CYCLIC SURGERY ON SATELLITE KNOTS by XINGRU ZHANG

(Received 18 April, 1989)

1. Introduction. In [9] L. Moser classified all manifolds obtained by Dehn surgery on torus knots. In particular she proved the following (see also [8, Chapter IV]).

THEOREM 1 [9]. Nontrivial surgery with slope m/n on a nontrivial torus knot T(p,q) gives a manifold with cyclic fundamental group iff $m = npq \pm 1$ and the manifold obtained is the lens space $L(m, nq^2)$.

J. Bailey and D. Rolfsen [1] gave the first example of Dehn surgery on a nontorus knot that produces a lens space. They showed that -23 surgery on the (11, 2)-cable on the trefoil knot gives the lens space L(23, 7). Later R. Fintushel and R. Stern [4] constructed lens spaces by surgery on a variety of nontorus knots. In particular they proved the following (see also [7, Theorem 7.5]).

THEOREM 2 [4]. Nontrivial surgery with slope m/n on a nontrivial cable knot $C_{r,s}$ on a nontrivial torus knot T(p,q) gives a manifold with cyclic fundamental group iff s = 2, $r = 2pq \pm 1$, $m/n = 4pq \pm 1$ and the manifold is the lens space $L(4pq \pm 1, 4q^2)$.

We prove the following.

MAIN THEOREM. Nontrivial Dehn surgery with slope m/n on a satellite knot K gives a manifold with cyclic fundamental group iff K is a cable $C_{r,s}$ on a torus knot T(p,q) with $s = 2, r = 2pq \pm 1, m/n = 4pq \pm 1$ and the manifold is the lens space $L(4pq \pm 1, 4q^2)$.

To prove the main theorem we will apply the following theorems proved by Gabai. Recall that a knot K in a solid torus $D^2 \times S^1$ is a *n*-bridge braid if K can be isotoped to be a braid in $D^2 \times S^1$ which lies in $\partial D^2 \times S^1$ except for n bridges.

THEOREM 3 [5, Theorem 1.1.1]. Let K be a knot in a solid torus with nonzero wrapping number. If nontrivial surgery on K gives a solid torus, then K is either a 0 or 1-bridge braid.

THEOREM 4 [6, Lemma 3.2]. Let K be a knot in a solid torus. If K is a 1-bridge braid, then only the surgery with slope $\pm (t + j\omega)\omega \pm b$ or $\pm (t + j\omega)\omega \pm b \pm 1$ on K can possibly give a solid torus, where ω is the winding number of K in the solid torus, $t + j\omega$ is the twist number of K with $0 < t < \omega - 1$ and with j being some integer, b is the bridge width of K with $0 < b < \omega - 1$.

Similar results to those in the main theorem were independently obtained by S. Wang [11], Y. Wu [12] and S. Bleiler-R. Litherland [2].

2. Preliminaries. We work in the PL category.

Let $K \subset S^3$ be a satellite knot. Let K^* be a nontrival companion knot of K. Let $N^* = \underbrace{K^* \times D^2 \subset S^3}_{A^*}$ be a solid torus neighbourhood of K^* in S^3 with $K \subset int(N^*)$ and let $M^* = \overline{S^3 - N^*}$. Let μ^* and λ^* be a meridian and a preferred longitude of $\partial N^* = \partial M^*$ respectively, that is, $H_1(\partial N^*) = H_1(\partial M^*) = Z[\mu^*] \oplus Z[\lambda^*]$, $[\mu^*] = 0$ in $H_1(N^*) = Z[\lambda^*]$ and $[\lambda^*] = 0$ in $H_1(M^*) = Z[\mu^*]$.

Glasgow Math. J. 33 (1991) 125-128.

XINGRU ZHANG

Suppose $[K] = \omega[\lambda^*]$ in $H_1(N^*)$. We may assume that $\omega \ge 0$ by choosing a proper orientation for K. Then $\omega \ge 0$ is the winding number of K in N^* .

