1. In this note the Hilbert spaces under consideration are complex, and the operators referred to are bounded, linear operators. If \mathcal{H} is a Hilbert space, then the algebra of all operators on \mathcal{H} is denoted by $\mathcal{B}(\mathcal{H})$.

It is known (1) that if \mathcal{H} is any Hilbert space, then the class of commutators on \mathcal{H}, i.e., the class of all operators that can be written in the form $PQ - QP$ for some $P, Q \in \mathcal{B}(\mathcal{H})$, can be exactly described. A similar problem is that of characterizing all operators on \mathcal{H} that can be written in the form $PAQ - QAP$ for some $P, A, Q \in \mathcal{B}(\mathcal{H})$. If no restrictions are placed on the operators $P, A,$ and $Q,$ it is relatively easy to see that for $\dim \mathcal{H} > 1$, every operator in $\mathcal{B}(\mathcal{H})$ can be written in this form. (A very brief and pretty proof of this fact for infinite-dimensional \mathcal{H} was shown to us by Paul Federbush; it is reproduced in Remark 3.3.)

Since every commutator $PQ - QP$ is automatically a commutator of invertible operators by virtue of the identity

$$PQ - QP = (P + \lambda)(Q + \mu) - (Q + \mu)(P + \lambda),$$

valid for every pair of scalars λ and μ, it is natural to ask which operators can be written in the form $PAQ - QAP$ with invertible $P, A,$ and Q. This problem is somewhat more difficult, and it is the purpose of this note to furnish the solution by proving the following theorem.

Theorem. If \mathcal{H} is a Hilbert space of dimension greater than one, and T is any operator on \mathcal{H}, then there exist invertible operators P, A, Q on \mathcal{H} satisfying $T = PAQ - QAP$.

This theorem settles a question posed to us by Olga Taussky-Todd, to whom we are indebted for several interesting conversations.

The proof of the theorem splits naturally into cases depending on the dimension of \mathcal{H}. In the finite-dimensional case, the proof depends on the following lemmas and (4, Theorem III).

Lemma 1.1. If $T \neq 0$ is an operator on an n-dimensional complex Hilbert space \mathcal{H} ($1 < n < \infty$), then there exists an orthonormal basis for \mathcal{H} relative to which the matrix $(\alpha_{ij})_{i,j=1}^{n}$ of T satisfies $\alpha_{11} \neq 0 \neq \alpha_{22}$.

Proof. Consider the numerical range (or field of values) $W(T)$ of T. If $W(T)$ consists of a single point $|\lambda|$, then T is the scalar operator $T = \lambda I$ and...
the result is obvious. Otherwise, \(W(T) \) contains at least two points, and thus the line segment joining them. Hence, \(W(T) \) contains a number \(\alpha_{11} \neq 0 \) such that \(\alpha_{11} \neq \text{trace } T \). Let \(x_1 \) be a unit vector such that \((Tx_1, x_1) = \alpha_{11} \), and extend \(\{x_1, \ldots, x_n\} \) for \(\mathcal{S} \). Since \(\alpha_{11} \neq \text{trace } T \), there must be some \(k \) (\(2 \leq k \leq n \)) such that \((Tx_k, x_k) = \beta \neq 0 \). If we now interchange \(x_2 \) and \(x_k \), then \((Tx_2, x_2) = \beta = \alpha_{22} \neq 0 \), and the proof is complete.

Lemma 1.2. If \(T \) is an operator on an \(n \)-dimensional Hilbert space \(\mathcal{S} \) (\(1 < n < \infty \)), then there exist invertible operators \(X \) and \(Y \) on \(\mathcal{S} \) such that determinant \(X = \text{determinant } Y \) and such that \(T = X - Y \).

