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1. Introduction

Bonsall and Tomiuk have shown, in (3), the connection between the local
compactness of a monothetic semi-algebra and the spectral properties of a
generating element. This theme was developed, in (4), to give a complete
characterisation of prime, strict locally compact monothetic semi-algebras in
terms of the spectrum of a generator (Theorem 4). Here we extend this result
to the case of a semi-simple locally compact monothetic semi-algebra (Theorem
B).

In Section 2 we collect the relevant terminology and state the main result.
The proofs are given in Section 3. Theorem 1 in Section 3 was suggested to us
by F. F. Bonsall. Its use has considerably simplified our original proof.

2. Terminology and main result

Let B be a complex Banach algebra with identity e. R will be the set of
real numbers, R* the set of non-negative real numbers and R** the set of
strictly positive real numbers. A non-empty subset 4 of B is called a semi-
algebra if x+y, xy and ax are in 4 whenever x and y are in 4 and « is in R*.
A semi-algebra A is strict if An(—A) = (0); it is locally compact if A contains
non-zero elements and if, in addition,

An{x:| x || = 1}

is a compact subset of B.

The semi-algebra A is said to be monothetic if A has a single generator,
that is, if there exists an element ¢ € 4 such that A4 is the closure in B of the set

P@) = {ayt+...+oytt: 0, 20(=1,..,k); k=1,2,..}

In this case we write 4 = A(¢). Obviously, A(?) is commutative.

The commutative semi-algebra A is semi-simple if a*> # 0 for each non-
zero a € A, and it is prime if there are no divisors of zero in A4, in other words,
ifa,be Aanda # 0,b # 0 then ab # 0.

The resolvent set of any element ¢ € B is denoted by p(z). Its complement
a(?) in the complex plane C is the spectrum of t. The spectral radius of 7 is
denoted by r(f), and the resolvent operator (ze—t)~! by R(z; f). A point
A eo(t) is called a simple pole of t if it is a pole of the function

z-R(z; t)
of order one.
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The following theorem is essentially Theorem 8 in (4).

Theorem A. Let t be a non-zero element of B. A(t) is a prime, strict, locally
compact semi-algebra if and only if

0<r(t) e a(t)
o(®n{i| 4] = r(®)}

is a finite set of simple poles of t.

and

We now formulate the main result of this paper.

Theorem B. Lett be a non-zero element of B. A(t) is a semi-simple, locally
compact semi-algebra if and only if o(t) decomposes uniquely into two disjoint
closed subsets ¢, and o, such that

(i) o, is a finite (possibly empty) set of simple poles of t and
o.nR*t = ¢¥;
(ii) either o, = (J or there exists an >0 in o, such that
oy = o()n{l:| 1| £ o}
cn{| A = a}

is a finite set of simple poles of t.

and

Remarks. (a) If we write ¢, for the ““ part > of ¢ associated with the spectral
set o, then, by Theorem A, A(t,) is prime, strict and locally compact.

(b) If 6, = &, A(2) is strict. This is a simple consequence of Theorem A.

If A(?) is locally compact, strict and semi-simple then by (2), Lemma 8,
r(t)>0, and hence a slight modification of Theorem 7 in (4) shows that A(z)
is prime. Thus the converse of (b) also follows from Theorem A.

3. Proofs

Theorem 1. Let t be a non-zero element of B. Then A(t) is locally compact
and semi-simple if and only if there exists an idempotent p in A(t) such that

(i) A(1) = A(p)DA(t—1p);
(ii) either A(tp) = (0) or A(tp) is locally compact, semi-simple and
A(tp) = — A(tp);
(iii) either A(t—1tp) = (0) or A(t—1p) is locally compact, prime and strict.
Proof of necessity. Suppose that A(¢) is locally compact and semi-simple.
Put C = A(t)n(—A()); then C is a finite dimensional semi-simple algebra

over R, and so C contains a unit element p (1) p. 37, Theorem 1). Observing
that ¢p and r—tp are in A(¢), and writing ¢ = tp+(t—1p), we have

A(t) = A(p) + A(t—tp).

https://doi.org/10.1017/50013091500012712 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500012712

LOCALLY COMPACT MONOTHETIC SEMI-ALGEBRAS 217

Suppose that x & A(tp)nA(t—tp). Then there exist y and z in A(?) such that
x = yp = z—zp. Hence x = 0. Therefore

, A@p)nA(t—1p) = (0) M
and (i) follows.

If xe C, then x = xp and hence x € A(tp). Conversely, take x € A(tp).
Then x = yp for some ye A(#). Thus —x = y(—p)e A(¢). But then xe C.
Hence C = A(tp). This proves (ii).

Suppose that x and —x are in A(t—tp). Then xe C = A(tp). By (1),
x = 0. Therefore A(t—1p) is strict. It is also locally compact and semi-simple
as a subsemi-algebra of A(¢). A slight modification of Theorem 7 in (4) shows
that it is therefore prime. This proves (iii).

Proof of sufficiency. Let there exist an idempotent p such that conditions
(i), (ii) and (iii) hold. Local compactness of A(zp) and A(t—1p) and condition
(i) clearly imply that A(¢) is locally compact.

Let a in A(¢) be such that a> = 0. Then (ap)* = a’p = 0 and ap € A(tp);
hence, by (ii), ap = 0. Similarly (a—ap)* = a*—a’p = 0 and a—ap € A(t—tp);
hence, by (iii), a—ap = 0. Thus a = ap+(a—ap) = 0. Hence 4 is semi-simple.

