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ON ODD FUNCTIONS OF BOUNDED BOUNDARY 
ROTATION 

RONALD J. LEACH 

1. Introduction. Let VK denote the class of functions 

/(*) = 2 + È <w" 

that are analytic in the unit disc U, satisfy/ '(z) ^ 0 in U, and map U onto a 
domain with boundary rotation at most Kir (for a definition of this concept, 
see [9]). V. Paatero [9] showed t h a t / 0 ) £ VK if and only if 

(1.1) /(*) = J J e x p [ - J ^ l o g ( l - ze-u)d»(t)jdz, 

where fj.(t) is real valued and of bounded variation on [0, 2ir] with 

a) rdn(t) = 2, (h) r \d»(t)\<K. 
«/o «/o 

V2 is precisely the class of normalized univalent convex functions and it is 
known that for 2 S K S 4, VK consists only of univalent functions. J. Noonan 
[8] has recently shown that if f(z) = z + ]Cw=aMw G VK, then 

(1.2) lim-jy £ 
n^nK/À-l r ( ( X + 2 ) / 2 ) ' 

where 

0 = lim (1 - r ) ( * + 2 ) / 2 M(r, / ' ) . 
r->l 

Let T^x denote the class of odd functions in VK. Let 

A2n+i(K) = max |a2n+i|. 
/ewK 

In this paper we will determine Ad(K) and As(K) for all K ^ 2. We will prove 
a result for W^ analogous to (1.2) and will show that 

Ain+1(K) < ^ V + K){l)Kli-1'\2n + l)Kl^'\ 

2. Distortion theorems. We begin our study of the class WK with a 
theorem relating this class to the class VK. 
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552 RONALD J. LEACH 

THEOREM 2.1. /(z) 6 WK if and only if there is a g(z) £ VK such that f'(z) = 
{g'(22)}1/2-

Proof. Suppose that g(z) G F^. Then g'(z) je 0 in [/ and hence if 

/(*) = P/'(*)<fe. where / ' ( s ) = fg'(z2)}1/2, 

then/(z) is single valued and analytic in U. We have 

zVV)_ 2/"(z) 
1+ «vr~1 + /'« • 

A short calculation shows that (with f = z2 = r2eia) 

114+^f}l-fl4+^} da. 

Therefore 

(2.1) lim C i R e i l + C ^ v l U = lim C |Re{ l + ^ 7 ^ } 

and consequently/(z) G W^ if g 0s) G F^, since /(z) is odd. 
Suppose now tha t / (z ) G WK. Let 

§ ( 2 ) = fV(*)<fe, where g'(z2) = \f'{z)\\ 
Jo 

Then (2.1) holds and thus g(z) G VK. 

COROLLARY 2.2. f(z) G J ^ if and onZy if there are two odd starlike functions 
Si(z) and s2(z) such that 

/•<..=[f]""7[f] (K-2) /4 

Proof. This follows immediately from Theorem 2.1 and a result due to 
D. Brannan [2]. 

We observe that Corollary 2.2 and the distortion theorem for odd univalent 
functions easily yield sharp bounds for | / ' ( z ) | and | / (z) | . 

THEOREM 2.3. Letfiz) G W%. Thenf(z) is close-to-convex in U. 

Proof. By a result due to Kaplan [5] , / (JS) is close-to-convex in U if and only 
if for each r with 0 < r < 1 and each 0i and 02 with 0 ^ 0i < 02 ̂  2x, 

^ J.! ,Rel1+r^Ti}dB > 

The conclusion is well-known for convex functions and thus we may assume 
f{z) is a non-convex function in WK with 2 < X ^ 6. Let &(r, 0) denote the 
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ODD FUNCTIONS 553 

integrand in (2.2). Since Re {1 + zf " (z)/f ' {z)\ is harmonic in U, the sub-
harmonic function |Re {1 + zf"(z)/f'(z)}\ cannot be harmonic in p < \z\ < 1. 
By a result of F . Riesz [12] on subharmonic functions, 

J
»2TT 

\h(r,e)\de 
0 

is a strictly increasing function of r for near 1. Consequently, for any fixed r 
sufficiently near 1, 

J
»2TT 

\h(r,6)\dd < 6TT. 
o ' 0 

Suppose t h a t for some 6U 62 with 0 ^ 0i < 02 < 2w, 

•*e2 n02 

I h(r, 6)de = -air (a > o). 
We may suppose without loss of generality t ha t di = 0 since if not we consider 
eidlf(e~idlz). There are three possibilities to consider. 