Proof. If \(T = 0 \), the result is clear. We suppose that \(T \neq 0 \), and use the preceding lemma to pick a basis for \(\mathcal{S} \) relative to which the matrix \((\alpha_{ij}) \) of \(T \) satisfies \(\alpha_{11} \neq 0 \neq \alpha_{22} \). We write

\[
\begin{pmatrix}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1n} \\
\alpha_{21} & & & \\
& \ddots & & \\
\alpha_{n1} & \ldots & \ldots & \alpha_{nn}
\end{pmatrix}
= \begin{pmatrix}
\alpha_{11} + d_1 & 0 & & \\
\alpha_{21} & \alpha_{22} + d_2 & & \\
& \ddots & \ddots & \\
\alpha_{n1} & \ldots & \ldots & \alpha_{nn} + d_n
\end{pmatrix}
- \begin{pmatrix}
d_1 & -\alpha_{12} & \ldots & -\alpha_{1n} \\
& \ddots & & \\
0 & \ddots & & \\
& & \ddots & \\
& & & d_n
\end{pmatrix}
\]

where the numbers \(d_1, \ldots, d_n \) are to be determined. Let \(X \) and \(Y \) be the operators having these matrices (relative to the given basis), and note that to complete the proof, it suffices to show that the numbers \(d_i \) can be chosen so that

1. \(d_1d_2 \ldots d_n \neq 0 \) and
2. \((\alpha_{11} + d_1)(\alpha_{22} + d_2) \ldots (\alpha_{nn} + d_n) = d_1d_2 \ldots d_n \).

This amounts to choosing each \(d_i \neq 0 \) so that (2) is satisfied. If \(n = 2 \), this is equivalent to choosing non-zero numbers \(d_1 \) and \(d_2 \) such that

\[
\alpha_{11}d_2 + \alpha_{22}d_1 + \alpha_{11}\alpha_{22} = 0,
\]

and this is a task that is easily accomplished since \(\alpha_{11} \neq 0 \neq \alpha_{22} \). If \(n > 2 \) we first choose \(d_i, 3 \leq i \leq n \), subject only to the conditions \(d_i \neq 0 \neq d_i + a_{ii} \). Next, we arrange things so that \(\beta = d_2 \ldots d_n \) is unequal to

\[
\gamma = (\alpha_{22} + d_2) \ldots (\alpha_{nn} + d_n).
\]

To this end let \(\xi = d_3 \ldots d_n \) and \(\eta = (\alpha_{33} + d_3) \ldots (\alpha_{nn} + d_n) \). Then we need

\[
d_2\xi = (\alpha_{22} + d_2)\eta, \quad \text{and since } \xi, \eta, \text{ and } \alpha_{22} \text{ are all non-zero, it is easy to see that we can choose } d_2 \text{ so as to satisfy this requirement and also to satisfy } d_2 \neq 0 \neq d_2 + \alpha_{22}. \text{ Assume this done; to complete the proof it then suffices to choose } d_1 \neq 0 \text{ so that }
\]

\[
d_1\beta = (\alpha_{11} + d_1)\gamma,
\]

and since \(\beta \neq \gamma \neq 0 \) and \(\alpha_{11} \neq 0 \), this is possible.
Corollary 1.3. The theorem is true if \(\mathcal{S} \) is finite-dimensional.

Proof. Let \(T \) be an operator on \(\mathcal{S} \). By Lemma 1.2 there exist invertible operators \(X \) and \(Y \) on \(\mathcal{S} \) with equal determinants such that \(T = X - Y \). According to (4, Theorem III), there exist operators \(P, A, \) and \(Q \) such that \(X = PAQ \) and \(Y = QAP \); the invertibility of \(X \) and \(Y \) guarantees that \(P, A, \) and \(Q \) are invertible. Thus \(T = PAQ - QAP \), as desired.

2. The separable case. We turn now to the case in which \(\mathcal{S} \) is a separable, infinite-dimensional, space. According to (1, Theorem 3), an operator \(T \) on \(\mathcal{S} \) is a commutator if it is not of the form \(\lambda + K \) for some non-zero scalar \(\lambda \) and compact operator \(K \). For such a commutator \(T \) there exist operators \(P_1 \) and \(Q_1 \) such that \(T = P_1Q_1 - Q_1P_1 \). Since, as noted before, for any scalar \(\mu \) we also have that
\[
T = (P_1 + \mu)(Q_1 + \mu) - (Q_1 + \mu)(P_1 + \mu),
\]
\(\mu_0 \) can be chosen so that the operators \(P = P_1 + \mu_0 \) and \(Q = Q_1 + \mu_0 \) are invertible. If we then define \(A = 1 \), we have that
\[
T = PAQ - QAP
\]
with invertible \(P, A, \) and \(Q \). Thus, it suffices to prove the theorem for operators \(T \) of the form \(T = \lambda + K \), where \(\lambda \neq 0 \) and \(K \) is compact.