Let $N = K \times D^2 \subset \operatorname{int}(N^*)$ be a solid torus neighbourhood of K in N^* and let $M = \overline{S^3 - N}$ and $M_0 = \overline{N^* - N}$. Let μ and λ be a meridian and a preferred longitude of $\partial N = \partial M$ respectively, that is, $H_1(\partial N) = H_1(\partial M) = Z[\mu] \oplus Z[\lambda]$, $[\mu] = 0$ in $H_1(N) = Z[\lambda]$ and $[\lambda] = 0$ in $H_1(M) = Z[\mu]$. Then $H_1(M_0) = Z[\mu] \oplus Z[\lambda^*]$, $[\lambda] = \omega[\lambda^*]$ in $H_1(M_0)$ and $[\mu^*] = \omega[\mu]$ in $H_1(M_0)$ (by choosing proper orientations for μ and λ).

Let M(m/n) and $M_0(m/n)$ be the manifolds obtained from Dehn surgery on K with nontrivial slope m/n. From now on we assume that $\pi_1(M(m/n))$ is cyclic. Since any satellite knot is not a torus knot, we may assume that n = 1 by [3, Corollary 1].

Elementary homological arguments prove the following.

LEMMA 1 [7, Lemma 3.3(ii)]. $\ker(H_1(\partial M_0(m))) \rightarrow H_1(M_0(m)))$ is the cyclic subgroup of $H_1(\partial M_0(m))$ generated by

$$\begin{cases} \frac{m}{(\omega,m)} [\mu^*] + \frac{\omega^2}{(\omega,m)} [\lambda^*] & \text{if } \omega \neq 0, \\ \\ [\mu^*] & \text{if } \omega = 0. \end{cases}$$

3. Proof of the main theorem.

LEMMA 2. $M_0(m)$ is a solid torus.

Proof. We first show that $M_0(m)$ is irreducible. Suppose that, on the contrary, $M_0(m)$ is reducible. Then by [10, Corollary 4.4], K is a cable $C_{r,s}$ on K* and the slope used is that of the cabling annulus, that is, m = rs. Then by [7, Corollary 7.3], $M(m) \cong M^*(r/s) \# L(s, r)$. Hence $\pi_1(M(m)) \cong \pi_1(M^*(r/s)) * \pi_1(L(s, r))$. Since $K = C_{r,s}$ can not be a trivial cable on K^* , |s| > 1. If K^* is a torus knot, then $\pi_1(M^*(r/s)) \neq 1$, since torus knots satisfy Property P; if K^* is not a torus knot, then by [3, Corollary 1], $\pi_1(M^*(r/s)) \neq 1$. Hence $\pi_1(M(m))$ is a free product of two nontrivial groups, contradicting the assumption that $\pi_1(M(m))$ is cyclic. Hence $M_0(m)$ is irreducible.

Since $\pi_1(M(m))$ is cyclic, $\partial M_0(m)$ is a compressible torus in M(m). Let $B^2 \subset M(m)$ be a compressing 2-cell for $\partial M_0(m)$. Since K^* is nontrivial, $B^2 \subset M_0(m)$. Performing 2-surgery on $\partial M_0(m)$ using B^2 , we get a 2-sphere which must bound a 3-cell in $M_0(m)$. Hence $M_0(m)$ is a solid torus.

By Lemma 2 and Theorem 3, K is a 0 or 1-bridge braid in N^* . Hence $\omega \neq 0$ and $\omega \neq 1$ by the definition of satellite knot.

Let B^2 be a proper meridian 2-cell of $M_0(m)$. Then $[\partial B^2]$ is a primitive element of $H_1(\partial M_0(m))$ and $[\partial B^2] \in \ker(H_1(\partial M_0(m))) \to H_1(M_0(m)))$. By Lemma 1,

$$[\partial B^2] = \begin{cases} \pm \left(\frac{m}{(\omega, m)} [\mu^*] + \frac{\omega^2}{(\omega, m)} [\lambda^*]\right) & \text{if } \omega \neq 0, \\ \pm [\mu^*] & \text{if } \omega = 0, \end{cases}$$

in $H_1(\partial M_0(m))$. Hence

$$M(m) = \begin{cases} M^*\left(\frac{m}{\omega^2}\right) & \text{if } \omega \neq 0, \\ \\ M^*\left(\frac{\pm 1}{0}\right) & \text{if } \omega = 0. \end{cases}$$