If 02 = 7T, then since f(z) is odd, 

2 I h(r,d)dd = -air, 
Jo 

which is impossible since a > 0. 
Suppose 02 < ir. Then [0, 62] and [71-, 62 + T] are disjoint subintervals of 

[0, 2TT] with 

Since 

J»02 f*Û2+TT 

h(r,d)dd= h(r,0)dd. 
0 Jr 

J
»2x /*27T 

A( r , 0)^0 = 2TT and |A(r, 0)|d0 < 6TT, 
0 «/o 

'0 */o 

i t follows tha t , denoting the union of [0, 02] and [71-, 02 + 7r] by E, 

w = J h(r,6)d0 > -2TT -2a 

and hence a < 1. 
Finally, if 02 > ?r, we have 

h(r, 6)dd + h(r, 6)dd = -aw 
Jo JT 

T h u s (0, d2 — 7r] and [?r, 02] are disjoint subintervals of [0, 2TT\ with 

J» 0 2 — T /»#2 

h(r,0)dd= h(r,6)dd. 
0 « /x 
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Denoting the union of the two intervals by F, we have 

-2«7r - 2TT = I h(r, 6)dd > -2w 

which is impossible since a > 0. 
Thus in any case a < 1 and hence since r was arbitrary, f(z) is close-to-

convex in U. 

In order to obtain an estimate on the radius of close-to-convexity of WKj 

we need to use the following lemma, the proof of which is implicitly contained 
in a result due to Goluzin [3, p. 533]. 

LEMMA 2.4. Let s(z) be an odd starlike junction. Then |arg s(z)/z\ ^ arcsin \z2\ 
and this result is sharp. 

THEOREM 2.5. Let f(z) £ WK. Then f(z) is close-to-convex (and hence univalent 
for \z\ < r0, where r0 = 1, if K g 6 and r0 = [sin w/(K - 2)]1 /2 if K > 6. 

Proof. By Corollary 2.2, there are two odd starlike functions Si(z) and 
52(z) such that 

To /\,\~l(Js:+2>/4 / T O ^ \ ~ l ^ - 2 ) / 4 

Then 

zf'iz) JfiM/^MT l (JS:-2)/4 

arg 

^ A- 2 . 2 / iB\ 
< — 2 arcsin r (2 = re ). 

Now Re zfr{z)/s1(z) > 0 for |s| < r if and only if |arg z/ ' (z)Ai(z) | < TT/2 for 
|z| < r. Thus / ( s ) is close-to-convex (relative to the starlike function Si(z)) if 

K - 2 . 2 ^ IT 
— - — arcsin r < — , 

which gives the result. 

3. Sharp coefficient bounds. In this section we will find the values of 
AZ(K) and Ah(K) for all values of K for all K ^ 2. In addition we will show 
that ^42n+i(6) = 1, for all » ^ 0. We will need the following result due to 0. 
Lehto [6]. 

LEMMA 3.1. Let g(z) = z + J^n=2bnz
n Ç F x awd suppose 

g'(z) = e x p [ - J * log(l - ze-u)d,x(t)j . 
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Then for n ^ 2, 

Lehto conjectured that the coefficients of the function 

solve the problem of determining max \bn\ for the class VK. Using a method 
similar to Lehto's, we will see that the function fo(z) defined^by 

Cz Cz (\ -A- «2\(^-2>/4 

(3.i) /„(*> = Jo {go'(z2)}i/2dZ = Jo ^ ( 1 i y ) ( W > / 4 & 

i£ 3 i£ + 4 5 

gives the value of 4 3 ( 1 0 for all X ^ 2, but that (i£2 + 4)/40 = 4 5 ( 2 0 only 
for K = 2 or X ^ 4. We conjecture that the coefficients of/o(z) yield .42w+i(i£) 
for all X ^ 4. 

THEOREM 3.2. L^ / ( z ) = z + TZ=i^2n+iz2tt+1 £ WK. Then 

(3.2) |a8| ^ K/Q 2 ^K, 

(3.3) |fl6| ^ (X2 + 4)/40 4 ^ K, 

(3.4) |a6| ^ (14X + 4)/20(10 - K) 2 S K < 4. 

^4// 0/ ^ese results are sharp for the indicated ranges of K. 