We shall have occasion to write \(T \) as a matrix with operator entries, and in so doing, we observe the usual conventions. If \(\mathcal{S} \) is written as the direct sum
\[
\mathcal{S} = \mathcal{S}_1 \oplus \ldots \oplus \mathcal{S}_m,
\]
and if \(E_i \) denotes the projection of \(\mathcal{S} \) onto \(\mathcal{S}_i \), then we write \(T = (T_{ij})_{i,j=1}^m \), where \(T_{ij} \) denotes the linear operator
\[
T_{ij} = E_iTE_j|\mathcal{S}_j.
\]
The following lemma begins our program.

Lemma 2.1. Let \(T \in \mathfrak{L}(\mathcal{S}) \) be of the form \(T = \lambda + K \) for \(\lambda \neq 0 \) and \(K \) compact, and let \(\epsilon > 0 \). Then there exists a finite-dimensional subspace \(\mathfrak{K} \) of \(\mathcal{S} \) such that if \(\mathfrak{Q} \) and \(\mathfrak{M} \) are subspaces satisfying \(\mathfrak{Q} \subset \mathfrak{K}^+ \) and \(\mathfrak{M} \subset \mathfrak{K}^- \), and if \(E \) and \(F \) denote the projections of \(\mathcal{S} \) onto \(\mathfrak{Q} \) and \(\mathfrak{M} \), respectively, then \(ETF, FTE, \) and \(ETE - \lambda E \) all have norm less than \(\epsilon \).

Proof. It is well known that there exist finite-dimensional projections \(P \) with the property that
\[
\|K - PKP\| < \epsilon.
\]
(Indeed, if \(\{P_n\} \) is any sequence of projections converging strongly to the identity operator, then \(\|K - P_nKP_n\| \to 0 \).) Fix any one such projection \(P_n \), choose its range for the subspace \(\mathfrak{K} \), and denote by \(L \) the operator \(K - P_nKP_0 \). Then with \(\mathfrak{Q}, \mathfrak{M}, E, \) and \(F \) as in the statement of the lemma, we have that \(EK = EL \) and \(KE = LE \). Hence, \(EKF, FKE, \) and \(EKE \) all have norm less than \(\epsilon \), and the result follows.
Proposition 2.2. Let $T \in \mathfrak{L}(\mathcal{H})$ be of the form $T = \lambda + K$ for $\lambda \neq 0$ and K compact. Then there exists a decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ of \mathcal{H} into the direct sum of two infinite-dimensional subspaces such that, if the corresponding matrix for T is
\[
T = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix},
\]
then both A_1 and D_1 are invertible.