Since $\omega \neq 0$,

$$M(m) = M^*\left(\frac{m}{\omega^2}\right) = M^*\left(\frac{m/(\omega^2, m)}{\omega^2/(\omega^2, m)}\right),$$

and thus

$$Z_{|m|} = H_1(M(m)) = H_1\left(M^*\left(\frac{m/(\omega^2, m)}{\omega^2/(\omega^2, m)}\right)\right) = Z_{|m|/(\omega^2, m)}.$$

Hence $(\omega^2, m) = 1$.

LEMMA 3. K^* is a torus knot.

Proof. Suppose that K^* is not a torus knot. Then by [3, Corollary 1], $\omega^2 = 1$ and thus $\omega = 1$, contradicting $\omega \neq 1$.

LEMMA 4. K is a cable knot on K^* .

Proof. By Lemma 3, $K^* = T(p,q)$, a torus knot. By Theorem 1, $\pi_1(M(m)) = \pi_1(M^*(m/\omega^2))$ can possibly be cyclic only when m is equal to

$$\omega^2 pq \pm 1. \tag{*}$$

Suppose that K is not a cabled knot. Then K is a 1-bridge braid in N^* . By Theorem 4, $M_0(m)$ can possibly be a solid torus only when m is equal to

$$\pm (t+j\omega)\omega \pm b \quad \text{or} \quad \pm (t+j\omega)\omega \pm b \pm 1. \tag{**}$$

Now it is enough to show that no value from (*) can be equal to any value from (**). We need to show that $|\omega^2 pq + 1 \pm (t + j\omega)\omega \pm b| > 0$, $|\omega^2 pq - 1 \pm (t + j\omega)\omega \pm b| > 0$, $|\omega^2 pq + 1 \pm (t + j\omega)\omega \pm b \pm 1| > 0$ and $|\omega^2 pq - 1 \pm (t + j\omega)\omega \pm b \pm 1| > 0$. We verify the first inequality. The rest of the inequalities can be verified similarly.

If $|pq\pm j|\neq 0$, then $|\omega^2 pq + 1\pm (t+j\omega)\omega\pm b| = |(pq\pm j)\omega^2\pm t\omega\pm b+1| > |pq\pm j|\omega^2$ $-t\omega-b-1\geq \omega^2-(\omega-2)\omega-(\omega-2)-1=\omega+1>0$; if $|pq\pm j|=0$, then $|\omega^2 pq + 1\pm (t+j\omega)\omega\pm b| = |\pm t\omega\pm b+1| \geq t\omega+b-1>0$.

Now the main theorem follows from Lemma 3, Lemma 4 and Theorem 2.

REFERENCES

1. J. Bailey and D. Rolfsen, An unexpected surgery construction of a lens space. Pacific J. Math. 71 (1977), 295-298.

2. S. Bleiler and R. Litherland, Lens spaces and Dehn surgery, Proc. Amer. Math. Soc. 107 (1989), 1091-1094.

3. M. Culler, C. Gordon, J. Luecke and P. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), 237-300.

4. R. Fintushel and R. Stern, Constructing lens spaces by surgery on knots, Math. Z. 175 (1980), 33-51.

5. D. Gabai, Surgery on knots in solid tori, Topology 28 (1989), 1-6.

XINGRU ZHANG

6. D. Gabai, 1-bridge braids in solid tori, preprint.

7. C. Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983), 687-708.

8. W. Jaco, *Lectures on 3-manifold topology*, Regional Conference Series in Mathematics 43 (A.M.S., 1980).

9. L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737-745.

10. M. Scharlemann, Producing reducible 3-manifolds by surgery on a knot, preprint.

11. S. Wang, Cyclic surgery on knots, Proc. Amer. Math. Soc. 107 (1989), 1127-1131.

12. Y. Wu, Cyclic surgery and satellite knots, preprint.

MATHEMATICS DEPARTMENT UNIVERSITY OF BRITISH COLUMBIA CANADA V6T 1Y4

128