Proof. By Lemma 3.1, we have that 

where 

Since 

f'(z) = exp |_- J o log(l - «-")<*/i(/)J . 

f \d,i(t)\<K, 

we have |a3| ^ K/6. 
By Lemma 3.1, we have that 

/»2TT -. r r*1ir "12 

20o6= J^ «"*%(»)+|LJ 0 e-u%(6)j 
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We may suppose without loss of generality that a5 is real and non-negative, 
since if not we may consider e~ief(eiez), where 0 is chosen so that e4iea$ ^ 0. 
Thus we have 

20a 5 = j cos 46dn (0) +-\ ( j cos20dn(0)) 

- ( j sin20d/x(0)j 

= j 2 cos2 26dfi (0) - 2 + | 1 f J cos 26dli (0) ) 

- ( j sin 20^(0)) 

/»2TT -J T /̂ 27r ~|2 

< 2 I cos2 20d;u(0) + - I cos 26dn(e) - 2. 

Let us first suppose that /x(0) is a step function with at most N jumps. If 
li(6) has jumps dj at 6j (0 ^ 6j ^ 27r), then 

(3.5) I ) d , = 2, S K | < ^ , 

and 

(3.6) 20a5 < 2 X) c°s2 20/Z, + Ô Z cos 2djdj - 2. 

We wish to find a maximum for the right hand side of (3.6), subject to the 
constraints (3.5). The existence of a maximum is obvious, since we are con­
sidering a continuous function of the N variables cos 26j defined on a compact 
subset of EN. 

First we suppose that the maximum value of (3.6) is attained at a point 
where not all of the |cos 26j\ = 1. By relabeling if necessary, we may assume 
that |cos 20y| ^ 1 for 1 ^ j ^ r(r S N). Then a differentiation of the right 
hand side of (3.6) with respect to cos 20^ yields 

4 cos 2 0 ^ + I S cos 26jdj \dh = 0 (1 < h < r). 

Thus cos 20ft is identically constant, say cos 20^ = cos 2a for 1 ^ h ^ r and 

N 

(3.7) - 4 cos 2a = X) c o s 2 M r 

Substituting in (3.6) we have 

(3.8) 20a5 < 2 cos2 2a ]T d J - 2 + 2 ] £ d J + 8 cos2 2a. 
L y=l J L^ r+ l J 

(In (3.8) we adopt the convention that if r = N, Y^=r+idj = 0.) From (3.5) 
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we see that 

j=r+l 

and 

j=r+l * 

It follows that 

20a5 < 2 cos2 2a( 2 - £ dA + 2 I £ ^ ) + 8 cos2 2a - 2 

< K + (10 - K) cos2 2a. 

If i£ ^ 4, we use the inequality cos22a ^ 1 to obtain 

20a5 ^ 10 S (K2 + 4)/2. 

Let us now suppose K < 4. From (3.7) we have 

and hence 

— cos 2a I 4 + X d A = 22 c o s ZBjdj 

N 

ŷ y cos 20/^-

cos 2a 
4 + E d, 

. 7 = 1 

< 
2+K 
10 - K' 

Thus if K < 4, 

2 0 a 5 < i T + ( 1 0 - ^ ) ( ^ ^ ) 2 

= 14i^ + 4 
10 - X ' 

We observe that (i£ + 4)/2 < (14i£ + 4)/(10 - K) if and only if 

K* - 10K2 + 32K - 32 > 0, 

which is true for 2 < K < 4. 
It remains to consider the case that each |cos 26 j\ = 1 at the maximum. In 

this case we have from (3.6) that 

N -i T N ~|2 

20a5 < 2 l i , + ; Z c o s 20/*, - 2 

<4 + 2 

K1 + 4 

https://doi.org/10.4153/CJM-1974-051-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-051-0


558 RONALD J. LEACH 

Since step functions are dense in the family of functions of bounded varia­
tion with the constraints (3.5), our results are valid for each function in WK. 

The function 

-C ( \ 1 - ^ 3 , K + 4 5 fo(z)=Z + ~Z + T7T~Z + 
6~ ' ~40 

of (3.1) shows that (3.2) and (3.3) are sharp. To show that (3.4) is sharp we 
will construct a function /*(/) for which equality holds in (3.6) for 2 ^ K < 4. 

