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Abstract. In this paper, we provide an application to the random distance-t walk in
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1. Introduction

In this paper we study the unit random walk in finite vector spaces. We also provide a
discussion of a related association scheme that was the subject of the first author’s thesis
work [4] that we latter were informed was previously studied by W.M. Kwok, E. Bannai,
O. Shimabukuro and H. Tanaka in [2], [12]. In [12], the P-matrix and intersection num-
bers of this scheme were worked out in terms of the character table of the ”Euclidean”
group over finite fields but had some errors which were latter corrected in [2] where a
connection to Kloosterman sums was also mentioned, including Kloosterman’s original
bound. In this paper, we recap these calculations first to connect them more explic-
itly to our applications which use some deeper distributional data about Kloosterman
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sums provided by equidistribution results from number theory. (Along the way we also
provide an explicit calculation of the planar intersection numbers implicitly described
in [12].)

The books [5], [7], [17] are good references for the spectral graph theory concepts used
in this paper. The book [5] is a good reference for association schemes. Let Fq be a
finite field of odd prime power order q and V = Fdq be the standard d-dimensional vector
space over Fq. Note that all finite vector spaces of odd characteristic are of this form.

Equip V with the standard bilinear dot product associated to the nondegenerate
quadratic form Q(v) = v2

1 + · · ·+v2
d. The ”distance” between two points v and w in V as

determined by this quadratic form is given byQ(v−w) which is the standard ”Euclidean”
distance formula without the square root. The quadratic space (V,Q) will be refered
to as d-dimensional Euclidean space over Fq in this paper. Note that it is known that
there are only two nondegenerate quadratic forms up to isometry on any finite vector
space ([16]), besides the one derived from the standard dot product that we are using,
the other one is a ”Lorentzian” quadratic form with QLorentz(v) = v2

1 + · · ·+ v2
d−1 + ξv2

d

where ξ is any fixed nonsquare element in Fq. Most of what we discuss will also hold for
this other quadratic form but we will stick to the dot product in this paper for brevity.

For every t ∈ Fq, we may define the distance-t graph whose vertex set is V and where
there is an edge between v, w ∈ V if and only if Q(v − w) = t and v 6= w. This regular
graph has a qd × qd adjacency matrix At with respect to some fixed ordering of the
vertices of V and common vertex degree |St| where St = {v ∈ V \ {0}|Q(v) = t} is the
”sphere of radius t” and has order qd−1(1 + o(1)) when t 6= 0. (The exact order is known
but here for brevity we collect secondary terms in o(1) which tends to 0 as q → ∞).
In fact this graph is a Cayley graph with connection set St and hence is in fact vertex-
transitive (i.e., there is a graph automorphism taking any vertex to any other vertex).
The corresponding Markov chain (see [13] for basic Markov chain terminology) on this
graph is called the distance-t random walk in V with the case t = 1 called the unit
random walk in V . It corresponds to a situation where at each step, the current state
evolves by taking a distance t step with each such step equally likely. The transition
matrix for this Markov chain is Tt = 1

|St|At.

The matrices {At|t ∈ Fq} determine a symmetric association scheme with correspond-
ing real and complex Bose-Messner algebras. What this means is that we have identities
of the form

AiAj =
∑
k∈Fq

pki,jAk

where the intersection numbers pki,j correspond to the number of ways that a given ”line
segment” of length k can be completed to a triangle of side lengths i, j and k. We call this
particular scheme the Euclidean association scheme for the finite field Fq and recompute
certain change of basis matrices P and Q (between a geometric and a spectral basis of
the Bose-Messner algebra) which are generally important in the theory of such schemes.
We also compute this association scheme’s intersection numbers. (In [12], the higher
dimensional numbers were computed in terms of the planar case which we compute
explicitly here.) This first part of the paper’s results appear in the first author’s thesis
as well as in [12] (some errors in [12] were later corrected in [2] and the connection to
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Kloosterman sums made more explicit, though these were also already described earlier
in [9]).

The eigenvalues of At are related to twisted Kloosterman sums:

K̃d(a, b) =
∑

x∈Fq−{0}

(
x

q

)d
χ(ax+

b

x
)

where
(
x
q

)
is the Legendre symbol and χ is a fixed nontrivial additive character given by

χ(x) = e
2πiTr(x)

p , Here, q = p` with p an odd prime and Tr is the Galois trace from Fq to
Fp.

In even dimensions d, the twisting by the Legendre symbol disappears and the eigen-
values are related to Kloosterman sums:

K(a, b) =
∑

x∈Fq−{0}

χ(ax+
b

x
).

In general the K(a, b) are real algebraic integers, contained in Q[e
2πi
p ], the pth cyclo-

tomic field.
The identities K(0, 0) = q − 1, K(a, b) = K(b, a), K(1, 0) = −1 are trivial to verify

via character orthogonality and coordinate changes, as is the identity K(a, b) = K(1, ab)
when a 6= 0. By work of Kloosterman and others ([11], [18]), it is known |K(1, α)| ≤ 2

√
q

when α 6= 0 and q = p is an odd prime. One typically writes K(1, α) = 2
√
q cos(θα,q)

where θα,q ∈ [0, π]. These numbers occur as spectra of various natural Cayley graphs
and hence in many combinatorial applications. ([6], [1], [8])

Nick Katz [10] proved the deep result on ”vertical equidistribution of Kloosterman
sums” ([14]) which states that for any [a, b] ⊆ [0, π], the proportion of {θα,q, 1 ≤ α ≤
q − 1} that lie in [a, b] approaches 2

π

∫ b
a
sin2(θ)dθ as q → ∞. This result was obtained

by estimating the `th moment of the Kloosterman numbers Mq,` =
∑

1≤α≤q−1 |K(1, α)|`
for all positive integers ` reasonably. Useful closed form formulas for these moments are
only known for a finite number of ` ([15]).

In this paper, we calculate Rq,`,t (see Theorem 7.1), the probability that you return
to the vertex you started from after `-steps in the random distance t-walk, in terms of
these moments of Kloosterman sums. We show that this probability is independent of
your starting state/vertex and is given by:

Theorem 1.1 (Probability of Return in the Distance t Random Walk in Fq-planes). Let
q be an odd prime, q = 3 mod 4. Let Rq,`,t be the probability that you return to the same
vertex after ` steps in the distance-t walk where t 6= 0. Then Rq,`,t = Rq,` is independent
of t 6= 0 and initial state. We have

Rq,`,t = Rq,` =
1

q2
(1 +

(−1)`

(q + 1)`−1
Mq,`)

Furthermore, as q →∞ we have:

Rq,2` =
1

q2
+

q`−1

(`+ 1)(q + 1)2`−1

(
2`

`

)
(1 + o(1)) =

1

q2
+

1

q`(`+ 1)

(
2`

`

)
(1 + o(1))
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and

Rq,2`+1 =
1

q2
(1− 1

(q + 1)2`
o(q`+1.5)) =

1

q2
(1 + o(q1.5−`))

Note the first 1
q2

term in these asymptotic formulas is what one would expect if the

location after ` steps were equally likely to be anywhere in the plane and the second term
represents an arithmetic bias against that happening. In particular we see that for ` ≥ 5,
we have Rq,` is 1

q2
(1+o(1)) but for smaller ` arithmetic bias is significant and so we need at

least 5 steps to achieve uniformity. Note Rq,1 = 0, Rq,2 = 1
q
(1 + o(1)), Rq,4 = 3

q2
(1 + o(1))

are all ”arithmetically biased”. Similar results hold for q = 1 mod 4 and can be seen in
the paper.