Proof. To begin with, it is a simple matter to obtain via Lemma 2.1 a preliminary resolution $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ with respect to which the matrix representation
\[
T = \begin{pmatrix} A & B \\ C & D \end{pmatrix}
\]
has the property that D is invertible. Indeed, we have only to choose for ε any positive number less than $|\lambda|$, and then choose \mathcal{H}_2 to be any infinite-dimensional subspace whose orthocomplement \mathcal{H}_1 is infinite-dimensional and contains the subspace \mathfrak{H} of Lemma 2.1. Next, note that if U is a unitary operator on \mathcal{H} with $(U_{ij})_{i,j=1}^{2}$ as its matrix representation relative to the decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, and if
\[
\begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} U_{11}^{*} & U_{12}^{*} \\ U_{21}^{*} & U_{22}^{*} \end{pmatrix} = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix},
\]
then
\[
\begin{pmatrix} U^{*}A_{1}U & U^{*}B_{1}U \\ U^{*}C_{1}U & U^{*}D_{1}U \end{pmatrix}
\]
is the matrix representation for T relative to the decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where $\mathcal{H}_i = U^{*}(\mathfrak{H}_i)$, $i = 1, 2$. Thus the theorem will be proved if we can find a unitary operator U such that in equation (II), both A_1 and D_1 are invertible. Now the operator A is a compression of T, and therefore is also of the form $A = \lambda + K_1$, where K_1 is a compact operator on \mathfrak{H}_1. Hence, A is either invertible or has a non-trivial null space. In the former case, the proof is complete; in the latter case, the set of all those vectors $x \in \mathfrak{H}_1$ satisfying $A^kx = 0$ for some positive integer k form a non-trivial finite-dimensional subspace \mathfrak{N}_1 of \mathfrak{H}_1. Let $\dim(\mathfrak{N}_1) = n$, and define $\mathfrak{N}_2 = \mathfrak{H}_1 \ominus \mathfrak{N}_1$, so that $\mathfrak{H}_1 = \mathfrak{N}_1 \oplus \mathfrak{N}_2$. The subspace \mathfrak{N}_1 is invariant under A, and if we write N for the nilpotent operator in $\mathfrak{L}(\mathfrak{N}_1)$ defined by $N = A|\mathfrak{N}_1$, then the matrix representation for A relative to the decomposition $\mathfrak{H}_1 = \mathfrak{N}_1 \oplus \mathfrak{N}_2$ has the form
\[
A = \begin{pmatrix} N & A_{12} \\ 0 & A_{22} \end{pmatrix}.
\]
The advantage of this particular dissection of A is that the diagonal entry A_{22} is invertible. To see this, note that A_{22} is of the form $\lambda + K_2$, where $K_2 \in \mathfrak{L}(\mathfrak{N}_2)$ is compact. Thus, it suffices to show that A_{22} has trivial null space.
Suppose, accordingly, that \(A_{22}y = 0 \) with \(y \in \mathcal{H}_2 \). Then \(Ay \in \mathcal{H}_1 \), so that \(A^k(Ay) = A^{k+2}y = 0 \) for some \(k > 0 \). But then \(y \in \mathcal{H}_1 \), and therefore \(y = 0 \).

Let now \(\mathcal{M}_1 \) be an \(n \)-dimensional subspace of \(\mathcal{H}_2 \), the precise determination of which will be made later, and write \(\mathcal{M}_2 = \mathcal{H}_2 \oplus \mathcal{M}_1 \), so that
\[
\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{M}_1 \oplus \mathcal{M}_2.
\]
The matrix representation for \(T \) corresponding to this decomposition may be written as
\[
T = \begin{pmatrix}
N & A_{12} & B_{11} & B_{12} \\
0 & A_{22} & B_{21} & B_{22} \\
C_{11} & C_{12} & D_{11} & D_{12} \\
C_{21} & C_{22} & D_{21} & D_{22}
\end{pmatrix}.
\]