Let a = \ arccos (K + 2)/(10 - K). We define n(6) on [0, 2TT] as a step 
function with jumps dj(l S j ^ 4) of | ( 1 — 2£/2) at the values di = a, 
d2 = TT — a, 03 = 7T + a, and 04 = 27r — a and jumps ^ ( 5 ^ j ^ 6) of 
| ( 1 + i f / 2 ) at 05 = TT/2 and 06 = 3TT/2. A short calculation using (1.1), 
Corollary 2.2 and Lemma 3.1 shows that 

f'(z) = [(1 - z2e~2ia)(l - z2e2ia)YK/2-^/A/(l + 22)(i+*72)/2 

and that a, = (UK + 4)/20(10 - K). 

As a conclusion to this section, we obtain the sharp bounds for the coefficients 
of a function in W&. 

THEOREM 3.3. Let f(z) = I^Loa2w+is2w+1 € W&. Then |a2»+i| ^ 1, with 
equality for f(z) = z/(l — z2). 

Proof. By Theorem 2.3,/(s) is close-to-convex in U. The result then follows 
from a result of C. Pommerenke [10]. 

4. Asymptotic coefficient estimates. We first consider the problem of 
estimating | |a2w+3| — \a2n+i\ I for a function f(z) = Y.^ain+\Z2n+l £ WK. 
K. Lucas [7] has shown that if f(z) = Yln=o^2n+iZ2n+1 is univalent, 

| |a2»+3| - |«2n+i| | = 0{nl~V2). 

M. S. Robertson [13] has shown that if g(z) = ZSUM* G VK C\ S, then 

| | ^ + 1 | - | ^ | | < 2 ( | ) 3 ( ^ 2 + ^ ) . 

We will obtain estimates for WK C\ S using Robertson's technique. 

LEMMA 4.1. Letf(z) be an odd function in S. Then if \z\\ = |z2| = r, 

(4.1) min(|/(*i) | , | /(*,) |) < 

(4.2) m in ( | / ' ( 2 l ) | , | / ' (* , ) | ) < 

21/2r 
[ | 2 l

2 - 2 2
2 | ( l - r 4 ) ] 1 / 2 

21/2(1 + r2)1 / 2 

W - z2
2|1/2(l - r2)3 /2 ' 

Proof. Goluzin [4], has shown that if g(z) £ S, 

(4.3) min(|g(/x)|, \g(h)\) < -r ffl • |2. ( M = \h\ < 1). 
|n — H\ \i — \H\ ) 
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If we apply (4.3) to the function g(z) denned by f(z) = {g(s2)}1/2, then (4.1) 
follows. To obtain (4.2) we note that since f(z) is an odd univalent function, 

zf'b) 

m 
< 1 _ r2 (z = re ). 

Observing that \f'(z)\ = \f'(z)/f(z)\ • \f(z)\ for z 9* 0, we see that 

21/2r 1 1 + r 

21/2(l + r2)1/2 

" \Zl
2 - s2

2|1/2(l - r2)3/2 

(0 < |*i| = |z2| = r < 1). 

THEOREM 4.2. Letjiz) = l]^Lo^2W+is2w+1 G W^ a»d suppose f(z) is univalent. 
Then we have 

. 8( i£ 2 +iOe 3 5 5 / 2
 (0 , n - i / 2 

|a2w+3| ~ |02n+l| I < 243^/6 (2W + 1) (« > 1). 

Proof. Let zi be a point on \z\ = r where | / ' ( s i ) | = M(r, / ' ) . Then by 
Lemma 4.1, 

2\l/2i 2 2t 1/2 21/2 /t I z\l/2| 2 2 

I» - *i 11/(2)1 < ( 1 _ r2y372 L— (|s| = r). 

Now 

(z2 - *i2)/'"(*) = - 6a30i2 - E t(2» + 3) (2» + 2)a2n+,Zl
2 

w = l 

- 2n(2n - l)a2n+1](2n + l)z2w. 