Though the main terms in these formulas can be derived using just the spectral gap
when ` ≥ 5, the explicit nature of the second order term requires, and is equivalent to,
the deeper vertical equidistribution results.

2. Association scheme definitions

See [5] for a discussion of the essentials of the theory of association schemes. There
are various equivalent definitions of association schemes, for us the following is most
convenient:

Definition 2.1 (Association Scheme). An association scheme is a set X equipped with
a surjective ”distance function” d : X → ∆ with distance set ∆ which contains a formal
zero element {0̄} such that:
(1) d(x, y) = 0̄ if and only if x = y.
(2) d(x, y) = d(y, x) all x, y ∈ X.
and
(3) Given x, y ∈ X, k, i, j ∈ ∆ with d(x, y) = k, the number pki,j(x, y) of z ∈ X such

that d(x, z) = i, d(z, y) = j only depends on i, j, k and not x, y. Thus pki,j(x, y) = pki,j
and these are called the ”intersection numbers” of the association scheme.

The best way to think of this last condition is to think of x, y giving a segment of
length k and then noting that (3) states that the number of ways to complete this
segment into a ”triangle” only depends on the side lengths of the triangle and not the
endpoints of the segment itself.

Though it is nice to think of an association scheme ”geometrically” do note that we
do not require the ”distance” to satisfy the triangle inequality nor for the set ∆ to be
numerical. The elements of ∆ can be any objects such as colors etc.

For any x ∈ X and j ∈ ∆, the sphere of radius j about x is denoted

Sj(x) = {y ∈ X|d(x, y) = j}.
Note in any finite association scheme, setting x = y in (3) we see that

p0̄
i,j = δi,j|Sj(x)|

is independent of x. Here δi,j is the Kronecker Delta function which is 1 when i = j and
0 otherwise. Furthermore by (2), we may reverse the role of x and y and so conclude
that

pki,j = pkj,i
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for all i, j, k ∈ ∆.
Given an association scheme (X, d), we define the distance-t-graph for any t ∈ ∆ as

the graph on vertex set X and where two vertices x, y ∈ X are adjacent if and only if
d(x, y) = t. As |St(x)| is independent of x, the distance-t-graph is |St|-regular.

In the case X is finite, we denote the adjacency matrix of the graph (with respect to
some linear ordering of X) as At. Thus A0̄ = I and

∑
j∈∆ Aj = J where J is the all 1

matrix. It is easy to check that condition (2) is equivalent to the At being symmetric
matrices and condition (3) is equivalent to

AiAj =
∑
k

pki,jAk.

As pki,j = pkj,i, this says the matrices {Ai|i ∈ ∆} all commute with each other. Note as
we require d : X×X → ∆ to be surjective, no Aj is the zero matrix and so the fact that
they sum to J shows that the {Ai|i ∈ ∆} are a linearly independent set in Mat|X|(R).
Condition (3), guarantees that their span is a algebra.

Definition 2.2 (Bose-Messner Algebra). Let A = (X, d) be a finite association scheme
with distance set ∆ such that |∆| = D+ 1. We say (X, d) has D (nonzero) classes. The
Bose-Messner algebra of the scheme is defined as

BM(A) = R− span of {Aj|j ∈ ∆} ⊆Mat|X|(R).

It is a D+ 1 dimensional R-commutative algebra with basis {Aj|j ∈ ∆} and multipli-
cation determined by the rule AiAj =

∑
k p

k
i,jAk.

The complexification of this algebra is called the complex Bose-Messner algebra and
consists of the C-span of the same Aj matrices.

Example 2.3. Let X = (V,E) be a distance regular graph of diameter D, then V
equipped with the graph metric is an association scheme on D (nonzero) classes. The
theory of association schemes was introduced historically as a generalization of the theory
of distance regular graphs.

The next example is the primary example considered in this paper.

Example 2.4 (Euclidean association scheme). Let q be an odd prime power, n ≥ 2,
and V = Fnq equipped with the ”Euclidean” quadratic form Q(v) = v2

1 + · · · + v2
n and

”distance” Q(v − w). Then given x 6= y, v 6= w ∈ V with Q(x − y) = Q(v − w), Witt’s
theorem shows there is a isometry of V (consisting of a composition of a translation
and matrix multiplication by A where A ∈ O(n, q) = {A ∈ Matn(Fq)|ATA = I} is an
”orthogonal” matrix), taking the pair x, y to the pair of v, w.

When n ≥ 3 or n = 2 and q = 1 mod 4, it is possible Q(x− y) = 0 but x 6= y and so
we distinguish between distance 0 and distance 0̄ by declaring d(x, y) = 0̄ if and only if
x = y and d(x, y) = Q(x− y) whenever x 6= y. Thus in Z2

5,

d((0, 0), (1, 2)) = 12 + 22 = 5 = 0 6= 0̄.

The distance set is ∆ = Fq ∪{0̄} when n ≥ 3 or n = 2, q = 1 mod 4 but when n = 2, q =
3 mod 4, ∆ = (Fq − {0}) ∪ {0̄} as Q(x− y) 6= 0 when x 6= y in that case.

Witt’s theorem establishes that (V, d) is an association scheme by establishing property
(3).
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6 C. BRITTENHAM AND J. PAKIANATHAN

Example 2.5. Let q be an odd prime power, q = 3 mod 4. then −1 is not a square in
Fq and so the Galois extension E = Fq[i] of Fq is a degree 2 extension where i is a root
of x2 +1. The Galois norm map N : E× → F×q has N(a+ bi) = (a+ bi)(a− bi) = a2 + b2

and this agrees with the Euclidean quadratic form Q on V = F2
q and so Q(x − y) =

0 ⇐⇒ x = y in this case. Note as N is a homorphism,

|Sj((0, 0))| = |N−1(j)| = q2 − 1

q − 1
= q + 1

for all j ∈ F×q = Fq − {0}. Thus in the corresponding association scheme, p0̄
j,j = q + 1

whenever j ∈ F×q while p0̄
0̄,0̄ = 1.

Given a finite association scheme A = (X, d) on D classes, the matrices {Aj|j ∈ ∆}
are a real basis for the corresponding Bose-Messner algebra BM(A). As the matrices are
symmetric and as they commute, they can be simultaneously (orthogonally) diagonalized
on their action on RX and this vector space splits as an orthogonal direct sum of simul-
taneous eigenspaces of all the Aj operators. These simultaneous eigenspaces are called
weight spaces. Let {Ei, i ∈ ∆′} be the collection of orthogonal projection operators to
the individual weight spaces. Linear algebra guarantees that each Ei is a polynomial
expression in the Aj’s and hence lies in the Bose-Messner algebra and thus is a linear
combination of the Aj. Conversely as each Aj is constant on the image of any Ei, each
Aj can be trivially written as a linear combination of the Ei. Thus the {Ei|i ∈ ∆′} are
a different, ”spectral basis” of the Bose Messner algebra BM(A) and hence |∆| = |∆′|.
We will refer to the original basis {Aj|j ∈ ∆} of BM(A) as the geometric basis of the
Bose-Messner algebra as these encode the distances of the scheme.

Many of the main results of association schemes, and distance regular graphs in par-
ticular, arise from the interactions between the geometric and spectral basis of the
Bose-Messner algebra of the scheme.