We next consider unitary operators \(U(\theta) \) on \(\mathcal{H} \) \((0 < \theta < \pi/2)\) whose matrices relative to this same decomposition of \(\mathcal{H} \) have the form
\[
U(\theta) = \begin{pmatrix}
\cos \theta & 0 & \sin \theta V & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta V^* & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{pmatrix},
\]
where \(V \) is some arbitrary isometry mapping \(\mathcal{M}_1 \) onto \(\mathcal{H}_1 \). A brief calculation shows that in the representation of \(U(\theta)TU^*(\theta) \) as a \(2 \times 2 \) matrix corresponding to the splitting \(\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \) (see (II) above), the entries \(A_1 \) and \(D_1 \) are given by
\[
A_1(\theta) = \begin{pmatrix}
\cos^2 \theta N + \sin^2 \theta VD_{11}V^* + \sin \theta \cos \theta (B_{11}V^* + VC_{11}) & \cos \theta A_{12} + \sin \theta VC_{12} \\
\sin \theta B_{21}V^* & A_{22}
\end{pmatrix}
\]
and
\[
D_1(\theta) = \begin{pmatrix}
\sin^2 \theta V^*N V + \cos^2 \theta D_{11} - \sin \theta \cos \theta (C_{11}V + V^*B_{11}) & -\sin \theta V^*B_{12} + \cos \theta D_{12} \\
-\sin \theta C_{21}V + \cos \theta D_{21} & D_{22}
\end{pmatrix}
\]
Thus our task reduces to choosing the subspace \(\mathcal{M}_1 \) and the angle \(\theta \) in such a way that these operators are invertible. To this end, note that the entries of the matrix (III) are all bounded in norm by \(\|T\| \), independently of how the subspace \(\mathcal{M}_1 \) is selected. It follows that \(\|D_1(\theta) - D\| \to 0 \) as \(\theta \to 0 \), and that this convergence is uniform with respect to \(\mathcal{M}_1 \). Since \(D \) is invertible, there exist angles \(\theta > 0 \) so small that \(D(\theta) \) is invertible no matter how \(\mathcal{M}_1 \) is chosen. We choose one such \(\theta_0 \), hold it fixed, and proceed to adjust \(\mathcal{M}_1 \) so as to make \(A_1(\theta_0) \) invertible. That such a choice is possible may be seen most clearly as follows. Let \(D_{11} = \lambda + K_3 \), with \(\lambda \) and \(K_3 \) in \(\mathcal{L}(\mathcal{M}_1) \). (The operator \(K_3 \) depends,
of course, on the choice of \(M_1 \). Also, write \(A_1(\theta_0) = A_0 + \delta(M_1) \), where
\[
A_0 = \begin{pmatrix}
\cos^2 \theta_0 N + \sin^2 \theta_0 \lambda & \cos \theta_0 A_{12} \\
0 & A_{22}
\end{pmatrix}
\]
and
\[
\delta(M_1) = \begin{pmatrix}
\sin^2 \theta_0 V K_3 V^* + \sin \theta_0 \cos \theta_0 (B_{11} V^* + V C_{11}) & \sin \theta_0 V C_{12} \\
\sin \theta_0 B_{21} V^* & 0
\end{pmatrix}
\]
so that \(A_0 \) is independent of the choice of \(M_1 \). Since \(N \) is nilpotent and \(\sin^2 \theta_0 \lambda \) is a non-zero scalar, the entry \(\cos^2 \theta_0 N + \sin^2 \theta_0 \lambda \) of \(A_0 \) is invertible; since \(A_{22} \) is also known to be invertible, it follows that \(A_0 \) is invertible. On the other hand, according to Lemma 2.1, it is possible to choose \(M_1 \) in such a way so as to make \(B_{11}, B_{21}, C_{11}, C_{12}, \) and \(K_3 \) as small in norm as desired. Since \(||V|| = 1 \), it follows that by appropriate choice of \(M_1 \), \(||\delta(M_1)|| \) can be made arbitrarily small. Hence \(A_1(\theta_0) \) can be made arbitrarily close to \(A_0 \), and the result follows.

Summary. We have shown that if \(T \) is an arbitrary operator of the form \(\lambda + K \) with \(\lambda \neq 0 \) and \(K \) compact, then \(T \) can be viewed, relative to some decomposition \(\mathcal{S} = \mathcal{S}_1 \oplus \mathcal{S}_2 \) of \(\mathcal{S} \), as a \(2 \times 2 \) matrix whose diagonal entries are invertible.

If we now identify \(\mathcal{S}_2 \) with \(\mathcal{S}_1 \) via a unitary isomorphism, then \(\mathcal{S} \) is identified with \(\mathcal{S}_1 \oplus \mathcal{S}_1 \), and \(T \) is identified with (is unitarily equivalent to) an operator \(T_1 \in \mathcal{S}(\mathcal{S}_1 \oplus \mathcal{S}_1) \). The advantage of this identification is that \(T_1 \) can be regarded as a \(2 \times 2 \) matrix all of whose entries act on the same space \(\mathcal{S}_1 \); of course, the diagonal entries of \(T_1 \) remain invertible. The following lemma thus concludes the proof of our theorem in the separable case.

Lemma 2.3. If \(T \) is an operator on \(\mathcal{S}(\mathcal{S} \oplus \mathcal{S}) \) whose \(2 \times 2 \) matrix over \(\mathcal{S}(\mathcal{S}) \) is
\[
\begin{pmatrix}
T_1 & T_2 \\
T_3 & T_4
\end{pmatrix},
\]
where \(T_1 \) and \(T_4 \) are invertible operators, then there exist invertible operators \(P, A, \) and \(Q \) on \(\mathcal{S} \oplus \mathcal{S} \) such that \(T = PAQ - QAP \).