Therefore 

(2» + 1)|(2» + 3) (2» + 2)a2w+3si2 - 2»(2» - l)a2n+1\ 

Z7TT «7 0 I / 

/ '"(*) dd 

< (1 - r2)3/2 ' 2TT2* Jo 

^ 2V2 1 f H | r " ( g ) ' 
< P h , ( l - r 2 ) , / 2 2x Jo f' de. 

de 

\1-ry2* Jo \ f'iz) 
Robertson [13] has shown that if f(z) G VK, and hence certainly if f(z) G WK, 

(4 4) -1- r p 
^•* ; 2x Jo I / (2) I 

<# < 1 — r 
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It follows that 

(2n + 1)| (2» + 3)(2» + 2)a2„+3si2 — 2n(2n - l)a2re+1| 

2\/2(K2 +K) 
a 2 \ 5 

- r ) 
^ 2n/-, 2\5/2 

Choose |z!|2 = r2 = 2w(2^ - l ) / (2» + 2) (2w + 3). Then (4.5) yields 

(2w + l)(2w)(2ra - 1)| \a2n+z\ - \a2n+i\ \ 

2\/2(K2 +K) ["(2» + 3)(2w + 2)"|n 

[ _ 2n(2n - 1) ~]5/2 L (2») (2» - 1) J ' 
L (2^ + 3)(2^ + 2)J 

Consequently, 

. 2V2(X2+i^) 

|^2w+3| "~~ | a 2 n + l | 

(2w + 3)(2w + 2) 5/2 

(2w + 1) (2«) (2n - 1) L 12^ + 6 

We now study the asymptotic behavior of |a2W+i| by relating the growth of 
the coefficients of f(z) to the growth of M(r, f ' ) . We will show that 

a = lim (1 - r2)iK+2)/*M(r,f) 
r->l 

exists and that a (and hence |a2w+i| for large n) is maximal for the class WK 

only for the function 

t / 0 

( 1 + 2 2 ) ( ^ - 2 , / 4 

2\CK+2)/4 sfe 
(i - o 

or its rotations. 

THEOREM 4.3. Letf(z)WK. Then 

a = lim (1 - r2) (*+2) /4if ( r , / ' ) 
r->l 

exists and a ^ 2 ( ^ - 2 ) / 4 wi/fe equality if and only if 

/ ( Z ) " Jo (l-e
2 iV) l X + 2 ) / 4^Z-
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Further, if a > 0, there are precisely two values of d0 such that 

lim (1 — r ) 
r-»l 

2xCK+2) /4 | 

l/'(«"°)l=«. 

Proof. By Corollary 2.2, there are two odd starlike functions Si(z) and s2(2) 
such that 

/ ' (*) = site) 
L z . 

Cff+2) /4 
^2(2) 

( i f - 2 ) /4 

Let Si(z) = [^i(V^)]2- Pommerenke [11] has shown that, unless Si(z) = 
z/(l - e-2ie»z)\ 

lim (1 - r)2M(r, Si) = 0. 

Hence if s±(z) is not of the form Si(z) = z/(l — e~2i9z2), 

l i m ^ C l - r2)M(r,Sl) = 0 

and thus since z/s2(z) is bounded in U 

lim (1 - r2){K+2)l*M(rJ') = 0. 

Suppose now that 

lim sup (1 - r2)(K+2)/*M(r,f) > 0. 

Then s±(z) is of the form z/(l — e~2i6oz2) and we may assume 00 = 0. Since 
f(z) is odd, we may choose a sequence fn —> 1 and a point zw on |s| = rn with 
Re s „ ^ 0 such that lim^c o(l - r„2)(*+2> / 4 | / '(£j| > 0. We will show that for 
each such sequence, there is a Stoltz angle A with vertex at z = 1 such that 
zn eventually lie in A. Suppose not. Let C > 0 be given. Then there is a sub­
sequence {ZJ} with |1 — Zj\ > C(l — rf) and hence, since |z/s20s)| ^ 2, we have 
for j sufficiently large 

y(K-2)/4 > *(1 - r / ) 

i /^(X+2)/4 

2\Cff+2) /4_ c 
C8T+2) /4 

1 _ g 2 |^+«/4 2 

(4.6) = K ^ + z ; / 4 ( l - r / r + s y / 4 | / ' ( * j . 

s2fo) 

(^-2) /4 

2 N ( / S : + 2 ) / 4 | 

Letting j —» 00 in (4.6) we obtain the inequality 

' l i m ( l - , / ) ( ™ 4 | / ' f e ) l -2^+2) /4 ^ ^.(^+2)74, 

which is impossible since C > Ois arbitrary and lim .,^œ(l — rj
2YK+2)U\f,{zj)\ > 

0. I t follows that the points zn eventually lie interior to some fixed Stoltz angle 
with vertex at z = 1. We recall that sinces2(;s) is starlike, [1; 11], limr_>ir/52(r) 
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exists and is finite. (Since 

^log|/(2) | = R e 5 S ? > 0 , 
dr m 

limr_>i | / ( r ) | exists (possibly =00).) Since the zn lie interior to some fixed 
Stoltz angle, we have 