In particular two fundamental change of basis matrices are defined as follows:

Definition 2.6. Let (X, d) be a finite association scheme on D (nonzero) classes and
let {Aj|j ∈ ∆} and {Ei|i ∈ ∆′} denote the ”geometric” and ”spectral” basis of the
corresponding Bose-Messner algebra. The (D+ 1)× (D+ 1) real matrices P and Q are
defined via

Aj =
∑
i∈∆′

Pi,jEi for all j ∈ ∆

and

Ei =
1

|X|
∑
j∈∆

Qj,iAj for all i ∈ ∆′

Thus PQ = |X|I = QP .

Note the {Pi,j|i ∈ ∆′} are just the eigenvalues of Aj, the adjacency matrix of the
distance j-graph of the scheme. Note that |∆′| = |∆| = D + 1 is usually much smaller
than |X| and so the |X| × |X| matrix Aj has lots of multiplicities in its eigenvalues,
encoded by rank(Ei) which is the dimension of the ith weight space.
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Definition 2.7 (Intersection Matrices). Given an association scheme on D (nonzero)
classes with intersection numbers pki,j, i, j, k ∈ ∆. The (D + 1) × (D + 1) intersection

matrix Li is defined via (Li)k,j = pki,j for all i ∈ ∆.
It turns out the eigenvalues of Lj are the same as the eigenvalues of the |X| × |X|

matrix Aj, i.e. are also {Pi,j|i ∈ ∆′}.

The matrices P,Q, Lj, Ai, Ej satisfy many interesting identities in an association
scheme. For our purpose we focus on Delsarte’s linear programming bound. Let
(X, d) be a finite association scheme and Y ⊆ X. For each j ∈ ∆, define aj =
|{(y1,y2)∈Y×Y |d(y1,y2)=j}|

|Y | =
χTY AjχY
χTY χY

∈ Q≥0 where χY is the characteristic column vector

of Y . Then the row vector a = (aj)j∈∆ is called the inner distribution of Y as it encodes
the frequency of various distances on the pairs in the subset Y . This inner distribution
satisfies Delsarte’s linear programming bound condition aQ ≥ 0 as well as

∑
j∈∆ aj = |Y |

and these conditions give us many constraints on distances induced on subsets Y of the
scheme.

3. Eigenvalues of the Distance t-graphs

For any t ∈ Fq, let X(q, t) denote the associated distance t-graph on Fdq . In this
section, we describe the spectrum of the adjacency matrix of this graph, At, when t 6= 0̄,
i.e., for t ∈ Fq. This spectrum was previously computed by various authors for example
in [9], [17] but we include a brief discussion here to be self-contained.

Standard spectral theory of finite Cayley graphs over Abelian groups, shows that
the complex eigenfunctions of this graph’s adjacency operator At are the characters
χm(x) = χ(m ·x) as m ranges over Fdq . Here · stands for dot product. The corresponding
eigenvalue of At on χm which we will denote λm,t,d (recall d is the dimension of V ) is
given by

λm,t,d =
∑
x∈St,d

χm(x) =
∑

x 6=0,Q(x)=t

χ(m · x).

Clearly λ0,t,d = |St,d|. The size of these spheres were originally calculated by Minkowski,
and there are at most 3 distinct sphere sizes corresponding to t = 0, t a nonsquare in
Fq, and t a nonzero square in Fq. This is because scaling by λ ∈ F×q gives a bijection
between St,d and Sλ2t,d.

When m, t are both nonzero, these eigenvalues are given by twisted Kloosterman
sums. We provide the calculation for the convenience of the reader. First note that by
character orthogonality we have 1

q

∑
s∈Fq χ(sL) = δL,0 where δL,0 = 1 if L = 0 and 0

otherwise. Then we compute, when t 6= 0,:
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λm,t,d =
∑

{x|Q(x)=t}

χ(m · x) =
1

q

∑
s∈Fq

∑
x∈V

χ(m · x)χ(s(Q(x)− t))

=
1

q

∑
s∈Fq

χ(−st)
∑

x1,...,xd∈Fq

χ(m1x1 + · · ·+mdxd + s(x2
1 + · · ·+ x2

d))

=
1

q

∑
s∈Fq

χ(−st)
d∏
i=1

∑
xi∈Fq

χ(mixi + sx2
i )

= qd−1δm,0 +
1

q

∑
s 6=0

χ(−st)
d∏
i=1

∑
xi∈Fq

χ(mixi + sx2
i )

= qd−1δm,0 +
1

q

∑
s 6=0

χ(−st)
d∏
i=1

∑
yi∈Fq

χ(sy2
i −

m2
i

4s
)

where in the last step we completed the square and substituted yi = xi + mi
2s

. Letting
G(s) =

∑
y∈Fq χ(sy2) denote the corresponding Gauss sum, we conclude that

λm,t,d = qd−1δm,0 +
1

q

∑
s 6=0

χ(−st− Q(m)

4s
)G(s)d.

When t = 0 the only correction needed is to exclude x = 0 from the set Q(x) = 0 which
results in reducing this quantity by 1. Thus we have generally that:

λm,t,d = qd−1δm,0 − δt,0 +
1

q

∑
s 6=0

χ(−st− Q(m)

4s
)G(s)d.

It is a well known result of Gauss that G(s) =
(
s
q

)
ε(q)
√
q where

(
s
q

)
is the Legendre

symbol which is +1 when s is a nonzero square modulo q, and −1 when s is a nonsquare
modulo q. The quantity ε(q) = 1 when q ≡ 1 mod 4 and ε(q) = i when q ≡ 3 mod 4.
Thus we conclude:

λm,t,d = qd−1δm,0 − δt,0 + q
d
2
−1ε(q)dK̃d(−t,−

Q(m)

4
)

where K̃d(a, b) =
∑

s 6=0

(
s
q

)d
χ(as + b

s
) is a twisted Kloosterman sum. Note that the

dependence of K̃d(a, b) on d is weak and only depends on the parity of d. When d is
even, K̃d(a, b) = K(a, b) =

∑
s 6=0 χ(as + b

s
) is the regular Kloosterman sum. Note that

the m-dependence of the eigenvalue λm,t,d is only through Q(m) = ||m|| = m2
1 + · · ·+m2

d

and whether m is the origin or not. Following the convention adopted in association
schemes, we will write Q(m) = 0̄ if m = 0 and Q(m) = 0 if m 6= 0 but m2

1 + · · ·+m2
d = 0.

Thus Span{χm|Q(m) = k} = Lk is contained in an eigenspace of At for each t, k ∈
Fq ∪ {0̄}. The complex vector space C[V ], of all complex functions on V , decomposes
as a orthogonal direct sum of the Lk with respect to the standard Hermitian inner

https://doi.org/10.4153/S0008414X24000518 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000518


RANDOM WALKS AND THE ”EUCLIDEAN” ASSOCIATION SCHEME IN FINITE VECTOR SPACES9

product. The Lk are simultaneous eigenspaces of all the At operators and L0 is 0 if
and only if S0 = ∅. Thus the number of nonzero Lk is the same as the dimension of
the corresponding Euclidean Association scheme and so the nonzero Lk are exactly the
weight spaces in the decomposition of the complex Bose-Messner algebra of the scheme.
Note that L0̄ = Span{χ0} = Span{1} consists of the constant functions.

