CYCLIC SURGERY ON SATELLITE KNOTS by XINGRU ZHANG

(Received 18 April, 1989)

1. Introduction. In [9] L. Moser classified all manifolds obtained by Dehn surgery on torus knots. In particular she proved the following (see also [8, Chapter IV]).

Theorem 1 [9]. Nontrivial surgery with slope m / n on a nontrivial torus knot $T(p, q)$ gives a manifold with cyclic fundamental group iff $m=n p q \pm 1$ and the manifold obtained is the lens space $L\left(m, n q^{2}\right)$.
J. Bailey and D. Rolfsen [1] gave the first example of Dehn surgery on a nontorus knot that produces a lens space. They showed that -23 surgery on the $(11,2)$-cable on the trefoil knot gives the lens space $L(23,7)$. Later R. Fintushel and R. Stern [4] constructed lens spaces by surgery on a variety of nontorus knots. In particular they proved the following (see also [7, Theorem 7.5]).

Theorem 2 [4]. Nontrivial surgery with slope m / n on a nontrivial cable knot $C_{r, s}$ on a nontrivial torus knot $T(p, q)$ gives a manifold with cyclic fundamental group iff $s=2$, $r=2 p q \pm 1, m / n=4 p q \pm 1$ and the manifold is the lens space $L\left(4 p q \pm 1,4 q^{2}\right)$.

We prove the following.
Main Theorem. Nontrivial Dehn surgery with slope m / n on a satellite knot K gives a manifold with cyclic fundamental group iff K is a cable $C_{r, s}$ on a torus knot $T(p, q)$ with $s=2, r=2 p q \pm 1, m / n=4 p q \pm 1$ and the manifold is the lens space $L\left(4 p q \pm 1,4 q^{2}\right)$.

To prove the main theorem we will apply the following theorems proved by Gabai. Recall that a knot K in a solid torus $D^{2} \times S^{1}$ is a n-bridge braid if K can be isotoped to be a braid in $D^{2} \times S^{1}$ which lies in $\partial D^{2} \times S^{1}$ except for n bridges.

Theorem 3 [5, Theorem 1.1.1]. Let K be a knot in a solid torus with nonzero wrapping number. If nontrivial surgery on K gives a solid torus, then K is either a 0 or 1-bridge braid.

Theorem 4 [6, Lemma 3.2]. Let K be a knot in a solid torus. If K is a 1-bridge braid, then only the surgery with slope $\pm(t+j \omega) \omega \pm b$ or $\pm(t+j \omega) \omega \pm b \pm 1$ on K can possibly give a solid torus, where ω is the winding number of K in the solid torus, $t+j \omega$ is the twist number of K with $0<t<\omega-1$ and with j being some integer, b is the bridge width of K with $0<b<\omega-1$.

Similar results to those in the main theorem were independently obtained by S . Wang [11], Y. Wu [12] and S. Bleiler-R. Litherland [2].
2. Preliminaries. We work in the PL category.

Let $K \subset S^{3}$ be a satellite knot. Let K^{*} be a nontrival companion knot of K. Let $N^{*}=K^{*} \times D^{2} \subset S^{3}$ be a solid torus neighbourhood of K^{*} in S^{3} with $K \subset \operatorname{int}\left(N^{*}\right)$ and let $M^{*}=\overline{S^{3}-N^{*}}$. Let μ^{*} and λ^{*} be a meridian and a preferred longitude of $\partial N^{*}=\partial M^{*}$ respectively, that is, $H_{1}\left(\partial N^{*}\right)=H_{1}\left(\partial M^{*}\right)=Z\left[\mu^{*}\right] \oplus Z\left[\lambda^{*}\right],\left[\mu^{*}\right]=0$ in $H_{1}\left(N^{*}\right)=Z\left[\lambda^{*}\right]$ and $\left[\lambda^{*}\right]=0$ in $H_{1}\left(M^{*}\right)=Z\left[\mu^{*}\right]$.

Suppose $[K]=\omega\left[\lambda^{*}\right]$ in $H_{1}\left(N^{*}\right)$. We may assume that $\omega \geq 0$ by choosing a proper orientation for K. Then $\omega \geq 0$ is the winding number of K in N^{*}.