1 i n 
im—p—r l i m - j T . 

n^oo ^2\Zn) 

It follows that 

Zn 

si{zn) 

(K-2) /4 

> 
1 2 

1 - rn 

1 ~zn
2 

(K+2)/A 
Zn 

1 2 

1 - rn 

1 ~zn
2 

(K+2)/A 

S2(zn) 

(K-2) /4 

= (1 - r . ) 
2x(iC+2)/4| 

/ ' (* . )! 
and hence 

lim r» 
52(r„) 

(tf-2) /4 

> l i m ( l - r B
2 ) c ™ 4 | / ' ( < ) | 

«->oo 

> H m ( l - r , , ) « + ï ) / 4 | / ' ( r . ) l 

= lim 
W-»oo ^(r„) 

(i£-2) /4 

for any sequence rn so that limw^00(l — ?vO(i iC+2)/4|/'6^)1 > 0. Therefore a 
exists and equals l i m r ^ ( l - r2yK+»l*\f '(r)\. 

A similar argument shows that 

l i m ( l _ , Y ™ 4 | / ' ( - r ) I =«. 
r->l 

We have a ^ 2 (^~2) /4 with equality when 0O = 0 if and only if s*(z) = z/(l — z2) 
and s2(z) = z / ( l + s2) and consequently equality holds in general only for 
rotations of the function 

. , . f ' ( l+** ) ( J M ) / * 
'0 ( 1 - 3 2 ) 1 

Remark. Noonan [8] has obtained a result similar to Theorem 4.3 for the class 
VK using the Hardy-Stein-Spencer equality. 

A straightforward modification of Noonan's technique yields the following 
theorem, whose proof will be omitted. 

THEOREM 4.4. Letfiz) = Z"=oa2„+is2n+1 £ WK and let 

~ W 2 ) / 4 M ( r , / ' ) . a = lim (1 — r ) 

Then 

lim |fl>2w+l| 

(2« + 1) X/4-3/2 r((Js: + 2)/4) ' 
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Remark. Theorem 4.4 shows that for any fixed function f{z) Ç WKj the 
moduli of the coefficients of f(z) are eventually less than those of the function 

/ ( 2 ) = J„ ( 1 _ ^ ) < * + « / * & 

unless /(z) = e~ief(ei6z). This is somewhat surprising since by Theorem 3.2, 
/o(s) does not maximize \a$\ for 2 < K < 4. 

To conclude this paper we will study the behavior of A2n+i(K) as K —-> oo. 
The proof is based on a technique due to Robertson [13]. 

THEOREM 4.5. Let A2n+i(K) = ma.xfeWK\a2n+i\. Then for K ^ 2, 

(4.7) ^ ( Z ) < | (i£2 + JC)f' /4-1/1(2n + I ) * ™ (n > 1) 

(4.8) lim t2n+l (*) (« = 3, 4 , . . .)• 
* : ; (2« + 1 ) ^ 4 - 3 / 2 - u 

Proof. Using the Cauchy integral formula, we see that 

(2» + 1) (2») (2n - ljaa^-i = TT" f ^ 2 ? & 
1-Kl J\e\ = r Z 

and consequently 

(4.9) (2n + l)(2n)(2n-l)\ain+1\ < r - 4 = 5 f ' | / ' ( r e " ) | 

Corollary 2.2 easily yields 

f'"(rei6) 

/V) de. 

\f'(reie)\ < 
(1 + r2) (*-2 ) / 4 

Also, by (4.4) we have that for each / £ WK, 

K2 +K 
2lT J0 I / ' ( « " ) 

<Z0< 1 * 

1 — r 
Substituting into (4.9) we obtain 

(2» + 1)(2»)(2» - l)A2n+1(K) < ^ ^ 1 ^ 2 ) 7 4 ^ 2 ^ _ f • 

The choice r2 = 1 - 3/(2» + 1) yields 

(2» + l ) ( 2 n ) ( 2 « - l)A2n+1(K) 
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and 

A2n+1(K) < | (K2 + K)(l)K/*-1/2(2n + l )* / 4 " 3 / 2 (n > 1) 

This is (4.7). To obtain (4.8) we note that 

(2n + lf /4-3/5 < 3" ( + A ' ^ 

and consequently (4.8) follows by letting K —> co. 

I would like to thank the referee for his helpful comments. 
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