We record these results in the following theorem:

Theorem 3.1. Let q be an odd prime power and Fq the finite field of order q. For d an
integer ≥ 2, m ∈ Fdq , t ∈ Fq we have that the eigenvalue λm,t,d of the adjacency matrix

At of the distance-t-graph of V = Fdq on the character χm(x) = χ(m · x) is given by:

λm,t,d = qd−1δm,0 − δt,0 + q
d
2
−1ε(q)dK̃d(−t,−

Q(m)

4
)

where K̃d(a, b) =
∑

s 6=0

(
s
q

)d
χ(as+ b

s
) is a twisted Kloosterman sum.

If Wk = Span{χm|Q(m) = k} in C[V ] then C[V ] = ⊕k∈Fq∪{0̄}Wk is an orthogonal
direct sum decomposition of the vector space of complex valued functions on V into
simultaneous eigenspaces of all the At operators, t ∈ Fq∪{0̄}. The orthogonal projection
Ek onto the (nonzero) Wk give the spectral basis of the complex Bose Messner Algebra
of the corresponding Euclidean association scheme.

Note it is not hard to see that the complex conjugate of K̃d(a, b) is∑
s 6=0

(
s

q

)d
χ(−as− b

s
) =

∑
s 6=0

(
−s
q

)d
χ(as+

b

s
)

and so K̃d(a, b) is real if either d is even or q ≡ 1 mod 4 (i.e. when −1 is a square
modulo q) but is purely imaginary when d is odd and q ≡ 3 mod 4. However the
quantity ε(q)dK̃d(a, b) and hence λm,t,d are real numbers of course as they are eigenvalues
of symmetric matrices.

4. Some properties of (twisted) Kloosterman sums

Let q = p` be an odd prime power and define K̃d(a, b) =
∑

s 6=0

(
s
q

)d
χ(as + b

s
) for

a, b ∈ Fq.
Let ξp = e

2πi
p be a primitive pth root of unity and Q[ξp] be the corresponding cyclo-

tomic field. Note as χ(x) = ξTr(x) where Tr : Fq → Fp is the Galois trace, we have

that K̃d(a, b) are elements in the ring of integers of Q[ξp]. Recall that the Galois group
Gal(Q[ξp]/Q) is Abelian of order p − 1 and contains automorphisms of the form ψa
determined by the property that they take ξ to ξa for all a ∈ F∗p and fix the rational
subfield.

Proposition 4.1. Let p be an odd prime and q = p` and define

K̃d(a, b) =
∑
s6=0

(
s

q

)d
χ(as+

b

s
)

for a, b ∈ Fq. These are algebraic integers in the cyclotomic field Q[ξp] which satisfy:

(1) K̃d(a, b) = K̃d(b, a)
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10 C. BRITTENHAM AND J. PAKIANATHAN

(2) K̃d(a, b) =
(
a
q

)d
K̃d(1, ab) when a 6= 0

(3) The quantity K̃d(0, 0) is equal to q− 1 when d is even and equal to 0 when d is odd.

Thus K̃d(0, 0) = (q − 1) (−1)d+1
2

.

(4) The quantity K̃d(1, 0) = K̃d(0, 1) equals −1 when d is even and G(1) when d is odd
where G(1) =

∑
s∈Fq χ(s2) = ε(q)

√
q is a quadratic Gauss sum.

(5) For c ∈ F∗p we have that ψc(K̃d(a, b)) = K̃d(ca, cb) where ψc is the Galois automor-
phism of Q[ξp] over Q which takes ξp to ξcp.

Proof. To prove (1), use the change of variable s → 1
s
. To prove (2) use the change of

variable s′ = as for nonzero a. (3) follows trivially once one notes that in any finite field,
an equal number of elements are nonzero squares as are nonsquares.

For (4), first note that when d is even we have K̃d(1, 0) =
∑

s 6=0 χ(s) which by char-

acter orthogonality is equal to −χ(0) = −1. When d is odd, we have K̃d(1, 0) =∑
s 6=0

(
s
q

)
χ(s) =

∑
s∈Fq

(
s
q

)
χ(s) =

∑
s∈Fq(

(
s
q

)
+ 1)χ(s) =

∑
u∈Fq χ(u2) = G(1).

Finally for (5), we note that K̃d(a, b) =
∑

s 6=0

(
s
q

)d
ξ
Tr(as+ b

s
)

p and apply the Galois

automorphism ψc to get

ψc(K̃d(a, b)) =
∑
s 6=0

(
s

q

)d
ξ
cTr(as+ b

s
)

p =
∑
s 6=0

(
s

q

)d
ξ
Tr(cas+ cb

s
)

p = K̃d(ca, cb)

as the Galois trace Tr : Fq → Fp is Fp-linear.
�

Note that when d is even, the K̃d(a, b) coincide with (untwisted) Kloosterman sums
K(a, b) =

∑
s 6=0 χ(as + b

s
) and the properties above apply to those also. In particular

when q = p, this implies that the {K(1, u)|u a nonzero square } are all Galois conjugates
in Q[ξp]. This is because for c 6= 0, ψc(K(1, 1)) = K(c, c) = K(1, c2).

We will need one more property of these Kloosterman numbers that requires some
Fourier analysis. Recall if f : V → C then we define the Fourier transform

f̂(m) =
1

qd

∑
x∈V

f(x)χ(−m · x).

It is easy to show via character orthogonality that we can recover f via

f(x) =
∑
m∈V

f̂(m)χ(m · x).

Note if we let St denote the indicator function of the corresponding t-sphere, t ∈ ∆,
then qdŜt(m) =

∑
x∈Fdq

St(x)χ(−m · x) =
∑

x∈St χ(m · x) = λm,t,d from the previous

section. (We define λm,0̄,d = 1 to also make it work in that case). By disjointness of
spheres of different radii, it follows that for any i 6= j ∈ ∆,

https://doi.org/10.4153/S0008414X24000518 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000518


RANDOM WALKS AND THE ”EUCLIDEAN” ASSOCIATION SCHEME IN FINITE VECTOR SPACES11

0 = Si(x)Sj(x) = (
∑
m∈V

Ŝi(m)χ(m · x))(
∑
n∈V

Ŝj(n)χ(n · x))

0 =
∑
t∈V

(
∑
m∈V

Ŝi(m)Ŝj(t−m))χ(t · x).

By character independence, we conclude that
∑

m∈V Ŝi(m)Ŝj(t−m) = 0 for all t ∈ Fdq
when i 6= j ∈ ∆. When i = j, as Si(x)Si(x) = Si(x), we instead conclude Ŝi(t) =∑

m∈V Ŝi(m)Ŝi(t−m).

Using that qdŜt(m) = λm,t,d and that Ŝt(m) = Ŝt(−m), this becomes the next propo-
sition:

Proposition 4.2. Consider the Euclidean association scheme on V = Fdq with distance
set ∆. Let λm,t,d be as in Theorem 3.1 with λm,0̄,d = 1. Then for any i 6= j ∈ ∆ and
t ∈ V , we have ∑

m∈V

λm,i,dλt−m,j,d = 0,

and in particular when t = 0, ∑
m∈V

λm,i,dλm,j,d = 0.

When i = j we instead have: ∑
m∈V

λm,i,dλt−m,i,d = qdλt,i,d,

and ∑
m∈V

λ2
m,i,d = qdλ0,i,d = q2dŜi(0) = qd|Si|.

5. The P and Q matrices of the Euclidean Association scheme

The calculation of the P -matrix of the Euclidean scheme in this section was first done
in [12] with corrections in [2] but we provide the details independently here in language
more connected to our applications.