Proof. We define \(P, A, \) and \(Q \) by writing
\[
P = \begin{pmatrix}
-T_1 & 0 \\
0 & T_4
\end{pmatrix}, \quad A = \begin{pmatrix}
A_1 & 0 \\
0 & A_2
\end{pmatrix}, \quad \text{and} \quad Q = \begin{pmatrix}
Q_1 & 1 \\
0 & Q_2
\end{pmatrix},
\]
where the entries \(A_i, Q_i \), \(i = 1, 2 \), are to be determined. Note that if \(A_i \) and \(Q_i \), \(i = 1, 2 \), are all invertible, then \(P, A, \) and \(Q \) are invertible also. A brief calculation reduces the matrix equation \(PAQ - QAP = T \) to the system of equations
\[
\begin{align*}
Q_1 A_1 T_1 - T_1 A_1 Q_1 &= 0 \\
T_1 A_1 + A_2 T_4 &= -T_3 \\
T_4 Q_1 + Q_2 T_3 &= T_4 \\
T_4 A_2 Q_2 - Q_2 A_2 T_4 &= 0.
\end{align*}
\]
That this system possesses invertible solutions A_1, A_2, Q_1, Q_2 when T_1 and T_4 are themselves both invertible may be seen as follows. If we agree to write

$$A_2 = \alpha Q_2^{-1} \quad \text{and} \quad Q_1 = \beta T_1$$

(where α and β denote positive parameters to be determined), then the first and last equations will be automatically satisfied, so that the problem reduces to solving the third equation

$$\beta T_4 T_1 + Q_2 T_1 = T_3$$

for Q_2 in such a way as to make Q_2 invertible, and then solving the second equation

$$T_1 A_1 + \alpha Q_2^{-1} T_4 = - T_2$$

for A_1 in such a way as to make it invertible. Clearly these requirements will be met if β is first chosen large enough to ensure the invertibility of $T_3 - \beta T_4 T_1$ and if α is then chosen large enough to make $T_2 + \alpha Q_2^{-1} T_4$ invertible.

3. The non-separable case. In this section we sketch a proof of the theorem in the case that $\dim(\mathfrak{H}) = \mathfrak{N} > \mathfrak{N}_0$. Let (K) denote the maximal proper norm-closed ideal in $\mathfrak{S}(\mathfrak{H})$. According to (1, Theorem 4), the non-commutators on \mathfrak{H} are exactly the operators of the form $\lambda + K$, where $\lambda \neq 0$ and $K \in (K)$. Furthermore, just as above, it suffices to treat the non-commutators. Let $T = \lambda + K$ be such an operator. Then the lemma obtained from Lemma 2.1 above by replacing the phrase “finite-dimensional subspace \mathfrak{K}” by “subspace \mathfrak{K} of dimension less than \mathfrak{N}” is valid for T and is essentially contained in (1, Lemma 6.1) and (2, Lemma 4.1). Accordingly, in the notation of Lemma 2.1, let $\epsilon = |\lambda|/2$, let \mathfrak{K} be the corresponding subspace of dimension less than \mathfrak{N}, and let \mathfrak{M} denote the smallest invariant subspace of T that contains \mathfrak{K}. An easy cardinality argument shows that \mathfrak{M} has dimension equal to that of \mathfrak{K}. Since \mathfrak{M}^\perp is orthogonal to \mathfrak{K}, the compression Z of $T - \lambda$ to \mathfrak{M}^\perp has norm less than $\epsilon = |\lambda|/2$, and it follows that the matrix for T relative to the decomposition $\mathfrak{H} = \mathfrak{M} \oplus \mathfrak{M}^\perp$ has the form