Lemma 2. Let t be a non-zero element in B. Then A(t) is locally compact,
semi-simple and A(t) = — A(t) if and only if o(t) is a finite set of simple poles
of t and s(t)NR* ™ is empty.

Proof of necessity. The hypotheses imply that A(¢) is a real finite dimensional
semi-simple algebra. So we can apply the Corollary in (1) p. 40 to show that
A(?) is algebraically isomorphic to a direct sum of fields, all of which are finite
commutative extensions of R. But the finite commutative extension fields
over R are either copies of R or of C. Thus A(¢) is algebraically isomorphic
to R"x C™ (with coordinate-wise multiplication) for some positive integers n
and m. We can extend the inverse of this isomorphism to an algebraic homo-
morphism ¢ from C"*™ onto the complex Banach algebra B(f) generated by ¢.
Let N be the kernel of ¢, then B(¢) is algebraically isomorphic to the quotient
algebra C"*™/N. Since N # C"*™ C"*™/N is algebraically isomorphic to C”
for some positive integer r. So there exists an algebraic isomorphism ¥ from
B(t) onto C’. Clearly this implies that the spectrum of ¢ as an element of
B(¢) is a finite set of simple poles of . Since ¢ = #p, where p is the unit of
B(t), the spectrum of ¢ as an element of B is a finite set of simple poles of ¢,

Lety(t) = (4, 23, ..., 4,). Note that

oc(ON\{0} {5 -..s A}
Suppose that o(f)nR** # ¢F. Then 1;>0 for some i. This implies that, for
any a in A(?), the ith coordinate of (a) is non-negative. In particular, since
—t1€ A(1), —A; = 0 contradicting ,>0. This shows that s({)nR** = ¢,
Proof of sufficiency. Suppose that
o(t) = {1y, -.0s A}
is a finite set of simple poles of ¢ such that (t6)nR** = .
E.M.S.—0
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For each i, let p; be the spectral idempotent corresponding to 4;. Then
t=p+...+ 40
Hence each a in A(¢) is of the form
a= a1p1+...+akp,‘,

where a; eC (i = 1, ..., k). Therefore A(t) is algebraically isomorphic to a
subsemi-algebra of C* with coordinatewise multiplication. Therefore A(¢) is
locally compact and semi-simple.

Now we can apply Theorem 1 to show the existence of an idempotent p

in A(?) such that
(i) A@p) = —A(tp),
(ii) A(—tp) = (0) or A(t—1p) is a prime strict locally compact semi-algebra.

Let o, be the spectral set associated with p. Standard spectral theory

shows that
o(t—tp) = {{"(‘)\0 11u{0} ff p#0,
a(?) if p=0.

Hence o(z—tp)nR** = . If t—tp # 0, then by (2), Lemma 8, r(t—tp)>0.
Applying Theorem 4 we get r(t—1tp) e o(t—tp). This contradicts the fact that
o(t—tp)AR** = F. Hence t—tp = 0, and thus A(z) = —A(¢).

Theorem B. Proof of necessity. Suppose that A(?) is locally compact and
semi-simple. Choose p as in Theorem 1. Since p is a spectral projection,
standard spectral theory shows that if 0 # A e a(tp) or 0 # A € o(¢t—tp) then
A€ o(t), and that, if 4 is a non-zero simple pole of #p or of 1—1p, then it is a
simple pole of t. Also

{o(®)na(tp)}u{a(Dno(t—1p)} = o(2).

Now suppose that t—¢p # 0. Then, by Theorem 1, A(t—1p) is locally
compact prime and strict. Hence, by Theorem 4,

O<r(t—tp) e o(t—1p)
o(t—tp)n{i:| A| = r(t—1p)}

is a finite set of simple poles of t—p.
Theorem 1 and Lemma 2 show that o(¢p) is a finite set of simple poles of

t and
o(tp)nR* = .
6, = a()n{A:| 1 |>a},
o, = o(O)n{A:] 1| £ a}.

Then o> 0 and, by the spectral theory summarized above, ¢, and o, satisfy
the conditions of Theorem B.

and

Put o = r(t—1p),

and
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If t—1tp = 0, take ¢, = o(?) and 6, = J; again the conditions of Theorem
B are satisfied. Clearly, in both cases the decomposition is unique.

Proof of sufficiency. Suppose that o(¢) is decomposed into disjoint subsets
6, and o, satisfying conditions (i) and (ii) of Theorem B. If g, = ¢ then
o, = o(t). Applying Theorem A we see that A(¢) is locally compact and

prime, hence also semi-simple.
If 6, # J, let p be the spectral projection associated with the spectral set
o,. Then tp # 0 and &(¢p) is a finite set of simple poles of 7p such that

o(tp)nR** = .
So, applying Lemma 2, we see that A(zp) is locally compact and semi-simple.
Now, either t—tp = 0, or
a(t—tp)n{l:| A| = r(t—1p)}

is a finite set of poles of #—tp which contains the point a = r(t—tp)>0. Hence,
either A(t—1tp) = (0), or, by Theorem A, A(t—1p) is locally compact, strict
and prime. Thus A(t—1tp) is also semi-simple. The argument used in the
proof of sufficiency of Theorem 1 shows that A4(¢) is locally compact and semi-
simple.
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