Let ∆ be the ”distance” set of the Euclidean association scheme on V = Fdq . Thus if
d ≥ 3 or (d = 2, q = 1 mod 4) we have ∆ = {0̄}∪Fq whereas when (d = 2, q = 3 mod 4),
we have ∆ = {0̄} ∪ F×q .

By Theorem 3.1, it follows that both the spectral and geometric basis of the complex
Bose-Messner algebra can be indexed by the distance set ∆. Fix a linear ordering
of ∆ where 0̄ comes first and if 0 ∈ ∆, it comes second. For example the ordering
0̄ < 0 < 1 < · · · < q− 1 works when (d = 2, q = 1 mod 4) or d ≥ 3 and when otherwise,
i.e., when (d = 2, q = 3 mod 4) we drop 0 from the list.

Then when i, j ∈ ∆, we have Pi,j is by definition the eigenvalue of Aj on the ith
weight space Wi which was denoted λm,j,d in previous sections where m ∈ V is any
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12 C. BRITTENHAM AND J. PAKIANATHAN

vector with Q(m) = i. In other words, by definitions it follows that λm,j,d = PQ(m),j for
all m ∈ V, j ∈ ∆.

In particular, P0̄,t = λ0,t,d = qdŜt(0) = |St| for all t ∈ ∆ and thus the top row of P lists
the sphere sizes. Also Pi,0̄ = λm,0̄,d = 1 (here m is any vector with Q(m) = i). Thus the
leftmost column of P is all 1’s (eigenvalues of A0̄ which is the identity operator).

On the other hand, If 0 ∈ ∆, P0,t = λm,t,d for some nonzero vector m of length

Q(m) = 0. By Theorem 3.1, P0,t = −δt,0 +q
d
2
−1ε(q)dK̃d(−t, 0) = P0̄,t−qd−1 = |St|−qd−1.

Thus the 0-row (which would be listed second if it occurs) consists of the deviations of
sphere sizes from the expected size qd−1.

Proposition 4.2 can be recast in terms of the entries of P as follows: When i 6= j ∈ ∆,
we have

∑
m∈V λm,i,dλm,j,d = 0. Lumping terms in this sum by the length t of the vector

m yields: ∑
t∈∆

|St|Pt,iPt,j = 0

Similarly we get when i = j ∈ ∆,
∑

t∈∆ |St|P2
t,i = qd|Si|.

It follows that PTDP = qdD where D is a diagonal matrix with the sizes of the spheres
along the diagonal in the same order as they appear in the top row of P.

As no sphere sizes are zero (we only index distances that occur), D is invertible and
it follows that P−1 = 1

qd
D−1PTD.

As the Q-matrix is defined uniquely (as inverses are unique) by the condition PQ =
qdI = QP , it follows that Q = D−1PTD. We summarize this next:

Theorem 5.1. Let q be any odd prime power, d ≥ 2 and consider the Euclidean asso-
ciation scheme with distance set ∆. Then |∆| = q + 1 when 0 6= 0̄ ∈ ∆ and |∆| = q
otherwise when 0 /∈ ∆, i.e. when (d = 2 and q = 3 mod 4).

The |∆| × |∆| matrices P and Q of the association scheme (relative to some linear
ordering of ∆ for which 0̄ comes first) have: P0̄,j = |Sj| for all j ∈ ∆, Pi,0̄ = 1 for all
i ∈ ∆ and otherwise for i, j ∈ ∆− {0̄} we have

Pi,j = −δj,0 + q
d
2
−1ε(q)dK̃d(−j,−

i

4
)

were K̃d(a, b) =
∑

x∈F×q

(
x
q

)d
χ(ax+ b

x
) is a twisted Kloosterman sum and ε(q) is either 1

or i depending if q is 1 or 3 mod 4.
If D is the diagonal matrix whose diagonals are the sphere sizes (following the chosen

linear ordering of ∆), then Q = D−1PTD and QP = PQ = qdI. Thus Qi,j =
|Sj |
|Si|Pj,i.

Note that when d = 2, q = 3 mod 4, then 0 /∈ ∆ and Pi,j = −K(−j, −i
4

) = −K(1, ij
4

)
for any i, j ∈ ∆−{0̄} and so other than the first row and column of P, the other entries
are negatives of Kloosterman numbers. In this case, we also have |Si| = q + 1 for all
i 6= 0̄ and |S0̄| = 1. If we denote 1 to be the q − 1 dimensional column vector of all 1s,
and K to the symmetric (q − 1) × (q − 1) matrix with Ki,j = K(1, ij

4
) = Kj,i, i, j ∈ F×q

then we have:

P =

[
1 (q + 1)1T

1 −K

]
= Q.

Thus P2 = q2I for the Euclidean Association scheme when d = 2, q = 3 mod 4
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On the other hand, when d = 2, q = 1 mod 4, then 0 ∈ ∆, |Si| = q − 1 if i 6= 0, 0̄
and |S0| = 2q − 2, |S0̄| = 1. With respect to any linear ordering with 0̄ < 0 < F×q , the
(q + 1)× (q + 1) P and Q matrices are given in this case by:

P =

1 2q − 2 (q − 1)1T

1 q − 2 −1T
1 (−2)1 K


and again one can verify that P = Q using the formulas of the last theorem. Thus again
one has P2 = q2I though the dimensions of P are one larger in this case compared to the
last one.

We record these dimension 2 results in the next proposition:

Proposition 5.2. Let Fq be a finite field of odd characteristic and consider the Euclidean
Association scheme when dimension d = 2. Let 1 to be the q − 1 dimensional column
vector of all 1s, and K be the symmetric (q− 1)× (q− 1) matrix with Ki,j = K(1, ij

4
) =

Kj,i, i, j ∈ F×q (with respect to some linear ordering of F×q ). Order the distance set ∆ via
a linear ordering with 0̄ < 0 < F×q .

Then if q = 3 mod 4, we have

P =

[
1 (q + 1)1T

1 −K

]
= Q

are q × q matrices.
On the other hand, when q = 1 mod 4, we have

P =

1 2q − 2 (q − 1)1T

1 q − 2 −1T
1 (−2)1 K

 = Q

are (q + 1)× (q + 1) matrices.
In either case, P2 = q2I.

The case when d ≥ 3 is a bit trickier as the dimension of spheres can vary more. In
general, for any λ ∈ F×q , scaling by λ gives a bijection between the sphere of radius j

about the origin and the sphere of radius λ2j about the origin. Thus there are in general
4 distinct sizes of spheres |S0̂| = 1, |S0|, |SSq| and |SSqc | where |SSq| is the common size
of Sj when j is a nonzero square in Fq and |SSqc | is the common size of Sj when j is a
nonsquare in Fq. As these spheres partition Fdq , we have

qd = 1 + |S0|+
q − 1

2
|SSq|+

q − 1

2
|SSqc |

for all integers d ≥ 3 and odd prime powers q.
Pick a primitive generator θ of the multiplicative group of Fq (which is a cyclic group

of order q − 1). Then θj is a square in Fq if and only if j is even and so the Legendre

symbol
(
θj

q

)
is equal to (−1)j for all integers j. We order the distance set ∆ = {0̄}∪Fq via

0̄ < 0 < θ0 < θ1 < θ2 < · · · < θq−2. Note 4 = θs for unique integer s with 0 ≤ s ≤ q− 2.
We define the (q − 1) × (q − 1) matrix K̃d (whose rows and columns are indexed by
{0, 1, . . . , q − 2} in the natural order) via
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14 C. BRITTENHAM AND J. PAKIANATHAN

(K̃d)i,j = ε(q)dK̃d(−θj,−
θi

4
)

= ε(q)d
(
−θj

q

)d
K̃d(1,

θiθj

4
)

= ε(q)d
(
−1

q

)d
(−1)jdK̃d(1, θ

i+j−s)

where K̃(a, b) are the (twisted) Kloosterman sums. The second equality follows from
part (2) of Proposition 4.1.