$$T = \begin{pmatrix} X & Y \\ 0 & Z + \lambda \end{pmatrix}.$$

Since $X \in \mathfrak{S}(\mathfrak{M})$ and $\dim \mathfrak{M} < \mathfrak{N}$, we may assume by transfinite induction that the conclusion of the theorem holds for X. To see that the conclusion of the theorem also holds for $Z + \lambda$, write $\mathfrak{M}^\perp = \mathfrak{M}_1 \oplus \mathfrak{M}_2$, where $\dim \mathfrak{M}_1 = \dim \mathfrak{M}_2 = \dim \mathfrak{M}^\perp$. Then the matrix for $Z + \lambda$ relative to this resolution has the form

$$Z + \lambda = \begin{pmatrix} Z_1 + \lambda & Z_2 \\ Z_3 & Z_4 + \lambda \end{pmatrix},$$

and since $\|Z\| < \epsilon = |\lambda|/2, \|Z_2\|, \|Z_4\| < |\lambda|/2$, from which it follows that $Z_1 + \lambda$ and $Z_4 + \lambda$ are invertible. Thus Lemma 2.3, which is easily seen to be

https://doi.org/10.4153/CJM-1968-135-8 Published online by Cambridge University Press
independent of the dimension of S, can be applied to yield the desired conclusion for $Z + \lambda$.

The proof in the non-separable case is completed by the following lemma.

Lemma 3.1. Suppose that the conclusion of the theorem holds for operators X and Z on Hilbert spaces S and \mathcal{K}, respectively, and let Y be any operator from \mathcal{K} to S. Then the conclusion of the theorem also holds for the operator

$$\begin{pmatrix} X & Y \\ 0 & Z \end{pmatrix}$$

on the space $S \oplus \mathcal{K}$.

Proof. Choose invertible operators P_i, A_i, and Q_i ($i = 1, 2$) such that

$$P_1A_1Q_1 - Q_1A_1P_1 = X \quad \text{and} \quad P_2A_2Q_2 - Q_2A_2P_2 = Z.$$

Let $P \in \mathcal{K}(S \oplus \mathcal{K})$ denote the operator

$$P = \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix},$$

let

$$A_s = \begin{pmatrix} A_1 & 0 \\ 0 & sA_2 \end{pmatrix},$$

where s is a positive real parameter to be determined, and finally, let

$$Q_s(W) = \begin{pmatrix} Q_1 & W \\ 0 & s^{-1}Q_2 \end{pmatrix},$$

where W is an operator from \mathcal{K} to S which also is to be determined. A simple calculation shows that

$$PA_sQ_s(W) - Q_s(W)A_sP = \begin{pmatrix} X & (P_1A_1)W - W(sA_2P_2) \\ 0 & Z \end{pmatrix}$$

so that, to complete the proof, it suffices to solve the equation

(\text{V})

$$(P_1A_1)W - W(sA_2P_2) = Y$$

for s and W. Now for fixed s, it is well known that this equation possesses a unique solution W provided only that the spectra of P_1A_1 and sA_2P_2 are disjoint. Furthermore, since A_sP_2 is invertible, it is obviously possible to make these spectra disjoint by choosing s sufficiently large.

Remark 3.2. The complete story concerning (\text{V}) is as follows: the spectrum of the linear transformation

$$W \rightarrow BW - WC$$

is precisely the set of differences $\beta - \gamma$, where β and γ run over the spectra of B and C, respectively. The usual proof of this fact (see 3) assumes that B, C, and W are all operators on the same Hilbert space, but the argument can easily
be modified so as to apply to the case in which B and C act on different Hilbert spaces and W is a linear transformation from one Hilbert space to the other.

Remark 3.3. A very short construction due to Paul Federbush shows that every operator T on an infinite-dimensional space can be written as $T = PAQ - QAP$ for P, A, Q not invertible. The argument goes as follows. Write $\mathcal{H} = \mathcal{H} \oplus \mathcal{H}^*$, where \mathcal{H} and \mathcal{H}^* are of the same dimension, and let $P (Q)$ be an isometry with range $\mathcal{H} (\mathcal{H}^*)$. If X is an arbitrary operator, then $X = PAQ - QAP$, where $A = P^*XQ^* - Q^*XP^*$. We are also indebted to Federbush for bringing (4, Theorem 3) to our attention.

References

University of Michigan,

Ann Arbor, Michigan