Let $N=K \times D^{2} \subset \operatorname{int}\left(N^{*}\right)$ be a solid torus neighbourhood of K in N^{*} and let $M=\overline{S^{3}-N}$ and $M_{0}=\overline{N^{*}-N}$. Let μ and λ be a meridian and a preferred longitude of $\partial N=\partial M$ respectively, that is, $H_{1}(\partial N)=H_{1}(\partial M)=Z[\mu] \oplus Z[\lambda],[\mu]=0$ in $H_{1}(N)=Z[\lambda]$ and $[\lambda]=0$ in $H_{1}(M)=Z[\mu]$. Then $H_{1}\left(M_{0}\right)=Z[\mu] \oplus Z\left[\lambda^{*}\right],[\lambda]=\omega\left[\lambda^{*}\right]$ in $H_{1}\left(M_{0}\right)$ and $\left[\mu^{*}\right]=\omega[\mu]$ in $H_{1}\left(M_{0}\right)$ (by choosing proper orientations for μ and λ).

Let $M(m / n)$ and $M_{0}(m / n)$ be the manifolds obtained from Dehn surgery on K with nontrivial slope m / n. From now on we assume that $\pi_{1}(M(m / n))$ is cyclic. Since any satellite knot is not a torus knot, we may assume that $n=1$ by [3, Corollary 1].

Elementary homological arguments prove the following.
Lemma 1 [7, Lemma 3.3(ii)]. $\left.\operatorname{ker}\left(H_{1}\left(\partial M_{0}(m)\right)\right) \rightarrow H_{1}\left(M_{0}(m)\right)\right)$ is the cyclic subgroup of $H_{1}\left(\partial M_{0}(m)\right)$ generated by

$$
\begin{cases}\frac{m}{(\omega, m)}\left[\mu^{*}\right]+\frac{\omega^{2}}{(\omega, m)}\left[\lambda^{*}\right] & \text { if } \omega \neq 0 \\ {\left[\mu^{*}\right]} & \text { if } \omega=0\end{cases}
$$

3. Proof of the main theorem.

Lemma 2. $M_{0}(m)$ is a solid torus.
Proof. We first show that $M_{0}(m)$ is irreducible. Suppose that, on the contrary, $M_{0}(m)$ is reducible. Then by [10, Corollary 4.4], K is a cable $C_{r, s}$ on K^{*} and the slope used is that of the cabling annulus, that is, $m=r s$. Then by [7, Corollary 7.3], $M(m) \cong M^{*}(r / s) \# L(s, r)$. Hence $\pi_{1}(M(m)) \cong \pi_{1}\left(M^{*}(r / s)\right) * \pi_{1}(L(s, r))$. Since $K=C_{r, s}$ can not be a trivial cable on $K^{*},|s|>1$. If K^{*} is a torus knot, then $\pi_{1}\left(M^{*}(r / s)\right) \neq 1$, since torus knots satisfy Property P ; if K^{*} is not a torus knot, then by [3, Corollary 1], $\pi_{1}\left(M^{*}(r / s)\right) \neq 1$. Hence $\pi_{1}(M(m))$ is a free product of two nontrivial groups, contradicting the assumption that $\pi_{1}(M(m))$ is cyclic. Hence $M_{0}(m)$ is irreducible.

Since $\pi_{1}(M(m))$ is cyclic, $\partial M_{0}(m)$ is a compressible torus in $M(m)$. Let $B^{2} \subset M(m)$ be a compressing 2 -cell for $\partial M_{0}(m)$. Since K^{*} is nontrivial, $B^{2} \subset M_{0}(m)$. Performing 2-surgery on $\partial M_{0}(m)$ using B^{2}, we get a 2 -sphere which must bound a 3 -cell in $M_{0}(m)$. Hence $M_{0}(m)$ is a solid torus.

By Lemma 2 and Theorem 3, K is a 0 or 1 -bridge braid in N^{*}. Hence $\omega \neq 0$ and $\omega \neq 1$ by the definition of satellite knot.

Let B^{2} be a proper meridian 2-cell of $M_{0}(m)$. Then [∂B^{2}] is a primitive element of $H_{1}\left(\partial M_{0}(m)\right)$ and $\left[\partial B^{2}\right] \in \operatorname{ker}\left(H_{1}\left(\partial M_{0}(m)\right) \rightarrow H_{1}\left(M_{0}(m)\right)\right)$. By Lemma 1,

$$
\left[\partial B^{2}\right]= \begin{cases} \pm\left(\frac{m}{(\omega, m)}\left[\mu^{*}\right]+\frac{\omega^{2}}{(\omega, m)}\left[\lambda^{*}\right]\right) & \text { if } \omega \neq 0 \\ \pm\left[\mu^{*}\right] & \text { if } \omega=0\end{cases}
$$

in $H_{1}\left(\partial M_{0}(m)\right)$. Hence

$$
M(m)=\left\{\begin{array}{lll}
M^{*}\left(\frac{m}{\omega^{2}}\right) & \text { if } \quad \omega \neq 0 \\
M^{*}\left(\frac{ \pm 1}{0}\right) & \text { if } & \omega=0
\end{array}\right.
$$