This matrix is always a real matrix from the earlier discussion about twisted Kloost-
erman sums. When d is even, it is symmetric and circulant. Recall, a circulant matrix
is one such that each row of the matrix is the cyclic shift of the row above it, one notch
to the left. When d is odd, it is no longer circulant or symmetric but is signed-circulant,
i.e., each row is the negative of the cyclic shift of the row above it, one notch to the left.

Using these conventions and Theorem 5.1, the following proposition follows by a simple
computation with the help of the identities in Proposition 4.1:

Proposition 5.3. Let Fq be a finite field of odd characteristic and consider the Euclidean
Association scheme of dimension d ≥ 3. Fix a primitive generator θ of F×q , then 4 = θs

for unique integer 0 ≤ s ≤ q − 2.

Let (K̃d)i,j = ε(q)d
(−1
q

)d
(−1)jdK̃d(1, θ

i+j−s) whose rows and columns are indexed by

{0, . . . , q − 2}. It is a real, symmetric and circulant matrix when d is even and it is a
real, signed-circulant matrix when d is odd.

Let 1 be the (q − 1) dimensional column vector of all ones and let η̂ tbe the (q − 1)
dimensional row vector whose entries alternate between |SSq| and |SSqc |, starting with
the former. Let µ̂ be the (q − 1) dimensional column vector whose entries are (−1)id as
i ranges from 0 to q − 2. (So it always starts at 1 and alternates sign if d is odd, but is
the all one vector when d is even).

With respect to the ordering 0̄ < 0 < θ0 < θ1 < θ2 < · · · < θq−2 of the distance set ∆,
the P matrix of the Euclidean association scheme is a (q+ 1)× (q+ 1) matrix given by:

P =

1 |S0| η̂
1 α βµ̂T

1 βµ̂− 1 q
d
2
−1K̃d


where α = −1 + q

d
2
−1ε(q)d(q − 1) (−1)d+1

2
and β = −q d2−1ε(q)d when d even, β =(−1

q

)
q
d−1
2 ε(q)d+1 when d odd.

The Q matrix has Qi,j =
|Sj |
|Si|Pj,i. Due to varying sizes of spheres when d ≥ 3, one no

longer has Q = P in general.

The above proposition also works for the d = 2 case though in the case q = 3 mod 4
one should throw out the 2nd row and column as the distance 0 does not occur.
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6. Equidistribution

Through work of Kloosterman and A. Weil, for any odd prime power q and a ∈ F×q ,
it is known that the Kloosterman numbers Kq(1, a) =

∑
x∈F×q χ(x+ a

x
) satisfy

Kq(1, a) =
√
q(eiθq,a + e−iθq,a) = 2

√
q cos(θq,a)

for a unique ”Kloosterman” angle θq,a ∈ [0, π].
Using the sophisticated tools of lisse sheafs and etale cohomology, N. Katz (slightly

simplified proofs later by Adolphson), proved the ”vertical equidistribution” of these
numbers that states that as q → ∞, the distribution of these angles approaches the
Sato-Tate measure on [0, π]. We discuss this more carefully next.

Definition 6.1 (Sato-Tate measure). The Sato-Tate Borel probability measure µST on
[0, π] is given by the condition

µST ([a, b]) =
2

π

∫ b

a

sin2(θ)dθ

for all 0 ≤ a < b ≤ π.
µST is characterized as the unique Borel measure being absolutely continuous with

respect to Lebesgue measure with Radon-Nikodym derivative 2
π
sin2(θ).

For any continuous f : [0, π]→ R, we write

EST [f ] =
2

π

∫ π

0

f(θ)sin2(θ)dθ

for the expectation of f with respect to this probability measure.

Definition 6.2 (Kloosterman angle average). For any odd prime power q, let θa,q be
the Kloosterman angles associated to the Kloosterman sums K(1, a), a ∈ F×q . Given a
continuous function f : [0, π]→ R, we let

EK,q[f ] =
1

q − 1

∑
a∈F×q

f(θq,a)

be the ”sample average” of f over these Kloosterman angles.

We are now ready to state the deep vertical equidistribution theorem of N. Katz ([10]):

Theorem 6.3 (Vertical Equidistribution of Kloosterman sums). For any sequence of
odd prime powers qn →∞, and any continuous function f : [0, π]→ R, we have

lim
n→∞

EK,qn [f ] = EST [f ].

Next we will discuss some graph theoretical equivalents to the equidistribution theo-
rem. First some basic trigonometric facts will be collected:

Proposition 6.4. For any nonnegative integers m,n we have:
(1) 2

π

∫ π
0

cos(mθ) cos(nθ)dθ = δm,n + δm,nδm,0.

(2) EST [cos(nθ)] = 0 if n 6= 0, 2. EST [cos(2θ)] = −1
2
.
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The Sato-Tate probability measure is characterized by these expectations amongst con-
tinuous probability measures on [0, π].
(3) For every ` ≥ 1 we have

22`−1 cos2`(θ) =
`−1∑
k=0

(
2`

k

)
cos((2`− 2k)θ) +

1

2

(
2`

`

)
.

(4) For every ` ≥ 1 we have

22` cos2`+1(θ) =
∑̀
k=0

(
2`+ 1

k

)
cos((2`+ 1− 2k)θ).

(5) For positive integer m we have EST [cos2m+1(θ)] = 0 and

EST [cos2m(θ)] =
1

22m−1
(
−1

2

(
2m

m− 1

)
+

1

2

(
2m

m

)
) =

1

22m(m+ 1)

(
2m

m

)
.

Proof. Proof of (1): Follows from the trigonometric identity

cos(mx) cos(nx) =
1

2
cos((m+ n)x) +

1

2
cos((m− n)x)

and simple integration.

Proof of (2): Follows from (1), once one notes that sin2(θ) = 1−cos(2θ)
2

. The charac-
terization of Sato-Tate measure from these expectations follows from the density of the
algebra generated by the cos(nθ) in the ring of continuous real valued functions on [0, π]
(with the supremum metric) which itself follows from a generalized Stone-Weierstrass
theorem, together with the Riesz representation theorem.

Proof of (3): Write 2 cos(θ) = eiθ + e−iθ and raise both sides to the 2` power to
conclude

22` cos2`(θ) =
2∑̀
k=0

(
2`

k

)
(eiθ)2`−k(e−iθ)k =

2∑̀
k=0

(
2`

k

)
(eiθ)2`−2k.

Finish by grouping the k = j and k = 2`− j terms for each j.
Proof of (4): Follows the same procedure as for (3).
Proof of (5): Follows from using (3),(4) in (2). �

Definition 6.5 (Kloosterman moments). For any odd prime power q, and positive in-
teger `, let

Mq,` =
∑
a∈F×q

Kq(1, a)` = 2`q
`
2 (q − 1)EK,q[cos

`(θ)]

be the `th Kloosterman moment.

