and ap e A(tp);
hence, by (ii), ap = 0. Similarly (a—ap)2 = a2 — a2p = 0 and a—apeA(t—tp);
hence, by (iii), a—ap = 0. Thus a = ap + (a—ctp) = 0. Hence A is semi-simple.

Lemma 2. Le/ t be a non-zero element in B. Then A(t) is locally compact,
semi-simple and A(t) = — A(t) if and only if a{t) is a finite set of simple poles
oft and a(t)nR++ is empty.

Proof of necessity. The hypotheses imply that A(t) is a real finite dimensional
semi-simple algebra. So we can apply the Corollary in (1) p. 40 to show that
A(t) is algebraically isomorphic to a direct sum of fields, all of which are finite
commutative extensions of R. But the finite commutative extension fields
over R are either copies of R or of C. Thus A{t) is algebraically isomorphic
to R" x Cm (with coordinate-wise multiplication) for some positive integers n
and m. We can extend the inverse of this isomorphism to an algebraic homo-
morphism <j> from C"+m onto the complex Banach algebra B{t) generated by /.
Let N be the kernel of <j>, then B{t) is algebraically isomorphic to the quotient
algebra C+m/N. Since N # C+m, Cn+m/N is algebraically isomorphic to C
for some positive integer r. So there exists an algebraic isomorphism \j/ from
B(t) onto C. Clearly this implies that the spectrum of t as an element of
B(t) is a finite set of simple poles of t. Since t = tp, where p is the unit of
B(t), the spectrum of t as an element of B is a finite set of simple poles of t.

Let ij/(t) = (A,, k2, ..., Xk). Note that

Suppose that a(t)nR++ # 0 . Then A,->0 for some /. This implies that, for
any a in A{i), the /th coordinate of \p(a) is non-negative. In particular, since
- 1 e A(t), -A, ;> 0 contradicting Af>0. This shows that o(t)nR+ + = 0 .

Proof of sufficiency. Suppose that
a(t) = {Xu ...,Xk)

is a finite set of simple poles of t such that (t<r)r\R+ + = 0.
E.M.S.-
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For each /, let pt be the spectral idempotent corresponding to Af. Then

t = ^

Hence each a in A(jt) is of the form

a -

where at eC (i = 1, ..., k). Therefore A(t) is algebraically isomorphic to a
subsemi-algebra of Ck with coordinatewise multiplication. Therefore A{i) is
locally compact and semi-simple.

Now we can apply Theorem 1 to show the existence of an idempotent p
in A{t) such that

(i) A{tp) = -A(tp),

(ii) A(t— tp) = (0) or A(t—tp) is a prime strict locally compact semi-algebra.

Let t7j be the spectral set associated with p. Standard spectral theory
shows that

Hence a(t-tp)nR+ + = 0 . If t-tp # 0, then by (2), Lemma 8, r(t-tp)>0.
Applying Theorem A we get r(t—tp) e a{t—tp). This contradicts the fact that
o(t-tp)n>R++ = 0. Hence t-tp = 0, and thus A(t) = -A(t).

Theorem B. Proof of necessity. Suppose that A(t) is locally compact and
semi-simple. Choose p as in Theorem 1. Since p is a spectral projection,
standard spectral theory shows that if 0 •£ A e a(tp) or 0 # I e a[t—tp) then
A e o-(f), and that, if A is a non-zero simple pole of tp or of t—tp, then it is a
simple pole of t. Also

Now suppose that t—tp # 0. Then, by Theorem 1, A(t—tp) is locally
compact prime and strict. Hence, by Theorem A,

0<r(t- tp) e o(t—tp)
and

a(t-tp)n{X:\X\ = r(t-tp)}

is a finite set of simple poles of t—tp.
Theorem 1 and Lemma 2 show that a(tp) is a finite set of simple poles of

t and
o(tp)nR++ = 0 .

Put a = r{t — tp),

and

Then a > 0 and, by the spectral theory summarized above, at and a2 satisfy
the conditions of Theorem B.

https://doi.org/10.1017/S0013091500012712 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500012712


LOCALLY COMPACT MONOTHETIC SEMIALGEBRAS 219

If t—tp = 0, take a, = a(f) and <x2 = 0\ again the conditions of Theorem
B are satisfied. Clearly, in both cases the decomposition is unique.

Proof of sufficiency. Suppose that a(t) is decomposed into disjoint subsets
«7X and o2 satisfying conditions (i) and (ii) of Theorem B. If ot = 0 then
a2 = a{t). Applying Theorem A we see that A(t) is locally compact and
prime, hence also semi-simple.

If <Jx ^ 0, let p be the spectral projection associated with the spectral set
ax. Then tp # 0 and o(tp) is a finite set of simple poles of tp such that

a(tp)nR++ = 0 .
So, applying Lemma 2, we see that A{tp) is locally compact and semi-simple.
Now, either t—tp = 0, or

o(t-tp)n{X:\X\ = r{t-tp)}
is a finite set of poles oft—tp which contains the point a = r(t—tp) > 0. Hence,
either A(t—tp) = (0), or, by Theorem A, A(t—tp) is locally compact, strict
and prime. Thus A{t—tp) is also semi-simple. The argument used in the
proof of sufficiency of Theorem 1 shows that A{t) is locally compact and semi-
simple.
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