Since $\omega \neq 0$,

$$
M(m)=M^{*}\left(\frac{m}{\omega^{2}}\right)=M^{*}\left(\frac{m /\left(\omega^{2}, m\right)}{\omega^{2} /\left(\omega^{2}, m\right)}\right)
$$

and thus

$$
Z_{|m|}=H_{1}(M(m))=H_{1}\left(M^{*}\left(\frac{m /\left(\omega^{2}, m\right)}{\omega^{2} /\left(\omega^{2}, m\right)}\right)\right)=Z_{|m| /\left(\omega^{2}, m\right)}
$$

Hence $\left(\omega^{2}, m\right)=1$.
Lemma 3. K^{*} is a torus knot.
Proof. Suppose that K^{*} is not a torus knot. Then by [3, Corollary 1], $\omega^{2}=1$ and thus $\omega=1$, contradicting $\omega \neq 1$.

Lemma 4. K is a cable knot on K^{*}.
Proof. By Lemma 3, $K^{*}=T(p, q)$, a torus knot. By Theorem $1, \pi_{1}(M(m))=$ $\pi_{1}\left(M^{*}\left(m / \omega^{2}\right)\right)$ can possibly be cyclic only when m is equal to

$$
\begin{equation*}
\omega^{2} p q \pm 1 \tag{*}
\end{equation*}
$$

Suppose that K is not a cabled knot. Then K is a 1-bridge braid in N^{*}. By Theorem 4, $M_{0}(m)$ can possibly be a solid torus only when m is equal to

$$
\begin{equation*}
\pm(t+j \omega) \omega \pm b \quad \text { or } \quad \pm(t+j \omega) \omega \pm b \pm 1 \tag{**}
\end{equation*}
$$

Now it is enough to show that no value from (*) can be equal to any value from (**). We need to show that $\left|\omega^{2} p q+1 \pm(t+j \omega) \omega \pm b\right|>0,\left|\omega^{2} p q-1 \pm(t+j \omega) \omega \pm b\right|>0$, $\left|\omega^{2} p q+1 \pm(t+j \omega) \omega \pm b \pm 1\right|>0$ and $\left|\omega^{2} p q-1 \pm(t+j \omega) \omega \pm b \pm 1\right|>0$. We verify the first inequality. The rest of the inequalities can be verified similarly.

If $|p q \pm j| \neq 0$, then $\left|\omega^{2} p q+1 \pm(t+j \omega) \omega \pm b\right|=\left|(p q \pm j) \omega^{2} \pm t \omega \pm b+1\right|>|p q \pm j| \omega^{2}$ $-t \omega-b-1 \geq \omega^{2}-(\omega-2) \omega-(\omega-2)-1=\omega+1>0 ; \quad$ if $\quad|p q \pm j|=0$, then $\left|\omega^{2} p q+1 \pm(t+j \omega) \omega \pm b\right|=| \pm t \omega \pm b+1| \geq t \omega+b-1>0$.

Now the main theorem follows from Lemma 3, Lemma 4 and Theorem 2.

REFERENCES

1. J. Bailey and D. Rolfsen, An unexpected surgery construction of a lens space. Pacific J. Math. 71 (1977), 295-298.
2. S. Bleiler and R. Litherland, Lens spaces and Dehn surgery, Proc. Amer. Math. Soc. 107 (1989), 1091-1094.
3. M. Culler, C. Gordon, J. Luecke and P. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), 237-300.
4. R. Fintushel and R. Stern, Constructing lens spaces by surgery on knots, Math. Z. 175 (1980), 33-51.
5. D. Gabai, Surgery on knots ịn solid tori, Topology 28 (1989), 1-6.
6. D. Gabai, 1-bridge braids in solid tori, preprint.
7. C. Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983), 687-708.
8. W. Jaco, Lectures on 3-manifold topology, Regional Conference Series in Mathematics 43 (A.M.S., 1980).
9. L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737-745.
10. M. Scharlemann, Producing reducible 3 -manifolds by surgery on a knot, preprint.
11. S. Wang, Cyclic surgery on knots, Proc. Amer. Math. Soc. 107 (1989), 1127-1131.
12. Y. Wu, Cyclic surgery and satellite knots, preprint.

Mathematics Department
University of British Columbia
Canada V6T 1Y4