Using little-oh notation and the trigonometric identities in Proposition 6.4, we find
that the vertical equidistribution of Kloosterman sums is equivalent to establishing the
following behavior for Kloosterman moments:

Mq,2`+1 = o(q`+1.5)
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and

Mq,2` = q`+1 1

`+ 1

(
2`

`

)
(1 + o(1))

as q →∞.
The quantity C` = 1

`+1

(
2`
`

)
in the last limit is the `th Catalan number which occurs

frequently in combinatorics. It is for example the number of ways to bracket a given
(`+ 1)-fold product in terms of pairwise multiplications.

Recall, in a graph, two edges are incident if they share a common vertex and a walk
of length ` is a sequence of ` edges, where each edge is incident to the previous one. If
A is the adjacency matrix of the graph with respect to some vertex ordering then the
(v, w)-entry of A` is the number of walks of length ` from vertex v to vertex w in the
graph. Such a walk is called closed if v = w. Thus Trace(A`) is the number of closed
walks of length ` in the graph.

Let q be an odd prime power, q = 3 mod 4. Fix any t ∈ F×q then we have seen that

the spectrum of At, the adjacency matrix of the distance-t-graph for the plane F2
q is the

multiset
{{(q + 1)(1),−Kq(1, a)(q+1)|a ∈ F×q }}

where the superscripts indicate the multiplicity of each eigenvalue in the multiset.
Thus

Trace(A`
t) = (q + 1)` + (q + 1)(−1)`

∑
a∈F×q

Kq(1, a)` = (q + 1)` + (q + 1)(−1)`Mq,`.

On the other hand, when q = 1 mod 4, the spectrum of At is

{{(q − 1)(1), (−1)(2q−2), Kq(1, a)(q−1)|a ∈ F×q }}
and so

Trace(A`
t) = (q−1)`+(2q−2)(−1)`+(q−1)

∑
a∈F×q

Kq(1, a)` = (q−1)`+(2q−2)(−1)`+(q−1)Mq,`.

We record these results in the next proposition:

Proposition 6.6. Let q be an odd prime power and t ∈ F×q and At be the adjacency

matrix of the distance t graph for the plane F2
q. Then if q = 3 mod 4, we have the number

of closed walks of length ` is:

Trace(A`
t) = (q + 1)` + (q + 1)(−1)`Mq,`.

If q = 1 mod 4 we have:

Trace(A`
t) = (q − 1)` + (2q − 2)(−1)` + (q − 1)Mq,`

where Mq,` is the `th Kloosterman moment.
Vertical equidistribution of Kloosterman angles is equivalent to

Mq,2`+1 = o(q`+1.5)

and

Mq,2` = q`+1 1

`+ 1

(
2`

`

)
(1 + o(1))

as q →∞.
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Corollary 6.7. For any odd prime power q, we have Mq,1 = 1 and Mq,2 = q2 − q − 1.
Thus the equidistribution conditions hold for these moments.

Proof. We prove the q = 3 mod 4 case with similar calculations working for the q =
1 mod 4 case. Setting t = 1 in Proposition 6.6, we see Trace(A1) = 0 as there are no
closed walks of length one. Thus (q+1)−(q+1)Mq,1 = 0 giving Mq,1 = 1. A closed walk
of length two consists of walking out using an edge and returning using the same edge
and so the number of those is q2(q+1) as there are q2 choices of initial vertices and q+1
many adjacent vertices to walk to. Thus q2(q+ 1) = Trace(A2

1) = (q+ 1)2 + (q+ 1)Mq,2

yielding the stated formula for Mq,2. �

7. An application to the random walk in finite planes of odd order

Fix t 6= 0 in Fq and let At be the adjacency matrix for the distance t-graph in the
plane F2

q. Define Tt = 1
|St|At to be the transition matrix of the corresponding random

walk Markov chain. The (i, j)-entry of T `t represents the probability of transitioning
from the ith vertex to the jth vertex after ` steps in this Markov chain. As the At-graph
is vertex transitive, the diagonal entries of T `t are all equal as the probability that we
return to vertex i after ` steps, if we start at vertex i, will be independent of the vertex.
Thus (T `t )i,i = 1

q2
Trace(T `t ) for any i.

Using Bayesian conditioning, it follows that for any initial probability distribution
pi on the vertices, the chance that you start and end at the same vertex after ` steps

is
∑q2

j=1(T `t )j,jpj = 1
q2
Trace(T `t )

∑q2

j=1 pj = 1
q2|St|`Trace(A

`
t) is the probability that you

return to where you start after ` steps (it is independent of initiate state). Let us call this
quantity the probability of return and denote it Rq,`,t. Now |St| = q ± 1 where the sign
depends if q is 1 or 3 mod 4 so we find that this probability is Rq,`,t = 1

q2(q±1)`
Trace(A`t).

By Corollary 6, we see that if q = 3 mod 4, and positive ` we have

Rq,`,t = Rq,` =
1

q2
(1 +

(−1)`

(q + 1)`−1
Mq,`)

does not depend on t 6= 0. Note the first 1
q2

term is what one would expect if the

location after ` steps were equally likely to be anywhere in the plane and the second
term represents an arithmetic bias against that happening. Vertical equidistribution of
Kloosterman sums, tells us furthermore that

Rq,2` =
1

q2
+

q`−1

(`+ 1)(q + 1)2`−1

(
2`

`

)
(1 + o(1)) =

1

q2
+

1

q`(`+ 1)

(
2`

`

)
(1 + o(1))

and

Rq,2`+1 =
1

q2
(1− 1

(q + 1)2`
o(q`+1.5)) =

1

q2
(1 + o(q1.5−`))

as q →∞ thru such prime powers.
Thus we have proven:

Theorem 7.1 (Probability of Return in the Distance t Random Walk in Fq-planes). Let
q be an odd prime, q = 3 mod 4. Let Rq,`,t be the probability that you return to the same
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vertex after ` steps in the distance-t walk where t 6= 0. Then Rq,`,t = Rq,` is independent
of t 6= 0 and initial state. We have

Rq,`,t = Rq,` =
1

q2
(1 +

(−1)`

(q + 1)`−1
Mq,`)

Furthermore, as q →∞ we have:

Rq,2` =
1

q2
+

q`−1

(`+ 1)(q + 1)2`−1

(
2`

`

)
(1 + o(1)) =

1

q2
+

1

q`(`+ 1)

(
2`

`

)
(1 + o(1))

and

Rq,2`+1 =
1

q2
(1− 1

(q + 1)2`
o(q`+1.5)) =

1

q2
(1 + o(q1.5−`))

8. Intersection Numbers and Matrices of the scheme

In this section we calculate the intersection numbers pki,j of the d-dimensional Eu-

clidean Association scheme. Recall pki,j = pkj,i is the number of ways a pair of points

{x, y} in Fdq with d(x, y) = k can be completed to a triangle {x, y, z} of side lengths

i, j, k. Note p0̄
i,j = δi,j|Si| and pk0̄,j = δj,k so we may assume i, j, k ∈ Fq and so are not 0̄.

We will concentrate on the planar, d = 2 case as the higher dimensional cases were
reduced to this case in [12]. This case was partially computed in [3] in a different context.

Theorem 8.1 (Intersection numbers of planar Euclidean association scheme). Let q be
an odd prime power and pki,j be the intersection numbers of the planar (d = 2) Euclidean
association scheme for i, j, k ∈ Fq not equal to 0̄.

If q = 1 mod 4 we have p0
i,j = 1 + (q − 2)δi,jδi,0 − δi,j.

Otherwise k 6= 0 and we have

pki,j =

(
4σ2 − σ2

1

q

)
+ 1

where
(
x
q

)
is the usual Legendre symbol, σ1 = i+ j + k, σ2 = ij + jk + ki.

Furthermore when i, j, k ∈ Fq are the distances in a triple of points of F2
q, we have

4σ2 = σ2
1 if and only if {i, j, k} are the distances of a collinear triple of points (a triple

of points that lies on an affine line).

Proof. WLOG we may take x = (0, 0) and Witt’s theorem guarantees pki,j will be inde-

pendent of y = (u1, v1) 6= (0, 0) but only depend on its length u2
1 + v2

1 = k. We may
furthermore assume u1 6= 0.

Then by definiton, any z = (u2, v2) making {x, y, z} a i− j − k triangle must satisfy
u2

2 +v2
2 = i, (u2−u1)2 +(v2−v1)2 = j. Given u1, v1, i, j, k, we need to count the number,

pki,j, of z = (u2, v2) that solve these equations. Plugging the first two equations into the

last one, we get u1u2 + v1v2 = k+i−j
2

. The set of (u2, v2) solving this equation is an affine
line (not necessarily thru the origin) perpendicular to the line thru y = (u1, v1). It is
not hard to see that in fact (u2, v2) = (k+i−j

2u1
, 0) + s(v1,−u1) for some s ∈ Fq. However

we still need u2
2 + v2

2 = i which yields (k+i−j
2u1

+ sv1)2 + s2u2
1 = i. This yields the equation

ks2 + (k + i− j) v1
u1
s+ ((k+i−j

2u1
)2 − i) = 0 which is a quadratic equation unless k = 0.
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When k = 0, v2
1 = −u2

1 6= 0 so the resultant linear equation has a unique solution for
s whenever j 6= i and p0

i,j = 1 for all i 6= j ∈ Fq. When k = 0 and i = j, the equation
cannot hold unless i = 0 also in which case any s works as long as x 6= y and x 6= z so
there are (q − 2) such s (In this case as k = 0 the original line thru y = (u1, v1) is its
own perpendicular and so one must avoid the two choices of s where z coincides with
x = (0, 0) or y). Thus p0

i,i = (q − 2)δi,0. Note this k = 0 case can occur only when
q = 1 mod 4.

Otherwise k 6= 0 and we get a quadratic equation for s whose discriminant can be
calculated to be (k+i−j)2( v1

u1
)2−4k((k+i−j

2u1
)2−i) = 1

u21
((k+i−j)2v2

1−k(k+i−j)2+4kiu2
1).

Using v2
1 = k−u2

1 this becomes 4ki−(k+i−j)2 = 2(ki+ij+jk)−(k2+i2+j2) = 4σ2−σ2
1.

Thus there are
(

4σ2−σ2
1

q

)
+ 1 solutions for s where

(
x
q

)
is the usual Legendre symbol.

For the last statement, let B =

[
u1 u2

v1 v2

]
and note that BTB =

[
k k+i−j

2
k+i−j

2
i

]
by the

calculations above. The triple of points {(0, 0), (u1, v1), (u2, v2)} is collinear if and only

if rank(B) < 2 if and only if det(B) = 0 if and only if det(

[
k k+i−j

2
k+i−j

2
i

]
) =

4σ2−σ2
1

4
=

0. �

We record the following corollary, which exploits the odd behavior of isotropic lines
when they exist:

Corollary 8.2. Let q be an odd prime power with q = 1 mod 4. Let E ⊆ F2
q have |E| > q

and ∆′(E) be the nonzero distances achieved by E. Then |E| ≤ q+ |∆′(E)|(|∆′(E)|−1).

Proof. As |E| > q, there exist two distinct points x, y ∈ E with d(x, y) = 0. Let
E ′ = E\L where L is the line through x and y. This line L is isotropic in the sense that
distances between distinct points on the line are always zero. Note that |E ′| ≥ |E| − q.

By Theorem 8.1, p0
i,j = 1 for all i, j ∈ F×q with i 6= j and p0

i,i = 0 unless i = 0.

Furthermore, by the collinearity condition 4σ2 − σ2
1 = 0, it is easy to check that a point

z 6= x, y is collinear with x and y if and only if d(z, x) = d(z, y) = 0 also.
It follows that each point z off the isotropic line L thru x and y is uniquely determined

in the plane by the pair of unequal, nonzero distances i = d(z, x) and j = d(z, y). Thus
|E| − q ≤ |E ′| ≤ |∆′(E)|(|∆′(E)| − 1) from which the corollary follows. �

We now recall the definition of the intersection matrices of an association scheme.

Definition 8.3 (Intersection Matrices). Let (V, d) be an association scheme with dis-
tance set ∆ and intersection numbers pki,j. We define |∆| many |∆| × |∆| intersection
matrices of the scheme Li, i ∈ ∆ via

(Li)k,j = pki,j.

In general, these satisfy L0̄ = I and LiLj =
∑

k∈∆ p
k
i,jLk. Thus the map

R[Ai, i ∈ ∆]→ R[Li, i ∈ ∆]

is an algebra epimorphism from the Bose-Messner algebra to the real algebra generated
by these intersection matrices. Note the dimensions |V | × |V | of the Ai matrices are in
general quite different than the size of the Li matrices.
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The eigenvalues of the Li matrix are the same as that of the Ai matrix but with differ-
ent multiplicities. In fact the columns of the scheme’s Q matrix are the corresponding
simultaneous (right) eigenvectors of the Li while the rows of the P matrix are the (left)
eigenvectors of the Li. These facts follow from the identity

PLjP
−1 = diag(P0̄,j, . . . , Pd,j).

(See section 11.2 of [5].)

We now record the intersection matrices for the planar Euclidean association scheme:

Theorem 8.4. Let q be an odd prime power and consider the planar Euclidean associa-
tion scheme on F2

q. Note L0̄ is always an identity matrix. Recall when q = 1 mod 4, we
have 0̄ 6= 0 ∈ ∆ also.

When i, j ∈ F×q , we have (Li)0̄,j = p0̄
i,j = δi,j|Si| = δi,j(q − ε2q) and (Li)0,j = p0

i,j =
1− δi,j.

We have (Li)j,0̄ = pj
i,0̄

= δi,j and (Li)0̄,0̄ = p0̄
i,0̄ = 0.

When i, j ∈ Fq,k ∈ F×q we have

(Li)k,j = pki,j =

(
4σ2 − σ2

1

q

)
+ 1 ∈ {0, 1, 2}

where σ2 = ij + jk + ki, σ1 = i+ j + k and
(
x
q

)
is the Legendre symbol.

When q = 3 mod 4, the spectrum of Li is {{(q + 1)(1),−Kq(1, a)(1), a ∈ F×q }} for any

i ∈ F×q . Thus Trace(L`i) = (q + 1)` + (−1)`Mq,`.

When q = 1 mod 4, the spectrum of Li is {{(q − 1)(1),−1(1), Kq(1, a)(1), a ∈ F×q }} for

any i ∈ F×q . Thus Trace(L`i) = (q − 1)` + (−1)` +Mq,`.

Note that the entries of Li keep track of which triangles exist in the plane F2
q and

through the last theorem, implicitly determine the Kloosterman moments Mq,` for all `.
As it is well known that a finite multiset of complex numbers is determined by all its
moments, this means the Kloosterman sums as a set are determined by exactly the data
of which triangles exist in the plane F2

q.
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